博碩士論文 111324023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.135.186.233
姓名 歐瀚仁(Han-Jen Ou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以多巴胺做為介面媒介於ZIF-7/Pebax2533中增進其CO2/N2氣體分離表現
(Polydopamine as interface agent in ZIF-7/Pebax-2533 for improving performance of CO2/N2 gas separation)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
★ 蒸氣相成長金屬有機框架材料合成★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性
★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
★ 鋯金屬有機框架結構之二氧化碳吸附性質探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 在混合基材薄膜製備中,其中最重要的是改善添加的分子篩與高分子薄膜之間的相容性。因為低相容性經常帶來介面上的缺陷,而換句話說,低相容性也可以說是兩者之間的低黏著性,面對這個問題,通常會有幾種改善的方法,有填料幾何形狀的變化、填料或是高分子鏈的官能基化、原位合成、界面劑等方法。對於界面劑,這種方法著重於改善添加物和聚合物之間的相容性,使得原本可能出現的缺陷不復存在。在許多研究中,這種方式多是使用離子液體,但其昂貴的價格在規模化上較不具經濟效應。因此必須尋找一種替代物,一種足夠小以填補空隙、價格便宜以進行工業上的應用並且具有良好介面間黏著性的材料為我們的目標。聚多巴胺在許多材料的界面都可以產生優秀的黏著性,而其更在許多研究中已應用於各個方面,特別是在顆粒表面形成塗層或者作為黏著劑。其廣泛且優秀的黏著性,由其苯環引起的 π-π 堆疊和 π-陽離子相互作用所貢獻的。在這項研究中,ZIF-7 和 Pebax-2533 被選為填料和聚合物。ZIF-7的配體是苯並咪唑,其和聚多巴胺一樣也含有苯環。而Pebax-2533是一種聚醚(PTMO, poly(tetramethylene oxide))-醯胺(PA12(polyamide))共聚物,其中PTMO段貢獻於氣體滲透性,而PA段則提供機械穩定性。此研究中將聚多巴胺添加到這個組合當中,以改善填料與高分子間的相容性,消除無選擇性的孔洞。此研究中使用的材料鑑定包括使用X射線繞射儀(XRD)和傅立葉變換紅外光譜儀(FTIR)來研究PDA添加對晶格結構變化和功能基團差異的影響。掃描電子顯微鏡(SEM)用於觀察PDA如何連接填料和聚合物以及微觀結構的變化。能量散射 X射線光譜學(EDS)和X射線光電子能譜(XPS)用於研究PDA、ZIF-7和Pebax 之間的元素組成和相互作用。熱重分析(TGA)和差示掃描量熱法(DSC)應用於研究混合基材薄膜和純膜的熱穩定性。接著利用氮氣在 77K 下的吸附測試來測試 ZIF-7 的孔徑和表面積分析。而在單一氣體滲透測試當中,則是使用自製儀器應用於薄膜氣體滲透率的測量。
摘要(英) Improving the compatibility between fillers and polymers is the primary consideration in mixed matrix membrane (MMM) fabrication. Low compatibility, or in other words, low adhesion between the filler and polymer, can lead to non-selective interfacial voids, which are a nightmare for MMMs. Various methods to address this issue can be categorized as modification of filler geometry, surface interaction, design interaction, MOF composite, in-situ synthesis, interface agent, and polymer modification.
For the interface agent, this method focuses on improving adhesion between the filler and polymer. Most of the work utilized ionic liquids (ILs) as the agent, which are expensive. Alternatively, we have searched for a material that is small enough to fill voids, inexpensive for mass application, and has great adhesion. Polydopamine (PDA) came into our sight. PDA has been applied to various aspects, particularly surface modification and metal coordination. It is known for its strong adhesion, which is contributed by its benzene ring for π-π stacking and π-cation interaction.
In this research, ZIF-7 and Pebax-2533 were applied. The ligand of ZIF-7 is benzimidazole, which also contains a benzene ring as polydopamine does. Pebax-2533 is poly(ether-block-amide), a copolymer in which the PE segment contributes to gas permeability, and the PA segment provides mechanical stability. PDA was added to this combination to improve compatibility and enhance the gas permeation performance. The performance of the optimal membrane in this work exceed the 2019 upper bound for CO2/N2 separation, with CO2 permeability of 661.8 barrer and selectivity of 61.85. This is an increase of 242% and 384% in permeability and selectivity, respectively.
Characterizations of MMMs included using X-ray diffractometer (XRD) and Fourier-transform infrared spectroscopy (FTIR) to investigate the effects on lattice structure changes and infrared spectrum differences upon PDA addition. Scanning electron microscopy (SEM) was used to observe how PDA bridged the filler and polymer and changes in microstructure. Energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were applied for the elemental composition and interaction between PDA, ZIF-7, and Pebax. Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC) were applied to investigate the thermal properties of MMM and neat membrane. Pore size and surface area analysis, with N2 adsorption at 77K was tested on the pore size of ZIF-7. A custom instrument for single-gas permeation, set up in the constant volume-variable pressure method, was used to measure the permeability of the membranes. The test pressure difference was 1.8 bar and the temperature was 35℃.
關鍵字(中) ★ 有機金屬架構
★ 氣體分離
★ 多巴胺
關鍵字(英) ★ MOF
★ gas separation
★ dopamine
論文目次 摘要 i
Abstract ii
Acknowledgment iv
Table of Contents v
List of Figures vii
List of Tables xi
Chapter 1 Introductions 1
1-1 Backgrounds 1
1-2 Literature Review 4
1-2-1 Gas separation 4
1-2-2 Mixed matrix membranes (MMMs) 7
1-2-3 The application of PDA in the membranes 8
1-2-4 Zeolitic Imidazolate Framework-7 (ZIF-7) 10
1-3 Motivation 14
Chapter 2 Experimental 15
2-1 Synthesis of zeolitic imidazole framework-7 (ZIF-7) 15
2-2 Fabrication of membranes 16
2-2-1 Pristine Pebax-2533 membrane 16
2-2-2 Mixed matrix membrane 16
2-2-3 Mixed matrix membrane with dopamine modified 17
2-3 Materials and Reagents 18
2-4 Analysis Instruments and Characterization 19
2-2-1 Fourier transform infrared spectroscopy (FTIR) 19
2-2-2 Ultraviolet-Visible spectroscopy (UV-Vis) 20
2-2-3 X-ray diffraction (XRD) 21
2-2-4 Scanning electron microscopy (SEM) 22
2-2-5 Energy-dispersive X-ray spectroscopy (EDS) 23
2-2-6 Thermogravimetric analysis (TGA) 23
2-2-7 Differential scanning calorimetry (DSC) 24
2-2-8 Pore size and surface area analysis (PSSA) 25
2-5 Instruments used 26
2-6 Single gas permeation measurement 28
Chapter 3 Results and Discussion 31
3-1 Characterizations of filler and membrane 31
3-1-1 X-ray diffraction 31
3-1-2 Fourier transform infrared (FTIR) 34
3-1-4 Ultraviolet-Visible(UV-Vis) 41
3-1-3 Morphology 42
3-1-4 Elemental Distribution in membranes 48
3-1-5 Thermal properties analysis 54
3-1-6 Nitrogen sorption behavior and pore analysis of ZIF-7 63
3-2 Single gas permeation measurement 66
Chapter 4 Conclusions 70
Chapter 5 Future Work 71
References 72
參考文獻 1. Ms. Yuvika, G., Carbon credit: A step towards green environment. Global Journal of Management and Business Research, 2011, 11(5).
2. Iulianelli, A. and E. Drioli, Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. Fuel Processing Technology, 2020, 206.
3. Sholl, D.S. and R.P. Lively, Seven chemical separations to change the world. Nature, 2016, 532(7600).
4. Powell, C.E. and G.G. Qiao, Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science, 2006, 279(1-2).
5. Freeman, B.D., Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules, 1999, 32(2).
6. Comesaña-Gándara, B., J. Chen, C.G. Bezzu, M. Carta, I. Rose, M.-C. Ferrari, E. Esposito, A. Fuoco, J.C. Jansen, and N.B. McKeown, Redefining the robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy & Environmental Science, 2019, 12(9).
7. Chawla, M., H. Saulat, M. Masood Khan, M. Mahmood Khan, S. Rafiq, L. Cheng, T. Iqbal, M.I. Rasheed, M.Z. Farooq, M. Saeed, N.M. Ahmad, M.B. Khan Niazi, S. Saqib, F. Jamil, A. Mukhtar, and N. Muhammad, Membranes for CO2/CH4 and CO2/N2 gas separation. Chemical Engineering & Technology, 2019, 43(2).
8. Ju, K.Y., Y. Lee, S. Lee, S.B. Park, and J.K. Lee, Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules, 2011, 12(3).
9. Fredi, G., F. Simon, D. Sychev, I. Melnyk, A. Janke, C. Scheffler, and C. Zimmerer, Bioinspired polydopamine coating as an adhesion enhancer between paraffin microcapsules and an epoxy matrix. ACS Omega, 2020, 5(31).
10. Jiang, X., Y. Wang, and M. Li, Selecting water-alcohol mixed solvent for synthesis of polydopamine nano-spheres using solubility parameter. Sci Rep, 2014, 4.
11. You, H., X. Zhang, D.Z. Zhu, C. Yang, P. Chammingkwan, and T. Taniike, Advantages of polydopamine coating in the design of ZIF-8-filled thin-film nanocomposite (TFN) membranes for desalination. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2021, 629.
12. Casadei, R., M. Giacinti Baschetti, M.J. Yoo, H.B. Park, and L. Giorgini, Pebax((r)) 2533/graphene oxide nanocomposite membranes for carbon capture. Membranes (Basel), 2020, 10(8).
13. Wei, J., Y.L. Ma, Z.K. Qin, Z.H. Jin, Y. Jin, L. Yang, L. Yao, W.J. Jiang, Y. Deng, Y. Huang, H.Y. Zhao, J. Dong, L.Y. Deng, and Z.D. Dai, Membrane fabricated via a facile non-solvent induced microstructure re-arrangement with superior CO2 separation performances. Separation and Purification Technology, 2023, 320.
14. Zhao, D., J.F. Kim, G. Ignacz, P. Pogany, Y.M. Lee, and G. Szekely, Bio-inspired robust membranes nanoengineered from interpenetrating polymer networks of polybenzimidazole/polydopamine. ACS Nano, 2019, 13(1).
15. Ruan, X.H., X.F. Zhang, Z.Y. Zhou, X.B. Jiang, Y. Dai, X.M. Yan, and G.H. He, ZIF-8 heterogeneous nucleation and growth mechanism on Zn(II)-doped polydopamine for composite membrane fabrication. Separation and Purification Technology, 2019, 214.
16. Kim, S.D., G.Y. Won, A.A. Shah, A. Park, Y.-I. Park, S.-E. Nam, Y.H. Cho, and H. Park, Reinforcing the polybenzimidazole membrane surface by an ultrathin co-crosslinked polydopamine layer for organic solvent nanofiltration applications. Journal of Membrane Science, 2021, 636.
17. Pullumbi, P., F. Brandani, and S. Brandani, Gas separation by adsorption: Technological drivers and opportunities for improvement. Current Opinion in Chemical Engineering, 2019, 24.
18. Gunawardene, O.H.P., C.A. Gunathilake, K. Vikrant, and S.M. Amaraweera, Carbon dioxide capture through physical and chemical adsorption using porous carbon materials: A review. Atmosphere, 2022, 13(3).
19. Sidhikku Kandath Valappil, R., N. Ghasem, and M. Al-Marzouqi, Current and future trends in polymer membrane-based gas separation technology: A comprehensive review. Journal of Industrial and Engineering Chemistry, 2021, 98.
20. Said, R.B., J.M. Kolle, K. Essalah, B. Tangour, and A. Sayari, A unified approach to CO(2)-amine reaction mechanisms. ACS Omega, 2020, 5(40).
21. Shimekit, B. and H. Mukhtar, Natural gas purification technologies-major advances for CO2 separation and future directions. Advances in natural gas technology, 2012, 2012.
22. Wu, Y., J. Xu, K. Mumford, G.W. Stevens, W. Fei, and Y. Wang, Recent advances in carbon dioxide capture and utilization with amines and ionic liquids. Green Chemical Engineering, 2020, 1(1).
23. Baker, R.W., B. Freeman, J. Kniep, Y.I. Huang, and T.C. Merkel, Co2 capture from cement plants and steel mills using membranes. Industrial & Engineering Chemistry Research, 2018, 57(47).
24. Murali, R.S., T. Sankarshana, and S. Sridhar, Air separation by polymer-based membrane technology. Separation & Purification Reviews, 2013, 42(2).
25. Wijmans, J.G. and R.W. Baker, The solution-diffusion model: A review. Journal of Membrane Science, 1995, 107(1-2).
26. Kamble, A.R., C.M. Patel, and Z.V.P. Murthy, A review on the recent advances in mixed matrix membranes for gas separation processes. Renewable and Sustainable Energy Reviews, 2021, 145.
27. Maghami, S., A. Mehrabani-Zeinabad, M. Sadeghi, J. Sánchez-Laínez, B. Zornoza, C. Téllez, and J. Coronas, Mathematical modeling of temperature and pressure effects on permeability, diffusivity and solubility in polymeric and mixed matrix membranes. Chemical Engineering Science, 2019, 205.
28. Lin, R., L. Ge, H. Diao, V. Rudolph, and Z. Zhu, Ionic liquids as the mofs/polymer interfacial binder for efficient membrane separation. ACS Appl Mater Interfaces, 2016, 8(46).
29. Wu, W., Z. Li, Y. Chen, and W. Li, Polydopamine-modified metal-organic framework membrane with enhanced selectivity for carbon capture. Environ Sci Technol, 2019, 53(7).
30. Zheng, W., D. Wang, X. Ruan, Y. Dai, X. Yan, X. Zhang, X. Li, X. Jiang, and G. He, Pore engineering of mofs through in-situ polymerization of dopamine into the cages to boost gas selective screening of mixed-matrix membranes. Journal of Membrane Science, 2022, 661.
31. Yang, Z., Z. Wu, S.B. Peh, Y. Ying, H. Yang, and D. Zhao, Mixed-matrix membranes containing porous materials for gas separation: From metal–organic frameworks to discrete molecular cages. Engineering, 2023, 23.
32. Koros, W.J. and G.K. Fleming, Membrane-based gas separation. Journal of Membrane Science, 1993, 83(1).
33. Li, C., A. Qi, Y. Ling, Y. Tao, Y.B. Zhang, and T. Li, Establishing gas transport highways in mof-based mixed matrix membranes. Sci Adv, 2023, 9(13).
34. van Essen, M., E. Montree, M. Houben, Z. Borneman, and K. Nijmeijer, Magnetically aligned and enriched pathways of zeolitic imidazolate framework 8 in matrimid mixed matrix membranes for enhanced CO(2) permeability. Membranes (Basel), 2020, 10(7).
35. Della Vecchia, N.F., R. Avolio, M. Alfè, M.E. Errico, A. Napolitano, and M. d′Ischia, Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point. Advanced Functional Materials, 2013, 23(10).
36. Lyu, Q., N. Hsueh, and C.L.L. Chai, Direct evidence for the critical role of 5,6-dihydroxyindole in polydopamine deposition and aggregation. Langmuir, 2019, 35(15).
37. Hemmatpour, H., O. De Luca, D. Crestani, M.C.A. Stuart, A. Lasorsa, P.C.A. van der Wel, K. Loos, T. Giousis, V. Haddadi-Asl, and P. Rudolf, New insights in polydopamine formation via surface adsorption. Nat Commun, 2023, 14(1).
38. Ryu, J.H., P.B. Messersmith, and H. Lee, Polydopamine surface chemistry: A decade of discovery. ACS Appl Mater Interfaces, 2018, 10(9).
39. Liu, Y., X. Li, Y. Qin, R. Guo, and J. Zhang, Pebax–polydopamine microsphere mixed‐matrix membranes for efficient CO2 separation. Journal of Applied Polymer Science, 2016, 134(10).
40. Pirola, A.d.S., P.S. Pacheco, S.F. Zawadski, and D. Eiras, In-situ polymerized pebax®/polydopamine blend membranes with high CO2/N2 selectivity. Polímeros, 2023, 33(4).
41. Wang, T., Y. He, Y.J. Liu, F.J. Guo, X.F. Li, H.B.A. Chen, H.M. Li, and Z.Q. Lin, A zif-triggered rapid polymerization of dopamine renders CO/N-codoped cage-in-cage porous carbon for highly efficient oxygen reduction and evolution. Nano Energy, 2021, 79.
42. Jiang, X., S. He, G. Han, J. Long, S. Li, C.H. Lau, S. Zhang, and L. Shao, Aqueous one-step modulation for synthesizing monodispersed ZIF-8 nanocrystals for mixed-matrix membrane. ACS Appl Mater Interfaces, 2021, 13(9).
43. Chen, L., X.M. Ren, Y.X. Li, D. Hu, X.D. Feng, and W.L. Li, Enhancing interface compatibility of UiO-66-NH2 and polyamide by incorporating dopamine into thin film nanocomposite membranes. Journal of Membrane Science, 2022, 654.
44. Park, K.S., Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O′Keeffe, and O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A, 2006, 103(27).
45. Yang, J., Y.B. Zhang, Q. Liu, C.A. Trickett, E. Gutierrez-Puebla, M.A. Monge, H. Cong, A. Aldossary, H. Deng, and O.M. Yaghi, Principles of designing extra-large pore openings and cages in zeolitic imidazolate frameworks. J Am Chem Soc, 2017, 139(18).
46. Pimentel, B.R., A. Parulkar, E.K. Zhou, N.A. Brunelli, and R.P. Lively, Zeolitic imidazolate frameworks: Next-generation materials for energy-efficient gas separations. ChemSusChem, 2014, 7(12).
47. Cuadrado-Collados, C., J. Fernandez-Catala, F. Fauth, Y.Q.Q. Cheng, L.L. Daemen, A.J. Ramirez-Cuesta, and J. Silvestre-Albero, Understanding the breathing phenomena in nano-zif-7 upon gas adsorption. Journal of Materials Chemistry A, 2017, 5(39).
48. Zhao, P., G.I. Lampronti, G.O. Lloyd, M.T. Wharmby, S. Facq, A.K. Cheetham, and S.A. Redfern, Phase transitions in zeolitic imidazolate framework 7: The importance of framework flexibility and guest-induced instability. Chem Mater, 2014, 26(5).
49. Cai, W., T. Lee, M. Lee, W. Cho, D.Y. Han, N. Choi, A.C. Yip, and J. Choi, Thermal structural transitions and carbon dioxide adsorption properties of zeolitic imidazolate framework-7 (ZIF-7). J Am Chem Soc, 2014, 136(22).
50. Arash Arami-Niya, G.B., Zhonghua Zhu, Thomas E. Rufford, Gate opening effect of zeolitic imidazolate framework zif-7 for adsorption of ch4 and co2 from n2. Journal of Materials Chemistry A, 2017, 5.
51. Zhao, P., H. Fang, S. Mukhopadhyay, A. Li, S. Rudic, I.J. McPherson, C.C. Tang, D. Fairen-Jimenez, S.C.E. Tsang, and S.A.T. Redfern, Structural dynamics of a metal-organic framework induced by co(2) migration in its non-uniform porous structure. Nat Commun, 2019, 10(1).
52. Xiang, L., D. Liu, H. Jin, L.-W. Xu, C. Wang, S. Xu, Y. Pan, and Y. Li, Locking of phase transition in mof zif-7: Improved selectivity in mixed-matrix membranes for O2/N2 separation. Materials Horizons, 2020, 7(1).
53. Zulkifli, M.Y.B., Y. Yao, R. Chen, M. Chai, K. Su, X. Li, Y. Zhou, R. Lin, Z. Zhu, K. Liang, V. Chen, and J. Hou, Phase control of ZIF-7 nanoparticles via mechanochemical synthesis. Chem Commun (Camb), 2022, 58(88).
54. Gao, J., H. Mao, H. Jin, C. Chen, A. Feldhoff, and Y. Li, Functionalized ZIF-7/pebax® 2533 mixed matrix membranes for co2/n2 separation. Microporous and Mesoporous Materials, 2020, 297.
55. Maleh, M.S. and A. Raisi, Experimental and modeling study on interfacial morphology of ZIF-67/pebax-2533 mixed matrix membranes for CO2 separation applications. Surfaces and Interfaces, 2023, 38.
56. Mehdinia Lichaei, M., F. Pazani, A. Aroujalian, and D. Rodrigue, Two-step surface functionalization/alignment strategy to improve CO2/N2 separation from mixed matrix membranes based on pebax and graphene oxide. Process Safety and Environmental Protection, 2022, 163.
57. Grdadolnik, J., Atr-ftir spectroscopy: Its advantages and limitations. Acta Chimica Slovenica, 2002, 49(3).
58. Shindo, D. and T. Oikawa, Energy dispersive x-ray spectroscopy, in Analytical electron microscopy for materials science. 2002, Springer Japan: Tokyo.
59. Şener, T., E. Okumuş, T. Gürkan, and L. Yilmaz, The effect of different solvents on the performance of zeolite-filled composite pervaporation membranes. Desalination, 2010, 261(1-2).
60. Martinez-Izquierdo, L., M. Malankowska, J. Sanchez-Lainez, C. Tellez, and J. Coronas, Poly(ether-block-amide) copolymer membrane for CO(2)/N(2) separation: The influence of the casting solution concentration on its morphology, thermal properties and gas separation performance. R Soc Open Sci, 2019, 6(9).
61. Almuhtaseb, R.M., F.A. Awadallah, S.A. Al-Muhtaseb, and M. Khraisheh, Influence of casting solvents on CO(2)/CH(4) separation using polysulfone membranes. Membranes (Basel), 2021, 11(4).
62. Tan, G.Y.E., P.C. Oh, K.K. Lau, and S.C. Low, Development of mixed matrix membrane comprising titanium (IV) oxide dispersed with octaisobutyl polyhedral oligomeric silsesquioxane. IOP Conference Series: Materials Science and Engineering, 2020, 736(5).
63. Zhu, W., F. Liu, M. Gou, R. Guo, and X. Li, Mixed matrix membrane containing metal oxide nanosheets for efficient CO2 separation. Green Chemical Engineering, 2021, 2(1).
64. Zid, S., P. Alcouffe, M. Zinet, and E. Espuche, Mixed-matrix membranes based on polyetherimide, metal-organic framework and ionic liquid: Influence of the composition and morphology on gas transport properties. Polymers (Basel), 2022, 14(17).
65. Saadatkhah, N., A. Carillo Garcia, S. Ackermann, P. Leclerc, M. Latifi, S. Samih, G.S. Patience, and J. Chaouki, Experimental methods in chemical engineering: Thermogravimetric analysis—tga. The Canadian Journal of Chemical Engineering, 2019, 98(1).
66. Muntha, S.T., M. Siddiq, A. Kausar, and A. Khan, Mixed matrix membranes of polysulfone/polyimide reinforced with modified zeolite based filler: Preparation, properties and application. Chinese Journal of Polymer Science, 2017, 36(1).
67. Marti, A.M., S.R. Venna, E.A. Roth, J.T. Culp, and D.P. Hopkinson, Simple fabrication method for mixed matrix membranes with in situ mof growth for gas separation. ACS Appl Mater Interfaces, 2018, 10(29).
68. Qin, Z., X. Feng, D. Yin, B. Xin, Z. Jin, Y. Deng, L. Yang, L. Yao, W. Jiang, C. Liu, and Z. Dai, Impact of humidity on the co2/n2 separation performance of pebax-mof mixed matrix membranes. Industrial & Engineering Chemistry Research, 2023, 62(35).
69. Huang, H.-D., S.-Y. Zhou, D. Zhou, P.-G. Ren, J.-Z. Xu, X. Ji, and Z.-M. Li, Highly efficient “composite barrier wall” consisting of concentrated graphene oxide nanosheets and impermeable crystalline structure for poly(lactic acid) nanocomposite films. Industrial & Engineering Chemistry Research, 2016, 55(35).
70. D′Aniello, C., L. Guadagno, G. Gorrasi, and V. Vittoria, Influence of the crystallinity on the transport properties of isotactic polypropylene. Polymer, 2000, 41(7).
71. HorvÁTh, G. and K. Kawazoe, Method for the calculation of effective pore size distribution in molecular sieve carbon. Journal of Chemical Engineering of Japan, 1983, 16(6).
72. Walton, J.P.R.B. and N. Quirke, Capillary condensation: A molecular simulation study. Molecular Simulation, 1989, 2(4-6).
73. Saito, A. and H.C. Foley, Curvature and parametric sensitivity in models for adsorption in micropores. AIChE Journal, 2004, 37(3).
74. Jan Roman, P., F. Detlev, K. Thomas, and P. Klaus-Viktor, Gas permeation measurement under defined humidity via constant volume/variable pressure method. Journal of Membrane Science, 2012, 389.
75. Lin, H. and B. Freeman, Permeation and diffusion. 2006, Springer New York. p. 371-87.
76. Cai, Z., Y. Liu, C. Wang, W. Xie, Y. Jiao, L. Shan, P. Gao, H. Wang, and S. Luo, Ladder polymers of intrinsic microporosity from superacid-catalyzed friedel-crafts polymerization for membrane gas separation. Journal of Membrane Science, 2022, 644.
77. Mizrahi Rodriguez, K., W.-N. Wu, T. Alebrahim, Y. Cao, B.D. Freeman, D. Harrigan, M. Jhalaria, A. Kratochvil, S. Kumar, W.H. Lee, Y.M. Lee, H. Lin, J.M. Richardson, Q. Song, B. Sundell, R. Thür, I. Vankelecom, A. Wang, L. Wang, C. Wiscount, and Z.P. Smith, Multi-lab study on the pure-gas permeation of commercial polysulfone (PSf) membranes: Measurement standards and best practices. Journal of Membrane Science, 2022, 659.
78. Du, Y., B. Wooler, M. Nines, P. Kortunov, C.S. Paur, J. Zengel, S.C. Weston, and P.I. Ravikovitch, New high- and low-temperature phase changes of ZIF-7: Elucidation and prediction of the thermodynamics of transitions. J Am Chem Soc, 2015, 137(42).
79. Li, Y.S., H. Bux, A. Feldhoff, G.L. Li, W.S. Yang, and J. Caro, Controllable synthesis of metal-organic frameworks: From mof nanorods to oriented mof membranes. Adv Mater, 2010, 22(30).
80. Sun, Y., Y. Li, and J.C. Tan, Liquid intrusion into zeolitic imidazolate framework-7 nanocrystals: Exposing the roles of phase transition and gate opening to enable energy absorption applications. ACS Appl Mater Interfaces, 2018, 10(48).
81. Martínez-Izquierdo, L., A. Perea-Cachero, M. Malankowska, C. Téllez, and J. Coronas, A comparative study between single gas and mixed gas permeation of polyether-block-amide type copolymer membranes. Journal of Environmental Chemical Engineering, 2022, 10(5).
82. Al-Maythalony, B.A., A.M. Alloush, M. Faizan, H. Dafallah, M.A.A. Elgzoly, A.A.A. Seliman, A. Al-Ahmed, Z.H. Yamani, M.A.M. Habib, K.E. Cordova, and O.M. Yaghi, Tuning the interplay between selectivity and permeability of zif-7 mixed matrix membranes. ACS Appl Mater Interfaces, 2017, 9(39).
83. Azizi, N. and M.R. Hojjati, Using Pebax-1074/ZIF-7 mixed matrix membranes for separation of CO2 from CH4. Petroleum Science and Technology, 2018, 36(13).
84. Garcia-Mayorga, J.C., H.C. Rosu, A.B. Jasso-Salcedo, and V.A. Escobar-Barrios, Kinetic study of polydopamine sphere synthesis using tris: Relationship between synthesis conditions and final properties. RSC Adv, 2023, 13(8).
85. Davoodian, N., A. Nakhaei Pour, M. Izadyar, A. Mohammadi, A. Salimi, and S.M. Kamali Shahri, Fischer–tropsch synthesis using zeolitic imidazolate framework (ZIF‐7 and ZIF-8)‐supported cobalt catalysts. Applied Organometallic Chemistry, 2020, 34(9).
86. Zhang, X., L. Tian, K. Wu, Z. Sun, Q. Wu, X. Shan, Y. Zhao, R. Chen, and J. Lu, High sensitivity electrochemiluminescence sensor based on the synergy of ZIF-7 and cdte for determination of glucose. Microchemical Journal, 2022, 177.
87. Hassanzadeh, H., R. Abedini, and M. Ghorbani, CO2 separation over N2 and ch4 light gases in sorbitol-modified poly(ether-block-amide) (Pebax 2533) membrane. Industrial & Engineering Chemistry Research, 2022, 61(36).
88. Tu, M., C. Wiktor, C. Rosler, and R.A. Fischer, Rapid room temperature syntheses of zeolitic-imidazolate framework (ZIF) nanocrystals. Chem Commun (Camb), 2014, 50(87).
89. Luo, H., C. Gu, W. Zheng, F. Dai, X. Wang, and Z. Zheng, Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres. RSC Advances, 2015, 5(18).
90. Bläker, C., J. Muthmann, C. Pasel, and D. Bathen, Characterization of activated carbon adsorbents – state of the art and novel approaches. ChemBioEng Reviews, 2019, 6(4).
91. Åhlén, M., A. Jaworski, M. Strømme, and O. Cheung, Selective adsorption of CO2 and SF6 on mixed-linker ZIF-7–8s: The effect of linker substitution on uptake capacity and kinetics. Chemical Engineering Journal, 2021, 422.
92. Yoon, S.S., H.K. Lee, and S.R. Hong, CO(2)/N(2) gas separation using pebax/zif-7-psf composite membranes. Membranes (Basel), 2021, 11(9).
93. Bai, C., Y. Gao, Z. Zhang, L. Tu, D. Cai, Z. Lv, C. Gao, and L. Xue, Ligand substitution: An effective way for tuning structures of ZIF-7 nanoparticles (nps) and improving energy recovery performance of ZIF/PA TFN membranes. ACS Appl Mater Interfaces, 2023.
94. Wu, J., F. Hillman, C.-Z. Liang, Y. Jia, and S. Zhang, Progressing thin-film membrane designs for post-combustion CO2 capture: Performance or practicality? Journal of Materials Chemistry A, 2023, 11(33).
95. Zhao, H.Y., Q. Xie, X.L. Ding, R.Y. Cai, X.Y. Tan, and Y.Z. Zhang, Advanced mixed matrix membranes of pebax embedded with amino acid
ionic liquids@pim core-shell composite nanoparticles for CO2 separation. Separation and Purification Technology, 2021, 263.
指導教授 張博凱 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明