博碩士論文 110223051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.117.11.16
姓名 林易辰(Yi-Chen Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 製備以奈米氧化錳與多壁奈米碳管複合觸媒附載修飾電極應用於電催化甲烷氧化至甲醇
(Preparation of Nano-manganese Oxide-Multiwall Carbon Nanotube Composite Catalysts on Carbon Electrodes for Electrocatalytic Methane Oxidation to Methanol)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 過度使用化石燃料是導致大氣中CO2與CH4含量增加的主要原因,這將加劇全球變暖、海平面上升等其他環境問題,但同時CO2與CH4是一種豐富的碳源,可以轉化為具有經濟價值的化學品。由於 CH4 的極高穩定性和 CH3OH 的相對較高反應性,CH4 的活化和對 CH3OH 產物的選擇性具有挑戰性。
本研究致力於合成氧化錳催化劑,應用於氧化CH4進而產出甲烷。採用水熱法及高溫鍛燒製備材料,以數種不同的儀器鑑定材料本身特性,藉由XRD去判斷材料在不同前驅物混和比例下去鍛燒後的結晶性,以及比對出材料的晶面及晶體結構;亦使用SEM/SEM-EDX與TEM/TEM-EDX去觀察實際材料表面樣貌;另外還有藉由進行In-situ的X-ray吸收光譜去監測實際反應進行的材料變化; 至於電催化產物鑑定,則應用質子核磁共振光譜儀,經內標法測量液體產物的產出,求得單位時間、電極表面積之產物反應速率暨法拉第效率,更進一步透過調整實驗反應條件:像是MWCNT/Mn莫爾比例、電位的調整、電解液的選擇以及混合氣體與氣體流量的調控,去優化得出最佳材料與反應條件。在適當的反應條件下,製備出的材料可以達到良好的催化活性。接著像是簡單來說,透過選擇不同的裝置(如H-cell或Flow-cell),再到材料的構思製備優化,以及實驗條件的設定到材料的鑑定,都會在本篇研究中詳細探討。
摘要(英) The excessive use of fossil fuels results in the increased CO2 and CH4 concentrations in the atmosphere, which exacerbates global warming, sea level rise, and other environmental problems. However, CO2 and CH4 are abundant carbon sources that can be converted into economically valuable chemicals. Due to the high stability of CH4 and the relatively high reactivity of CH3OH, the activation of CH4 and the selectivity for CH3OH products are challenging.
This study aims to synthesize manganese oxide (MOx) catalysts for the oxidation of CH4 to produce methanol. Materials are prepared using hydrothermal methods and high-temperature calcination. Various instruments are used to characterize the properties of the catalyst materials and the production of the products. Powder X-ray Diffraction (PXRD) was used to determine the crystallinity of materials and to compare their crystal phaces and structures of the materials by varying the Mn compositions in MWCNT. Scanning Electron Microscopy/Energy Dispersion X-ray spectrometry (SEM-EDX) and Transmission Electron Microscopy (TEM)-EDX are used to observe the shape, surface morphology of the catalyst materials for inspiring the catalyst surface microenvironment. In addition, in-situ X-ray absorption spectroscopy is conducted to monitor the changes in the materials in a time-resolved manner. The production of liquid products and Faradaic efficiency calculations are determined using NMR for product quantification. By adjusting experimental reaction conditions such as the molar ratio of MWCNT/Mn, varying the applied potentials, electrolyte selection, and the control of gas mixing ratios and gas flow rates, and the optimization of the materials and reaction conditions are determined. Under appropriate reaction conditions, the prepared materials can achieve good catalytic activity. In summary, this study will comprehensively explore the choice of different devices (such as H-cell or Flow-cell), the design and optimization of materials, the setting of experimental conditions, and the characterization of materials.
關鍵字(中) ★ 電化學
★ 氧化錳
關鍵字(英) ★ electrochemical
★ Manganese oxide
論文目次 中文摘要 iv
英文摘要 v
致謝 vi
目錄 vii
圖 目 錄 ix
表 目 錄 xii
一、緒  論 1
1.1  動機與目的 1
1-2  電化學還原O2之催化劑 9
1-2-1 貴金屬基材料 9
1-2-2 過渡金屬 9
1-2-3 原子分散金屬催化劑(ADMC) 9
1-2-4 雙原子催化劑 11
1-2-5 金屬有機骨架材料(MOF) 11
1-3  優化材料之方法 12
1-3-1 調控材料形貌與晶體面向 12
1-3-2 雜原子摻雜 12
1-3-3 材料空位 12
1-3-4 利用材料鑑定進行異相觸媒催化劑物性與化性的分析 13
X-射線粉末繞射光譜(Powder X-Ray diffraction;PXRD) 13
場發射掃描電子顯微鏡(Field-Emission Scanning Electron Microscope;FE-SEM) 14
X光吸收光譜(X-ray absorption spectroscopy;XAS) 16
電感耦合電漿體質譜法(Inductively coupled plasma mass spectrometry;ICP-MS) 18
以核磁共振光譜(Nuclear Magnetic Resonance spectroscopy;NMR)鑑定電催化反應後的產物 20
1-4  電化學之基本參數 22
1-4-1 法拉第效率 (Faradaic Efficiency) 22
1-4-2 電流密度(Current density) (j) 22
1-4-3 過電位(Overpotential) (η) 22
1-4-4 起始電位(Onset potential) 23
1-4-5 電催化反應速率(Rate) 23
二、實驗部分 24
2-1  化學藥品 24
2-2  實驗步驟及流程示意圖 25
2-2-1 製備MnOx@MWCNT(x) 25
2-2-2 製備奈米氧化錳@多壁奈米碳管複合材料催化劑電極 26
2-2-3 H-Cell / Glass-Cell 26
三、實驗結果與討論 28
3-1  透過水熱法製備之奈米錳金屬與多壁奈米碳管複合材料之結構鑑定 28
3-1-1 SEM 28
3-1-2 TEM/TEM EDX 34
3-1-3 PXRD 40
3-1-4 XAS 47
3-2  利用奈米奈米錳金屬與多壁奈米碳管複合材料修飾電極測試其電催化效能 50
3-2-1 利用NMR進行甲醇產物的偵測與定量 50
3-2-2 重量比例優化 52
3-2-3 電位優化 54
3-2-4 電解液優化 58
3-2-5 混合氣體優化 59
3-2-6 氣體流量優化 61
3-2-7 長時間反應測定 65
四、結果與討論 67
五、參考文獻 70
六、附錄 74
參考文獻 1. Yan, L., et al., Electrocatalytic conversion of methane: Recent progress and future prospects. Energy Reviews, 2024. 3(2): p. 100065.
2. Wang, V.C.C., et al., Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics. Chemical Reviews, 2017. 117(13): p. 8574-8621.
3. Dummer, N.F., et al., Methane Oxidation to Methanol, in Chemical Reviews. 2023, American Chemical Society. p. 6359-6411.
4. Liang, Y., et al., Covalent Hybrid of Spinel Manganese–Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts, in Journal of the American Chemical Society. 2012, American Chemical Society. p. 3517-3523.
5. Wu, G., et al., Nitrogen-Doped Graphene-Rich Catalysts Derived from Heteroatom Polymers for Oxygen Reduction in Nonaqueous Lithium–O2 Battery Cathodes, in ACS Nano. 2012, American Chemical Society. p. 9764-9776.
6. Gong, K., et al., Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction, in Science. 2009. p. 760-4.
7. Jahan, M., Q. Bao, and K.P. Loh, Electrocatalytically Active Graphene–Porphyrin MOF Composite for Oxygen Reduction Reaction, in Journal of the American Chemical Society. 2012, American Chemical Society. p. 6707-6713.
8. Yu, L., et al., Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study. Journal of Catalysis, 2011. 282(1): p. 183-190.
9. Tsai, Y.-F., et al., Voltage-Gated Electrocatalysis of Efficient and Selective Methane Oxidation by Tricopper Clusters under Ambient Conditions, in Journal of the American Chemical Society. 2022, American Chemical Society. p. 9695-9706.
10. Wang, P., et al., Manganese-based oxide electrocatalysts for the oxygen evolution reaction: a review, in Journal of Materials Chemistry A. 2023, The Royal Society of Chemistry. p. 5476-5494.
11. Zhu, C., et al., Single-Atom Electrocatalysts. Angewandte Chemie International Edition, 2017. 56(45): p. 13944-13960.
12. O′Mullane, A.P., From single crystal surfaces to single atoms: investigating active sites in electrocatalysis, in Nanoscale. 2014, The Royal Society of Chemistry. p. 4012-4026.
13. Wang, Z., et al., Fe, Cu-Coordinated ZIF-Derived Carbon Framework for Efficient Oxygen Reduction Reaction and Zinc–Air Batteries, in Advanced Functional Materials. 2018, John Wiley & Sons, Ltd. p. 1802596.
14. Rabis, A., P. Rodriguez, and T.J. Schmidt, Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges, in ACS Catalysis. 2012, American Chemical Society. p. 864-890.
15. Aricò, A.S., et al., Nanostructured materials for advanced energy conversion and storage devices, in Nat Mater. 2005. p. 366-77.
16. Zhang, L., K. Doyle-Davis, and X. Sun, Pt-Based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms. Energy & Environmental Science, 2019. 12(2): p. 492-517.
17. Escudero-Escribano, M., et al., Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction, in Science. 2016, American Association for the Advancement of Science. p. 73-76.
18. Calle-Vallejo, F., et al., Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors, in Science. 2015, American Association for the Advancement of Science. p. 185-189.
19. Chattot, R., et al., Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis, in Nature Materials. 2018. p. 827-833.
20. Li, M., et al., Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction, in Science. 2016, American Association for the Advancement of Science. p. 1414-1419.
21. Chen, C., et al., Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces, in Science. 2014, American Association for the Advancement of Science. p. 1339-1343.
22. Fu, X., et al., In Situ Polymer Graphenization Ingrained with Nanoporosity in a Nitrogenous Electrocatalyst Boosting the Performance of Polymer-Electrolyte-Membrane Fuel Cells, in Advanced Materials. 2017, John Wiley & Sons, Ltd. p. 1604456.
23. Liu, M., R. Zhang, and W. Chen, Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications, in Chemical Reviews. 2014, American Chemical Society. p. 5117-5160.
24. Cheng, N., et al., Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction, in Adv Mater. 2015. p. 277-81.
25. Xia, B.Y., et al., One-Pot Synthesis of Pt–Co Alloy Nanowire Assemblies with Tunable Composition and Enhanced Electrocatalytic Properties, in Angewandte Chemie International Edition. 2015, John Wiley & Sons, Ltd. p. 3797-3801.
26. Zhou, X., et al., A Review of Graphene-Based Nanostructural Materials for Both Catalyst Supports and Metal-Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions. Advanced Energy Materials, 2014. 4(8): p. 1301523.
27. Wu, G. and P. Zelenay, Nanostructured Nonprecious Metal Catalysts for Oxygen Reduction Reaction, in Accounts of Chemical Research. 2013, American Chemical Society. p. 1878-1889.
28. Masa, J., et al., On the Role of Metals in Nitrogen-Doped Carbon Electrocatalysts for Oxygen Reduction, in Angewandte Chemie International Edition. 2015, John Wiley & Sons, Ltd. p. 10102-10120.
29. Artyushkova, K., et al., Oxygen Binding to Active Sites of Fe–N–C ORR Electrocatalysts Observed by Ambient-Pressure XPS, in The Journal of Physical Chemistry C. 2017, American Chemical Society. p. 2836-2843.
30. Bezerra, C.W.B., et al., A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction, in Electrochimica Acta. 2008. p. 4937-4951.
31. Lin, J., et al., Remarkable Performance of Ir1/FeOx Single-Atom Catalyst in Water Gas Shift Reaction, in Journal of the American Chemical Society. 2013, American Chemical Society. p. 15314-15317.
32. Qu, X., et al., Core–shell structured cobalt oxide nanoparticles and single Co atoms supported on graphene for selective hydrodeoxygenation of syringol to cyclohexanol, in Catalysis Science & Technology. 2024, The Royal Society of Chemistry.
33. Choi, C.H., et al., Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst, in Nature Communications. 2016. p. 10922.
34. Yan, H., et al., Bottom-up precise synthesis of stable platinum dimers on graphene, in Nature Communications. 2017. p. 1070.
35. Sahraie, N.R., et al., Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts, in Nature Communications. 2015. p. 8618.
36. Xiao, M., et al., Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site, in Nano Energy. 2018. p. 396-403.
37. Wang, J., et al., Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction, in Journal of the American Chemical Society. 2017, American Chemical Society. p. 17281-17284.
38. Li, Z., et al., Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis, in Applied Catalysis B: Environmental. 2019. p. 112-121.
39. Wang, J., et al., Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction, in Energy & Environmental Science. 2018, The Royal Society of Chemistry. p. 3375-3379.
40. Lu, Z., et al., An Isolated Zinc–Cobalt Atomic Pair for Highly Active and Durable Oxygen Reduction, in Angewandte Chemie International Edition. 2019. p. 2622-2626.
41. Liu, D., et al., Distinguished Zn,Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air Batteries, in Nano Energy. 2019. p. 277-283.
42. Zhang, L., et al., Structural Evolution from Metal–Organic Framework to Hybrids of Nitrogen-Doped Porous Carbon and Carbon Nanotubes for Enhanced Oxygen Reduction Activity. Chemistry of Materials, 2015. 27(22): p. 7610-7618.
43. Chaikittisilp, W., K. Ariga, and Y. Yamauchi, A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications, in Journal of Materials Chemistry A. 2013, The Royal Society of Chemistry. p. 14-19.
44. Li, Y. and H. Dai, Recent advances in zinc–air batteries, in Chemical Society Reviews. 2014, The Royal Society of Chemistry. p. 5257-5275.
45. Tan, P., et al., Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives, in Energy & Environmental Science. 2017, The Royal Society of Chemistry. p. 2056-2080.
46. Zhu, C., et al., Hierarchically Porous M–N–C (M = Co and Fe) Single-Atom Electrocatalysts with Robust MNx Active Moieties Enable Enhanced ORR Performance, in Advanced Energy Materials. 2018. p. 1801956.
47. Guo, S. and S. Sun, FePt Nanoparticles Assembled on Graphene as Enhanced Catalyst for Oxygen Reduction Reaction, in Journal of the American Chemical Society. 2012, American Chemical Society. p. 2492-2495.
48. Bu, L., et al., Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis, in Nature Communications. 2016. p. 11850.
49. Wu, J., et al., Truncated Octahedral Pt3Ni Oxygen Reduction Reaction Electrocatalysts, in Journal of the American Chemical Society. 2010, American Chemical Society. p. 4984-4985.
50. Yang, X.-F., et al., Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research, 2013. 46(8): p. 1740-1748.
指導教授 蔡惠旭 俞聖法(Hui-Hsu Gavin Tsai Steve Sheng-Fa Yu) 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明