博碩士論文 111324061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.12.73.221
姓名 陳怡吟(Yi-Yin Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 可聚合界面活性劑:膠囊化有機色料於水相溶液中展現膠體穩定性及於纖維素上的防水性能
(Polymerizable Fatty Acid Surfactant: Encapsulation of Organic Pigments for Colloidal Stability in Aqueous Solution and Water-repellent Property on Cellulose)
相關論文
★ 聚(4-乙烯基吡啶)和聚(2-乙烯基吡啶)薄膜的表面不穩定性★ 利用小角度X光散射和廣角度X光繞射探討聚環氧乙烷於醇類中的結晶現象
★ 溶劑品質對聚(苯乙烯-b-環氧乙烷)在四氫呋喃/醇類共溶劑中的鏈聚集、自組裝、微胞化的影響★ 可控矽烷化:以耐水解甲基丙烯酸酯氮矽三環 於矽基材上作為功能性高分子之構成單元
★ 含磷酸膽鹼雙離子之功能性嵌段共聚物塗層於熱塑型聚氨酯導管★ 光交聯及生物啟發磷膽鹽雙離子共聚物連續沉積醫療塗層於熱塑型聚氨酯材料
★ 分子自組裝結構對雙離子高分子醫療塗層穩定性與抗汙功能的影響★ 基於動態鍵的多功能丙烯酸交聯劑
★ 連續微流道反應器中進行防污聚合物篩選★ 用於聚氨酯植入物表面功能化具有潤滑和抗污性能之光交聯醫用塗層
★ 高度纏結的雙離子水凝膠★ Lubricant and Anti-fouling Coatings for Silicone Catheter
★ 聚胜肽電解質材料合成及其性質研究分析★ 建立耐氧光聚合連續流反應器
★ 建立多功能芳香族雙硫鍵交聯丙烯酸彈性聚合物★ 熱誘導混合聚丙烯薄膜含雙離子共聚物的製備研究及其抗污性能的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 有機色料具備鮮豔且明亮的色澤,對於光、熱、酸及鹼的環境具有優異的耐受性,廣泛應用於印刷、染色及塑膠等工業。然而,有機色料表面極性非常低導致於水相介質中的分散性差,過去多以有機溶劑作為分散相,而且色料與纖維素的作用力較低,幾乎無親和力,使其發展受限。為了解決這些限制,我們針對界面活性劑及膠囊化技術進行探討。在本研究中,我們合成一種可聚合界面活性劑11-甲基丙烯醯胺基十一酸鈉 (Sodium 11-methacrylamidoundecanoic acid, NaMAAUA),因其含有脂肪酸的長碳鏈及羧酸基團頭部,該兩親性結構可作為分散劑或乳化劑用以分散聚集的色料,NaMAAUA中的非極性尾部提供與顏料的疏水作用,而極性羧基頭部則暴露在水相中提供靜電斥力以達懸浮,該結構還具備雙鍵可與疏水性單體苯乙烯 (Styrene, ST) 或甲基丙烯酸丁酯 (Butyl methacrylate, BMA) 進行聚合,疏水性單體可以增強色料與分散劑間的疏水作用力,進而降低顆粒粒徑並提高均勻性。透過微乳化聚合形成共聚物殼層於色料外圍,達到奈米級之膠囊化色料。除此之外,羧酸基團能夠與以羥基 (-OH) 為主的纖維素形成氫鍵,增加色料與纖維素基材間之作用力,因此,膠囊化後的色料在應用於紙張和棉質織物時,能夠展現出優異抗潑水性、耐洗性及抗紫外線之能力。
本研究中,我們使用動態光散射 (Dynamic Light Scattering, DLS)、熱重分析 (Thermogravimetric analysis, TGA) 及水接觸角等分析,探討了製程中可聚合界面活性劑NaMAAUA及兩不同疏水性單體的用量對於膠囊化色料粒徑的影響。最後,我們利用微乳化聚合合成出奈米級之膠囊化色料,不僅展現出優越的膠體穩定性及增強的耐候性,還具備抗潑水性能及抗紫外線能力。我們成功修飾有機色料使其成為水溶性色料,並於印刷、噴墨影印及手寫塗佈等方面有良好的應用,拓展有機色料在環保方面的實用價值,開闢了新途徑。
摘要(英) Organic pigment has been widely used in many printing industries due to its excellent fastness to light, heat, acid, and alkalis environments. However, the organic pigment exhibited minimal affinity to the fibers and had poor dispersion stability in any aqueous medium. To address these limitations, dispersants and encapsulation techniques have been explored. In this study, nanoscale encapsulated pigments were synthesized using a novel polymerizable surfactant, sodium 11-methacrylamidoundecanoic acid (NaMAAUA), along with hydrophobic monomer of styrene or butyl methacrylate. NaMAAUA contains a pendant group of amphiphilic fatty acid, and acts as a dispersant and emulsifier, forming a copolymer shell around the pigments. The NaMAAUA has small critical micelle concentration (CMC) which can enhance the encapsulation and water dispersion. Besides, the apolar tail in NaMAAUA provides hydrophobic interaction with pigments, and the polar carboxyl headgroup exposes in the water phase and enables the formation of strong hydrogen bonds with cellulose which consisting of β-anhydroglucose units with dominant hydroxyl groups. Therefore, the resulting encapsulated pigment exhibits excellent dispersion stability, water-repellent property, washing fastness and UV resistance when applied to paper and cotton fabric, expanding the practical utility of organic pigments in an environmentally conscious manner. Characterization via various analytical techniques validates the efficacy of this approach, paving the way for enhanced pigment applications. Besides, the hydrophobic monomer can increase the hydrophobic interaction between pigments and polymeric dispersants resulting smaller particle diameter and better uniformity.
In this study, the effect of weight ratios of hydrophobic monomer in the formulation on encapsulation efficiency has been investigated by using Dynamic Light Scattering (DLS), Thermogravimetric analysis (TGA) and contact angle analysis. Ultimately, the encapsulated pigment featuring nano-sized particles shows superior dispersion stability, enhanced weather resistance, waterproof performance, and anti-ultraviolet intrusion ability. Moreover, the versatility of the water-soluble pigment extends its applications to printing, inkjet printing, handwriting, and various other uses, thereby significantly increased the practical value of pigments in an environmentally friendly way.
關鍵字(中) ★ 色料
★ 膠囊化色料
★ 可聚合界面活性劑
★ 膠體穩定性
★ 油墨印刷
關鍵字(英) ★ Pigment
★ polymeric encapsulation
★ polymerizable surfactant
★ colloidal stability
★ ink printing
論文目次 中文摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 x
化學品及產物名詞代稱 xi
一、文獻回顧 1
1-1 顏料的發展 1
1-1-1 色料與染料之區別 2
1-1-2 酞菁藍 (Phthalocyanine Blue, PB) 3
1-1-3 C.I Pigment 15:3 之困境 4
1-2膠囊化色料製程 5
1-2-1 微乳化聚合 5
1-3界面活性劑之應用 8
1-3-1界面活性劑之分散機制 9
1-3-2 膠體穩定性 10
1-4可聚合界面活性劑 11
1-4-1 可聚合界面活性劑開發 14
1-4-2 氫鍵作用力 15
二、研究目的 17
三、實驗藥品清單與實驗方法 18
3-1實驗藥品清單 18
3-2實驗設備清單 19
3-3材料合成及樣品製備 20
3-3-1合成 NaMAAUA 可聚合界面活性劑 20
3-3-2微乳化聚合成膠囊化色料 21
3-3-3樣品製備 22
3-4實驗方法 23
3-4-1液態核磁共振光譜儀鑑定 (1H NMR) 23
3-4-2臨界微胞濃度之量測 (CMC) 23
3-4-3吸附行為之量測 (QCM-D) 24
3-4-4動態光散射儀分析 (DLS) 25
3-4-5傅立葉轉換紅外光譜儀分析 (FTIR) 25
3-4-6 X射線光電子能譜儀分析 (XPS) 25
3-4-7水接觸角測量儀分析 (Water contact angle) 26
3-4-8熱重分析儀 (TGA) 26
3-4-9穿透式電子顯微鏡分析 (TEM) 26
3-4-10膠體穩定性測試 27
3-4-11防水塗佈測試 (Water-repellent test) 28
3-4-12耐洗度測試 (Washing fastness test) 28
3-4-13抗紫外線測試 (UV resistance test) 28
3-4-14統計分析 28
四、結果與討論 29
4-1可聚合界面活性劑NaMAAUA之結構鑑定與分析 29
4-1-1 1H NMR圖譜 29
4-1-2 FTIR圖譜 30
4-1-3 臨界微胞濃度 (CMC) 31
4-1-4 計算界面活性劑吸附量 32
4-1-5 PD 比 33
4-2 膠囊化色料之結構鑑定與分析 34
4-2-1 FTIR圖譜 34
4-2-2 XPS圖譜 35
4-2-3 TGA分析 36
4-2-4 水接觸角分析 38
4-2-5 DLS分析 39
4-2-6 TEM分析 41
4-2-7膠體穩定性分析 42
(1) 熱處理之膠體穩定性 42
(2) 離心處理之膠體穩定性 43
4-3競品分析與應用 44
4-3-1 KH-10之CMC分析 44
4-3-2 KH-10之QCM-D分析 45
4-3-3 防水塗佈之應用 46
4-3-4 耐洗度測試 49
4-3-5 抗紫外線之測試 51
五、結論 52
六、未來展望 53
參考文獻 54
參考文獻 [1] Barnett, J. R.; Miller, S.; Pearce, E. Colour and art: A brief history of pigments. Optics & Laser Technology 2006, 38 (4-6), 445-453.
[2] Plesters, J. Ultramarine Blue, Natural and Artificial. Studies in Conservation 2014, 11 (2), 62-75.
[3] Research, P. Colorants Market. Precedence research, 2023. (accessed.
[4] Ravindra B. Malabadi, K. P. K., Raju K. Chalannavar. Natural blue food colorants Consumer acceptance, current alternatives, trends, challenges, and future strategies. International Journal of Innovation Scientific Research and Review 2022, 4 (10), 3418-3429
[5] Sanjay K. Sharma, J., India. Dyes and Pigments Their Structure and Properties. SpringerBriefs in Molecular Science 2016.
[6] Sanjay K. Sharma, J., India. Classification of Dye and Pigments. SpringerBriefs in Molecular Science 2016.
[7] Haroun, A. A.; Diab, H. A.; Hakeim, O. A. Cellulosic fabrics printing with multifunctional encapsulated phthalocyanine pigment blue using phase separation method. Carbohydr Polym 2016, 146, 102-108. From NLM PubMed-not-MEDLINE.
[8] Allen, R. L. M. Phthalocyanine pigments and dyes. Colour Chemistry 1971, 10.
[9] Christie, R.; Abel, A. Phthalocyanine blue pigments. Physical Sciences Reviews 2021, 6, 391-404.
[10] LeznoffCC, L. Phthalocyanines: Properties and applications. Journal of the American Chemical Society 1989.
[11] Qi Li, D. L. F., . Ica Manas-Zloczower Comparison of stability and dispersion characteristics of organic pigment agglomerates. Powder Technology 1997.
[12] ChristieRM. Colour chemistry. 2015.
[13] HungerK, S. Industrial organic pigments. 2019.
[14] Substances restricted under REACH. Eupopean chemicals agency(ECHA), 2024. (accessed.
[15] Fu, S.-H.; Wang, C.-X. Rheological Properties of Nansocale Poly(Styrene-Maleic Acid) Encapsulated Organic Pigment Dispersion by Phase Separation Technique. Journal of Dispersion Science and Technology 2010, 31 (11), 1474-1478.
[16] Shao‐Hai, F.; Kuan‐Jun, F. Properties of waterborne nanoscale pigment red 122 dispersion prepared by phase separation method. Journal of Applied Polymer Science 2008, 108 (6), 3968-3972.
[17] Junjie Yuan, S. Z., Limin Wu, and Bo You. Organic pigment particles coated with Titania via Sol-Gel Process. 2005.
[18] Yuan, J.; Zhou, S.; Gu, G.; Wu, L. Encapsulation of Organic Pigment Particles with Silica via Sol-Gel Process. Journal of Sol-Gel Science and Technology 2005, 36 (3), 265-274.
[19] Junjie Yuan, S. Z., Bo You, and Limin Wu. Organic Pigment Particles Coated with Colloidal Nano-Silica Particles via Layer-by-Layer Assembly. 2005.
[20] Yuan, J.; Xing, W.; Gu, G.; Wu, L. The properties of organic pigment encapsulated with nano-silica via layer-by-layer assembly technique. Dyes and Pigments 2008, 76 (2), 463-469.
[21] de Oliveira, A. M.; da Silva, M. L. C. P.; Alves, G. M.; de Oliveira, P. C.; dos Santos, A. M. Encapsulation of TiO2 by emulsion polymerization with methyl metacrylate (MMA). Polymer Bulletin 2005, 55 (6), 477-484.
[22] Fu, S.; Xu, C.; Du, C.; Tian, A.; Zhang, M. Encapsulation of C.I. Pigment blue 15:3 using a polymerizable dispersant via emulsion polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 384 (1-3), 68-74.
[23] Lilian Tichagwa, C. G., Matthew Tonge, Ron Sanderson, Harald Pasch. The use of Selected Acrylate and Acrylamide-Base Surfmera and Polysoaps in the Emulsion Polymerization of Styrene. 2003.
[24] Shiu, J.-W.; Chen, C.-W.; Liu, M.-A.; Rwei, S.-P. Characterization and Synthesis of 2-Hydroxyethyl Acrylate-Encapsulated Pigments by Emulsion Polymerization with Excellent Color Fastness and Stability. Arabian Journal for Science and Engineering 2024, 49 (1), 649-664.
[25] He, Y.; Zhang, J.; Cai, Y.; Yi, L. Encapsulation of organic pigment via a facile dispersion approach and soap-free miniemulsion polymerization. Progress in Organic Coatings 2021, 159.
[26] Sasaoka, M.; Kawamura, A.; Miyata, T. Core–shell microgels having zwitterionic hydrogel core and temperature-responsive shell prepared via inverse miniemulsion RAFT polymerization. Polymer Chemistry 2022, 13 (23), 3489-3497.
[27] Ding, Y.; Ye, M.; Han, A.; Zang, Y. Preparation and characterization of encapsulated C.I. pigment yellow 12 via ball-milling and mini-emulsion polymerization. Progress in Organic Coatings 2018, 117, 69-75.
[28] Lau, W. Emulsion polymerization of hydrophobia monomers. Macromolecular Symposia 2002, 182 (1), 283-289.
[29] Chern, C. S. Emulsion polymerization mechanisms and kinetics. Progress in Polymer Science 2006, 31 (5), 443-486.
[30] Lovell, P. A.; Schork, F. J. Fundamentals of Emulsion Polymerization. Biomacromolecules 2020, 21 (11), 4396-4441. From NLM Medline.
[31] Guo, Y.; Teo, V. L.; Ting, S. R. S.; Zetterlund, P. B. Miniemulsion polymerization based on in situ surfactant formation without high-energy homogenization: effects of organic acid and counter ion. Polymer Journal 2012, 44 (5), 375-381.
[32] J. Ugelstad, M. S. E.-A., J. W. Vanderhoff. Emulsion polymerization: Initiation of polymerization in monomer droplets. Journal of Polymer Science: Polymer Letters Edition 1973, 8.
[33] JOHN UGELSTAD, F. K. H., and SVEIN LANG. Emulsion polymerization of styrene with sodium hexadecyl sulphate/hexadecanol mixtures as emulsifiers. Initiation in monomer droplets. Die Makromolekulare Chemie 2003, 175 (2), 507-521.
[34] BEDRI ERDEM, E. D. S., VICTORIA L. DIMONIE, MOHAMED S. EL-AASSER. Encapsulation of inorganic particles via miniemulsion polymerization. II. Preparation and characterization of styrene miniemulsion droplets containing TiO2 particles. Journal of Polymer Science Part A: Polymer Chemistry 2000.
[35] N. Bechthold, F. T., M. Willert. Miniemulsion polymerization Applications and new materials.pdf. Macromolecular Symposia 2000.
[36] Yang, Y. J.; Kelkar, A. V.; Zhu, X.; Bai, G.; Ng, H. T.; Corti, D. S.; Franses, E. I. Effect of sodium dodecylsulfate monomers and micelles on the stability of aqueous dispersions of titanium dioxide pigment nanoparticles against agglomeration and sedimentation. J Colloid Interface Sci 2015, 450, 434-445. From NLM PubMed-not-MEDLINE.
[37] Zhao, Y.; Wang, R.; Fang, K.; Tan, Y.; Chen, S.; Guan, Y.; Hao, L. Investigating the synergetic dispersing effect of hydrolyzed biomacromolecule Cellulase and SDS on CuPc pigment. Colloids Surf B Biointerfaces 2019, 184, 110568. From NLM Medline.
[38] X.Zhu, G. B., and Y. Yang, E.I. Franses, D.S. Corti. Effect of Sodium Dodecyl Sulfate and Sodium Chloride on the Stability of Aqueous Dispersions of TiO2 Particles Against Aggregation and Sedimentation. 2014.
[39] Veronovski, N.; Andreozzi, P.; La Mesa, C.; Sfiligoj-Smole, M. Stable TiO2 dispersions for nanocoating preparation. Surface and Coatings Technology 2010, 204 (9-10), 1445-1451.
[40] Sulaiman, M. Y. M.; Abdullah, Y.; Fatanah, D. N. E.; Hak, C. R. C. H. E. The Effect of Surfactants on the Stability of TiO2 Aqueous Suspension. International Journal of Current Research in Science, Engineering & Technology 2018, 1 (Spl-1).
[41] Wu, W.; Zhang, L.; Zhai, X.; Liang, C.; Yu, K. Preparation and photocatalytic activity analysis of nanometer TiO2 modified by surfactant. Nanomaterials and Nanotechnology 2018, 8.
[42] Agbo, C.; Jakpa, W.; Sarkodie, B.; Boakye, A.; Fu, S. A Review on the Mechanism of Pigment Dispersion. Journal of Dispersion Science and Technology 2017, 39 (6), 874-889.
[43] Sis, H.; Birinci, M. Wetting and rheological characteristics of hydrophobic organic pigments in water in the presence of non-ionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 455, 58-66.
[44] Zhang, Q.; Wu, J.; Gao, L.; Liu, T.; Zhong, W.; Sui, G.; Zheng, G.; Fang, W.; Yang, X. Dispersion stability of functionalized MWCNT in the epoxy–amine system and its effects on mechanical and interfacial properties of carbon fiber composites. Materials & Design 2016, 94, 392-402.
[45] Hakeim, O. A.; Diab, H. A.; Adams, J. Preparation and characterization of UV curable-encapsulated phthalocyanine blue pigment. Progress in Organic Coatings 2015, 84, 70-78.
[46] Tadros, T. Polymeric surfactants in disperse systems. Adv Colloid Interface Sci 2009, 147-148, 281-299. From NLM Medline.
[47] Farrokhpay, S.; Morris, G. E.; Fornasiero, D.; Self, P. Stabilisation of titania pigment particles with anionic polymeric dispersants. Powder Technology 2010, 202 (1-3), 143-150.
[48] Chang, C. J.; Chang, S. J.; Tsou, S.; Chen, S. I.; Wu, F. M.; Hsu, M. W. Effects of polymeric dispersants and surfactants on the dispersing stability and high‐speed‐jetting properties of aqueous‐pigment‐based ink‐jet inks. Journal of Polymer Science Part B: Polymer Physics 2003, 41 (16), 1909-1920.
[49] Miyabayashi, T. PROCESS FOR PRODUCING ENCAPSULATED PRODUCT, AND ENCAPSULATED PRODUCT. 2011.
[50] Mingjun Zhang, S. F., Anli Tian, Xia Zhang, Chaoxia Wang. Preparation of Nanoscale Phthalocyanine Blue Pigment Dispersion for Inkjet Printing Inks With Polymerizable Dispersant. 2009.
[51] Feng, C. Z. a., Wei Liu, and RenXing Xiao. Preparation of Styrene and Butyl Acrylate Emulsion With High Solid Content in the Presence of a Polymerizable Emulsifierying Polymers & Polymer Composites, 2012, 20.
[52] Yeoh, K. W.; Chew, C. H.; Can, L. M.; Koh, L. L.; Teo, H. H. Synthesis and Polymerization of Surface-Active Sodium Acrylamidoundecanoate. Journal of Macromolecular Science: Part A - Chemistry 1989, 26 (4), 663-680.
[53] Shin-ichi Yusa, A. S., Tohei Yamamoto, and Yotaro Morishima. Reversible pH-Induced Formation and Disruption of Unimolecular Micelles of an Amphiphilic Polyelectrolyte. 2002.
[54] Shin-ichi Yusa, Y. S., Yoshiro Mitsukami,Tohei Yamamoto, and Yotaro Morishima. pH-responsive micellization of amphiphilic diblock copolymers synthesized via reversible addition-fragmentation chain transfer polymerization. 2003.
[55] Shin-ichi Yusa, S. Y., Makoto Sugahara, Sanae Morikawa, Tohei Yamamoto, and Yotaro Morishima. Thermo-responsive diblock copolymers of poly(N-isopropylacrylamide) and poly(N-vinyl-2-pyrroridone) synthesized via organotellurium-mediated controlled radical polymerization (TERP). 2007.
[56] Yusa, S. I.; Oka, D.; Iwasaki, Y.; Ishihara, K. pH-Responsive Association Behavior of Biocompatible Random Copolymers Containing Pendent Phosphorylcholine and Fatty Acid. Langmuir 2022, 38 (17), 5119-5127. From NLM Medline.
[57] Tom Lindström, L. W. a. T. L. On the nature of joint strength in paper - A review of dry and wet strength resins in paper manufacturing. 2005.
[58] Aarne, N.; Vesterinen, A.-H.; Kontturi, E.; Seppälä, J.; Laine, J. A Systematic Study of Noncross-linking Wet Strength Agents. Industrial & Engineering Chemistry Research 2013, 52 (34), 12010-12017.
[59] 蘇裕昌. 濕潤紙力增強劑的基礎及最近的應用趨勢. 漿紙技術 2008, 22.
[60] Francolini, I.; Galantini, L.; Rea, F.; Di Cosimo, C.; Di Cosimo, P. Polymeric Wet-Strength Agents in the Paper Industry: An Overview of Mechanisms and Current Challenges. Int J Mol Sci 2023, 24 (11). From NLM Medline.
[61] Li, W.; Liu, X.; Deng, Z.; Chen, Y.; Yu, Q.; Tang, W.; Sun, T. L.; Zhang, Y. S.; Yue, K. Tough Bonding, On-Demand Debonding, and Facile Rebonding between Hydrogels and Diverse Metal Surfaces. Adv Mater 2019, 31 (48), e1904732. From NLM PubMed-not-MEDLINE.
[62] Shi-Yow Lin, Y.-Y. L., En-Ming Chen, Ching-Ten Hsu, and Chang-Chin Kwan. A Study of the Equilibrium Surface Tension and the Critical Micelle Concentration of Mixed Surfactant Solutions. Langmuir 1999.
[63] Fatima M. Elarbi, A. A. J., Laila M. Abu-sen, Zaineb O. Ettarhouni. Determination of CMC and interfacial properties of anionic SDS and cationic CPB surfactants in aqueous solutions. 2020.
[64] Alasiri, H. Determining Critical Micelle Concentrations of Surfactants Based on Viscosity Calculations from Coarse-Grained Molecular Dynamics Simulations. Energy & Fuels 2019, 33 (3), 2408-2412.
[65] Salem, J. K.; El-Nahhal, I. M.; Salama, S. F. Determination of the critical micelle concentration by absorbance and fluorescence techniques using fluorescein probe. Chemical Physics Letters 2019, 730, 445-450.
[66] Brayden, D. J.; Walsh, E. Efficacious intestinal permeation enhancement induced by the sodium salt of 10-undecylenic acid, a medium chain fatty acid derivative. AAPS J 2014, 16 (5), 1064-1076. From NLM Medline.
[67] Naderi, A. Adsorption Properties of Polyelectrolyte−Surfactant Complexes on Hydrophobic Surfaces Studied by QCM-D. Langmuir 2006.
[68] Medina, S. C.; Farinha, A. S. F.; Emwas, A.-H.; Tabatabai, A.; Leiknes, T. A fundamental study of adsorption kinetics of surfactants onto metal oxides using quartz crystal microbalance with dissipation (QCM-D). Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 586.
[69] Ganiga, M.; Cyriac, J. Understanding the Photoluminescence Mechanism of Nitrogen-Doped Carbon Dots by Selective Interaction with Copper Ions. Chemphyschem 2016, 17 (15), 2315-2321. From NLM Medline.
[70] Liu, H.; Xie, J.; Liu, P.; Dai, B. Effect of Cu+/Cu2+ Ratio on the Catalytic Behavior of Anhydrous Nieuwland Catalyst during Dimerization of Acetylene. Catalysts 2016, 6 (8).
[71] Barron, A. R. The interaction of carboxylic acids with aluminium oxides: journeying from a basic understanding of alumina nanoparticles to water treatment for industrial and humanitarian applications. Dalton Trans 2014, 43 (22), 8127-8143. From NLM PubMed-not-MEDLINE.
[72] Bernard Crepet, L. F. O.; Level, C. I. US20160047087A1-Pigment dyeing. US 2016.
[73] Kuanjun Fang, C. W., Xia Zhang and Yi Xu. Dyeing of cationised cotton using nanoscale pigment dispersions. Coloration Technology 2005, 121 4.
[74] Shamshad Shaikh, A. K., Mazhar Hussain Peerzada. EMERGING TECHNOLOGIES FOR TEXTILE DYEING HIGHER EDUCATION COMMISSION ISLAMABAD. Higher Education Commission – Pakistan 2018.
[75] Hao, L.; wang, R.; Liu, J.; Liu, R. Ultrasound-assisted adsorption of anionic nanoscale pigment on cationised cotton fabrics. Carbohydr Polym 2012, 90 (4), 1420-1427. From NLM Medline.
[76] Y. J. ZHOU, P. L., and P. CALUWE. Mechanism of crosslinking of papers with polyfunctional carboxylic acids. 1995.
[77] Yang, C. Q.; Xu, Y. Paper wet performance and ester crosslinking of wood pulp cellulose by poly(carboxylic acid)s. Journal of Applied Polymer Science 1998, 67 (4), 649-658.
[78] Hatch, K. American Standards for UV-Protective Textiles. 2002.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明