博碩士論文 111324036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.118.184.36
姓名 莊英傑(Ying-Chieh Chuang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 高度纏結的雙離子水凝膠
(Highly entangled zwitterionic hydrogels)
相關論文
★ 聚(4-乙烯基吡啶)和聚(2-乙烯基吡啶)薄膜的表面不穩定性★ 利用小角度X光散射和廣角度X光繞射探討聚環氧乙烷於醇類中的結晶現象
★ 溶劑品質對聚(苯乙烯-b-環氧乙烷)在四氫呋喃/醇類共溶劑中的鏈聚集、自組裝、微胞化的影響★ 可控矽烷化:以耐水解甲基丙烯酸酯氮矽三環 於矽基材上作為功能性高分子之構成單元
★ 含磷酸膽鹼雙離子之功能性嵌段共聚物塗層於熱塑型聚氨酯導管★ 光交聯及生物啟發磷膽鹽雙離子共聚物連續沉積醫療塗層於熱塑型聚氨酯材料
★ 分子自組裝結構對雙離子高分子醫療塗層穩定性與抗汙功能的影響★ 基於動態鍵的多功能丙烯酸交聯劑
★ 連續微流道反應器中進行防污聚合物篩選★ 用於聚氨酯植入物表面功能化具有潤滑和抗污性能之光交聯醫用塗層
★ Lubricant and Anti-fouling Coatings for Silicone Catheter★ 可聚合界面活性劑:膠囊化有機色料於水相溶液中展現膠體穩定性及於纖維素上的防水性能
★ 聚胜肽電解質材料合成及其性質研究分析★ 建立耐氧光聚合連續流反應器
★ 建立多功能芳香族雙硫鍵交聯丙烯酸彈性聚合物★ 熱誘導混合聚丙烯薄膜含雙離子共聚物的製備研究及其抗污性能的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 水凝膠是一種透過交聯而形成的親水性聚合物三維網絡,具有高度的保水能力,由於其具有高生物相容性、可調節的機械性能,被廣泛應用於生醫工程領域。然而,大部分的水凝膠無法有效防止蛋白質、細菌沾黏導致嚴重的感染與異物反應。更重要的是,水凝膠的應用很大程度受限於其機械性質的強弱與特性。為了實現抗非特異性吸附,人們開始了對各種材料的研究。雙離子材料因其優異的抗非特異性吸附能力而被視為生醫材料中非常具有潛力的材料之一。然而,其應用受限於較弱的機械強度,因此如何改善機械性質對於雙離子材料是非常重要的。在此研究中,我們以高密度的物理纏結(Entanglement)形成的物理交聯取代傳統使用交聯劑形成共價鍵的化學交聯,透過調整水凝膠聚合物網絡中的化學交聯及物理交聯實現能量逸散,使該水凝膠具有高韌性、可拉伸性、低滯後性及潤滑之特性。為了比較分子間氫鍵與網絡均勻度對高度纏結效應造成的影響,比較了四種結構之雙離子分子: Sulfobetaine methacrylate(SBMA)、Sulfobetaine acrylate(SBA)、Sulfobetaine acrylamide(SBAA)和Sulfobetaine methacrylamide(SBMAA), 透過核磁共振光譜儀(NMR)對SBA、SBMA、SBAA和SBMAA分子結構進行鑑定並進行準一級聚合反應測試(Pseudo-first-order polymerization kinetics)測試各分子結構之反應速率。並選用N,N’-Methylenebisacrylamide (MBAA)和N,N′-Methylenebismethacrylamide (MBMA)作為交聯劑,成功聚合了不同均勻度的水凝膠以動態光散射儀(Dynamic Light Scattering, DLS)分析其均勻程度,並使用萬能拉力機分析水凝膠機械性質以及其與網絡均勻度之關係。使用萬能拉力機檢測水凝膠機械性質以及滯後試驗。使用傅立葉轉換紅外線光譜儀(Fourier-Transform Infrared Spectroscopy, FTIR)、原子力顯微鏡(Atomic Force Microscope, AFM) 、客製化萬能拉力機與動態機械分析儀(Dynamic Mechanical Analyzer, DMA)分析了水凝膠結構內分子間氫鍵強度、表面吸附能與摩擦係數與黏彈特性。並透過細菌及蛋白質測試探討了高度纏結效應對抗非特異性吸附效果之影響。本論文透過比較四種分子結構探討了不同變因對高度纏結效應之影響,藉此探討如何設計出符合實際應用需求之機械性質特性之雙離子水凝膠。
摘要(英) Hydrogels are three-dimensional networks of hydrophilic polymers formed through crosslinking. Owing to their high water retention capacity, high biocompatibility and controllable mechanical properties, it has extensive applications in the field of biomedical engineering. However, most of hydrogels fail to effectively prevent protein and bacterial adhesion, leading to severe infections and foreign body reactions. More importantly, the application of hydrogels is constrained by their mechanical properties, including strength and characteristics. To achieve anti-nonspecific adsorption, researchers have begun to investigate various materials. Zwitterionic materials are considered very promising materials in biomedical materials due to their excellent anti-nonspecific adsorption. However, its application is limited by weak mechanical properties. Therefore, improving mechanical properties is crucial for zwitterionic materials. In this study, we present a novel approach to overcome this limitation by preparing highly entangled zwitterionic hydrogels, which exhibit high toughness, stretchability and low hysteresis by adjusting the polymerization conditions to optimize the balance between physical and chemical cross-links through entanglements and covalent bonds, respectively to achieve energy dissipation. To compare the impact of intermolecular hydrogen bonding and network homogeneity on the highly entangled effect, four types of zwitterionic molecules were compared: Sulfobetaine methacrylate (SBMA), Sulfobetaine acrylate (SBA), Sulfobetaine acrylamide (SBAA), and Sulfobetaine methacrylamide (SBMAA). Nuclear magnetic resonance spectroscopy (NMR) was employed to identify the molecular structures of SBA, SBMA, SBAA, and SBMAA, followed by pseudo-first-order polymerization kinetics tests to measure the reaction rates of each molecular structure. We used N,N’-Methylenebisacrylamide (MBAA) and N,N′-Methylenebismethacrylamide (MBMA) as crosslinkers to successfully synthesize hydrogels with varying degrees of homogeneity. The homogeneity of hydrogels were analyzed by dynamic light scattering (DLS), while their mechanical properties were analyzed by the universal testing machine to conform the relationship between mechanical properties and network homogeneity. Mechanical properties and hysteresis were analyzed by the universal testing machine. Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), customized universal testing machines, and dynamic mechanical analysis (DMA) were employed to analyze the strength of intermolecular hydrogen bonds, surface adsorption energy, friction coefficient, viscosity and elasticity characteristic of the hydrogels. Furthermore, bacterial and protein tests were conducted to investigate the impact of the highly entangled effect on anti-nonspecific adsorption. This study compares the effects of different variables on the highly entangled effect through the analysis of four molecular structures, aiming to design zwitterionic hydrogels with mechanical properties tailored to meet practical application requirements.
關鍵字(中) ★ 雙離子材料
★ 水凝膠
★ 高度纏結
★ 網絡均勻度
★ 表面吸附能
★ 非特異性吸附
關鍵字(英) ★ zwitterionic materials
★ hydrogels
★ high entanglement
★ network homogeneity
★ surface adsorption energy
★ anit-nonspecific adsorption
論文目次 目錄
中文摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 X
化學品名詞代稱 XI
產物名詞代稱 XII
一、文獻回顧 1
1-1 水凝膠之概述 1
1-2 防汙材料之發展 2
1-3 雙離子材料 4
1-3-1 雙離子材料之應用 5
1-3-2 雙離子水凝膠之缺陷 6
1-4 改善水凝膠機械性質之研究發展 6
1-4-1 互穿聚合物網絡(IPNs) 7
1-4-2 雙層網絡水凝膠(DN) 7
1-4-2 奈米複合水凝膠 9
1-4-3 奈米複合水凝膠 10
1-5 水凝膠之主要交聯方式 11
1-5-1 疏水相互作用之物理交聯 12
1-5-2 結晶之物理交聯 13
1-5-3 氫鍵之物理交聯 13
1-5-4 光聚合之化學交聯 14
1-5 高度纏結水凝膠之研究 15
二、研究目的 17
三、實驗藥品與實驗方法 18
3-1 實驗藥品 18
3-2 實驗設備 19
3-3 材料製備 20
3-3-1 Sulfobetaine methacrylate ,(SBMA)單體合成 20
3-3-2 Sulfobetaine acrylate ,(SBA)單體合成 20
3-3-3 Sulfobetaine acrylamide ,(SBAA)單體合成 21
3-3-4 Sulfobetaine methacrylamide ,(SBMAA)單體合成 21
3-3-4 水凝膠 / 聚合物製備 22
3-3-5 水凝膠對玻璃表面修飾樣品製備 23
3-4 實驗方法 24
3-4-1 液態核磁共振光譜儀鑑定(1H NMR) 24
3-4-2 準一級聚合反應測試(Pseudo-first-order polymerization kinetics) 24
3-4-3 機械性質-拉伸測試 25
3-4-4 遲滯現象測試-拉伸測試 25
3-4-5 流變儀(Rheometer) 25
3-4-6 衰減全反射式傅立葉轉換紅外線光譜儀分析(ATR-FTIR) 26
3-4-7膨潤度以及韌性增加率關係測試 26
3-4-8交聯密度測試-壓縮測試 27
3-4-9壓縮測試-貼附能測試 27
3-4-10動態光散射儀(DLS) 28
3-4-11表面吸附能測試-原子力顯微鏡(AFM) 29
3-4-12水下摩擦力測試-拉伸測試 30
3-4-13蛋白質貼附測試(Protein Adsorption Test) 31
3-4-14細菌貼附測試(Bacterial Adsorption Test) 32
3-4-15統計分析 32
四、結果與討論 33
4-1 單體結構與高度纏結雙離子水凝膠比例之鑑定 33
4-1-1 Sulfobetaine acrylate (SBA)1H NMR光譜鑑定 33
4-1-2 Sulfobetaine methacrylate (SBMA) 1H NMR光譜鑑定 35
4-1-3 Sulfobetaine acrylamide (SBAA)單體1H NMR光譜鑑定 37
4-1-4 Sulfobetaine methacrylamide (SBMAA)單體1H NMR光譜鑑定 39
4-2 雙離子水凝膠機械性質分析 41
4-2-1 高度纏結雙離子水凝膠比例鑑定 41
4-2-2 雙離子水凝膠機械性質之比較 43
4-3 氫鍵作用力與水合能力測試 46
4-3-1 雙離子水凝膠之FTIR圖譜分析 46
4-3-2 膨潤度與機械性質分析 48
4-4 水凝膠網絡均勻度分析 49
4-5 表面性質分析 57
4-5-1 水下潤滑度分析 57
4-5-2 表面吸附能分析 59
4-5-3 表面貼附應力測試 60
4-6-1 水凝膠貼附測試 61
五、結論 64
六、未來展望 66
七、參考文獻 67
參考文獻 七、參考文獻
1. Liu, Y., et al., Environmentally friendly hydrogel: A review of classification, preparation and application in agriculture. Science of the Total Environment, 2022. 846: p. 157303.
2. Dreiss, C.A., Hydrogel design strategies for drug delivery. Current opinion in colloid & interface science, 2020. 48: p. 1-17.
3. Yuk, H., J. Wu, and X. Zhao, Hydrogel interfaces for merging humans and machines. Nature Reviews Materials, 2022. 7(12): p. 935-952.
4. Leduc, E.H. and S. Holt, Hydroxypropyl methacrylate, a new water-miscible embedding medium for electron microscopy. The Journal of cell biology, 1965. 26(1): p. 137-155.
5. Lewis, A.L., et al., Crosslinkable coatings from phosphorylcholine-based polymers. Biomaterials, 2001. 22(2): p. 99-111.
6. Mrabet, B., et al., Anti-fouling poly (2-hydoxyethyl methacrylate) surface coatings with specific bacteria recognition capabilities. Surface science, 2009. 603(16): p. 2422-2429.
7. Yoshikawa, C., et al., Protein repellency of well-defined, concentrated poly (2-hydroxyethyl methacrylate) brushes by the size-exclusion effect. Macromolecules, 2006. 39(6): p. 2284-2290.
8. Ma, H., et al., “Non‐fouling” oligo (ethylene glycol)‐functionalized polymer brushes synthesized by surface‐initiated atom transfer radical polymerization. Advanced Materials, 2004. 16(4): p. 338-341.
9. Zheng, J., et al., Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: A molecular simulation study. Biophysical journal, 2005. 89(1): p. 158-166.
10. Luk, Y.-Y., M. Kato, and M. Mrksich, Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir, 2000. 16(24): p. 9604-9608.
11. Ostuni, E., et al., A survey of structure− property relationships of surfaces that resist the adsorption of protein. Langmuir, 2001. 17(18): p. 5605-5620.
12. Shen, M., et al., PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. Journal of Biomaterials Science, Polymer Edition, 2002. 13(4): p. 367-390.
13. Leckband, D., S. Sheth, and A. Halperin, Grafted poly (ethylene oxide) brushes as nonfouling surface coatings. Journal of Biomaterials Science, Polymer Edition, 1999. 10(10): p. 1125-1147.
14. Zwaal, R.F. and A.J. Schroit, Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood, The Journal of the American Society of Hematology, 1997. 89(4): p. 1121-1132.
15. Long, S., et al., Controlled biological response on blends of a phosphorylcholine-based copolymer with poly (butyl methacrylate). Biomaterials, 2003. 24(23): p. 4115-4121.
16. Ishihara, K., T. Ueda, and N. Nakabayashi, Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polymer Journal, 1990. 22(5): p. 355-360.
17. Kadoma, Y., Synthesis and hemolysis test of the polymer containing phosphorylcholine groups. Koubunshi Ronbunshu, 1978. 35: p. 423-427.
18. Chang, Y., et al., Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir, 2006. 22(5): p. 2222-2226.
19. Sin, M.-C., S.-H. Chen, and Y. Chang, Hemocompatibility of zwitterionic interfaces and membranes. Polymer journal, 2014. 46(8): p. 436-443.
20. Laschewsky, A., Structures and synthesis of zwitterionic polymers. Polymers, 2014. 6(5): p. 1544-1601.
21. Ladd, J., et al., Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules, 2008. 9(5): p. 1357-1361.
22. Li, A., et al., Synthesis and in vivo pharmacokinetic evaluation of degradable shell cross-linked polymer nanoparticles with poly (carboxybetaine) versus poly (ethylene glycol) surface-grafted coatings. ACS nano, 2012. 6(10): p. 8970-8982.
23. Zheng, L., et al., Applications of zwitterionic polymers. Reactive and Functional Polymers, 2017. 118: p. 51-61.
24. Liu, S., et al., Recent advances in zwitterionic hydrogels: Preparation, property, and biomedical application. Gels, 2022. 8(1): p. 46.
25. Wang, Z., et al., Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels. Journal of materials chemistry B, 2019. 7(1): p. 24-29.
26. Yang, B. and W. Yuan, Highly stretchable, adhesive, and mechanical zwitterionic nanocomposite hydrogel biomimetic skin. ACS applied materials & interfaces, 2019. 11(43): p. 40620-40628.
27. Fu, J., Hydrogel properties and applications. Journal of Materials Chemistry B, 2019. 7(10): p. 1523-1525.
28. Blöhbaum, J., et al., Influence of charged groups on the cross-linking efficiency and release of guest molecules from thiol–ene cross-linked poly (2-oxazoline) hydrogels. Journal of materials chemistry B, 2019. 7(10): p. 1782-1794.
29. Chen, F., et al., Conductive regenerated silk-fibroin-based hydrogels with integrated high mechanical performances. Journal of materials chemistry B, 2019. 7(10): p. 1708-1715.
30. Gan, D., et al., Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA) hydrogels for cartilage regeneration. Journal of Materials Chemistry B, 2019. 7(10): p. 1716-1725.
31. Miller, J., Interpenetrating polymer networks styrene-diving benzene copolymers with two and three interpenetrating networks and their sulphonates. J. Chem. Soc, 1960. 26(3): p. 1311-1317.
32. Sperling, L.H., Interpenetrating polymer networks and related materials. 2012: Springer Science & Business Media.
33. Gong, J.P., et al., Double‐network hydrogels with extremely high mechanical strength. Advanced materials, 2003. 15(14): p. 1155-1158.
34. Chen, Q., et al., Fundamentals of double network hydrogels. Journal of Materials Chemistry B, 2015. 3(18): p. 3654-3676.
35. Haraguchi, K. and T. Takehisa, Nanocomposite hydrogels: A unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de‐swelling properties. Advanced materials, 2002. 14(16): p. 1120-1124.
36. Haraguchi, K., T. Takehisa, and S. Fan, Effects of clay content on the properties of nanocomposite hydrogels composed of poly (N-isopropylacrylamide) and clay. Macromolecules, 2002. 35(27): p. 10162-10171.
37. Haraguchi, K., Soft nanohybrid materials consisting of polymer–clay networks. Organic-Inorganic Hybrid Nanomaterials, 2015: p. 187-248.
38. Gaharwar, A.K., et al., Transparent, elastomeric and tough hydrogels from poly (ethylene glycol) and silicate nanoparticles. Acta biomaterialia, 2011. 7(12): p. 4139-4148.
39. Okumura, Y. and K. Ito, The polyrotaxane gel: A topological gel by figure‐of‐eight cross‐links. Advanced materials, 2001. 13(7): p. 485-487.
40. Harada, A., J. Li, and M. Kamachi, The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature, 1992. 356(6367): p. 325-327.
41. Ito, K., Slide-ring materials using topological supramolecular architecture. Current Opinion in Solid State and Materials Science, 2010. 14(2): p. 28-34.
42. Kirchhof, S., A.M. Goepferich, and F.P. Brandl, Hydrogels in ophthalmic applications. European Journal of Pharmaceutics and Biopharmaceutics, 2015. 95: p. 227-238.
43. Muzzarelli, R.A., Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers, 2009. 77(1): p. 1-9.
44. Yang, J.-A., et al., In situ-forming injectable hydrogels for regenerative medicine. Progress in polymer science, 2014. 39(12): p. 1973-1986.
45. Zarembinski, T.I., et al., Thiolated hyaluronan-based hydrogels crosslinked using oxidized glutathione: An injectable matrix designed for ophthalmic applications. Acta biomaterialia, 2014. 10(1): p. 94-103.
46. You, H., et al., A model with contact maps at both polymer chain and network scales for tough hydrogels with chain entanglement, hidden length and unconventional network topology. International Journal of Mechanical Sciences, 2024. 262: p. 108713.
47. Zeng, D., S. Shen, and D. Fan, Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications. Chinese Journal of Chemical Engineering, 2021. 30: p. 308-320.
48. Hu, W., et al., Advances in crosslinking strategies of biomedical hydrogels. Biomaterials science, 2019. 7(3): p. 843-855.
49. Park, H., et al., One-pot synthesis of injectable methylcellulose hydrogel containing calcium phosphate nanoparticles. Carbohydrate polymers, 2017. 157: p. 775-783.
50. Jiang, X., et al., Preparation and characterization of poly (vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity. Carbohydrate polymers, 2018. 186: p. 377-383.
51. Zhang, Y., et al., Preparation and properties of polyacrylamide/polyvinyl alcohol physical double network hydrogel. RSC advances, 2016. 6(113): p. 112468-112476.
52. Hofmeier, H., et al., High molecular weight supramolecular polymers containing both terpyridine metal complexes and ureidopyrimidinone quadruple hydrogen-bonding units in the main chain. Journal of the American Chemical Society, 2005. 127(9): p. 2913-2921.
53. Guo, M., et al., Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. Journal of the American Chemical Society, 2014. 136(19): p. 6969-6977.
54. An, Y. and J.A. Hubbell, Intraarterial protein delivery via intimally-adherent bilayer hydrogels. Journal of Controlled Release, 2000. 64(1-3): p. 205-215.
55. Nuttelman, C.R., M.C. Tripodi, and K.S. Anseth, Synthetic hydrogel niches that promote hMSC viability. Matrix biology, 2005. 24(3): p. 208-218.
56. Sawhney, A.S., C.P. Pathak, and J.A. Hubbell, Interfacial photopolymerization of poly (ethylene glycol)-based hydrogels upon alginate-poly (l-lysine) microcapsules for enhanced biocompatibility. Biomaterials, 1993. 14(13): p. 1008-1016.
57. Nguyen, K.T. and J.L. West, Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 2002. 23(22): p. 4307-4314.
58. Li, B., et al., Hydrosoluble, UV-crosslinkable and injectable chitosan for patterned cell-laden microgel and rapid transdermal curing hydrogel in vivo. Acta Biomaterialia, 2015. 22: p. 59-69.
59. Norioka, C., et al., A universal method to easily design tough and stretchable hydrogels. NPG Asia Materials, 2021. 13(1): p. 34.
60. Kavanagh, G.M. and S.B. Ross-Murphy, Rheological characterisation of polymer gels. Progress in Polymer Science, 1998. 23(3): p. 533-562.
61. Kim, J., et al., Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science, 2021. 374(6564): p. 212-216.
62. Noda, Y., Y. Hayashi, and K. Ito, From topological gels to slide‐ring materials. Journal of Applied Polymer Science, 2014. 131(15).
63. Gong, J.P., Why are double network hydrogels so tough? Soft Matter, 2010. 6(12): p. 2583-2590.
64. Nakajima, T., Generalization of the sacrificial bond principle for gel and elastomer toughening. Polymer journal, 2017. 49(6): p. 477-485.
65. Bin Imran, A., et al., Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nature communications, 2014. 5(1): p. 5124.
66. Ducrot, E., et al., Toughening elastomers with sacrificial bonds and watching them break. Science, 2014. 344(6180): p. 186-189.
67. Filippidi, E., et al., Toughening elastomers using mussel-inspired iron-catechol complexes. Science, 2017. 358(6362): p. 502-505.
68. Gotoh, H., et al., Optically transparent, high-toughness elastomer using a polyrotaxane cross-linker as a molecular pulley. Science advances, 2018. 4(10): p. eaat7629.
69. Ke, H., et al., Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseudopolyrotaxanes. Nature Chemistry, 2019. 11(5): p. 470-477.
70. Matsuda, T., et al., Mechanoresponsive self-growing hydrogels inspired by muscle training. Science, 2019. 363(6426): p. 504-508.
71. Sun, G., et al., Super stretchable hydrogel achieved by non-aggregated spherulites with diameters< 5 nm. Nature communications, 2016. 7(1): p. 12095.
72. Sun, J.-Y., et al., Highly stretchable and tough hydrogels. Nature, 2012. 489(7414): p. 133-136.
73. Ning, J., et al., Characteristics of zwitterionic sulfobetaine acrylamide polymer and the hydrogels prepared by free-radical polymerization and effects of physical and chemical crosslinks on the UCST. Reactive and Functional Polymers, 2013. 73(7): p. 969-978.
74. Díez-Pascual, A.M. and A.L. Díez-Vicente, Wound healing bionanocomposites based on castor oil polymeric films reinforced with chitosan-modified ZnO nanoparticles. Biomacromolecules, 2015. 16(9): p. 2631-2644.
75. Norioka, C., A. Kawamura, and T. Miyata, Relatively homogeneous network structures of temperature-responsive gels synthesized via atom transfer radical polymerization. Soft Matter, 2023. 19(14): p. 2505-2513.
76. Hutter, J.L. and J. Bechhoefer, Calibration of atomic‐force microscope tips. Review of scientific instruments, 1993. 64(7): p. 1868-1873.
77. Gong, L., et al., Fundamentals and advances in the adhesion of polymer surfaces and thin films. Langmuir, 2019. 35(48): p. 15914-15936.
78. Vlassov, S., et al., Adhesion and mechanical properties of PDMS-based materials probed with AFM: A review. Reviews on Advanced Materials Science, 2018. 56(1): p. 62-78.
79. Gu, S., et al., The effect of methyl group on the mechanical properties of hydrophobic association hydrogel. Journal of Polymer Science Part B: Polymer Physics, 2018. 56(22): p. 1505-1512.
80. Stevens, M.P., Polymer chemistry. Vol. 2. 1990: Oxford university press New York.
81. He, Y., H.-K. Tsao, and S. Jiang, Improved mechanical properties of zwitterionic hydrogels with hydroxyl groups. The Journal of Physical Chemistry B, 2012. 116(19): p. 5766-5770.
82. Wu, F., Y. Pang, and J. Liu, Swelling-strengthening hydrogels by embedding with deformable nanobarriers. Nature Communications, 2020. 11(1): p. 4502.
83. Patras, G., G.G. Qiao, and D.H. Solomon, Controlled formation of microheterogeneous polymer networks: Influence of monomer reactivity on gel structure. Macromolecules, 2001. 34(18): p. 6396-6401.
84. Buckingham, A., J. Del Bene, and S. McDowell, The hydrogen bond. Chemical Physics Letters, 2008. 463(1-3): p. 1-10.
85. Ramin, M.A., et al., Epoxy-terminated self-assembled monolayers containing internal urea or amide groups. Langmuir, 2015. 31(9): p. 2783-2789.
86. Horowitz, S. and R.C. Trievel, Carbon-oxygen hydrogen bonding in biological structure and function. Journal of Biological Chemistry, 2012. 287(50): p. 41576-41582.
87. Steiner, T., The hydrogen bond in the solid state. Angewandte Chemie International Edition, 2002. 41(1): p. 48-76.
88. Chavda, H. and C. Patel, Effect of crosslinker concentration on characteristics of superporous hydrogel. International journal of pharmaceutical investigation, 2011. 1(1): p. 17.
89. Xue, W., S. Champ, and M.B. Huglin, Network and swelling parameters of chemically crosslinked thermoreversible hydrogels. Polymer, 2001. 42(8): p. 3665-3669.
90. Liu, X., et al., Underwater flexible mechanoreceptors constructed by anti-swelling self-healable hydrogel. Sci China Mater, 2021. 64: p. 3069-3078.
91. Lacík, I., et al., PLP-SEC studies into the propagation rate coefficient of acrylamide radical polymerization in aqueous solution. Macromolecules, 2016. 49(9): p. 3244-3253.
92. Brazel, C.S. and S.L. Rosen, Fundamental principles of polymeric materials. 2012: John Wiley & Sons.
93. Tosa, M., et al., Effect of network homogeneity on mechanical, thermal and electrochemical properties of solid polymer electrolytes prepared by homogeneous 4-arm poly (ethylene glycols). Soft Matter, 2020. 16(17): p. 4290-4298.
94. Gong, J.P., Friction and lubrication of hydrogels—its richness and complexity. Soft matter, 2006. 2(7): p. 544-552.
95. Pitenis, A.A., et al., Lubricity from entangled polymer networks on hydrogels. Journal of Tribology, 2016. 138(4): p. 042102.
96. Yang, H., Q. Zheng, and R. Cheng, New insight into “polyelectrolyte effect”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012. 407: p. 1-8.
97. Wang, F., J. Yang, and J. Zhao, Understanding anti‐polyelectrolyte behavior of a well‐defined polyzwitterion at the single‐chain level. Polymer international, 2015. 64(8): p. 999-1005.
98. Chen, K., et al., Entanglement-driven adhesion, self-healing, and high stretchability of double-network PEG-based hydrogels. ACS applied materials & interfaces, 2019. 11(40): p. 36458-36468.
99. Sun, Y., et al., High strength zwitterionic nano-micelle hydrogels with superior self-healing, adhesive and ion conductive properties. European Polymer Journal, 2020. 133: p. 109761.
100. Xu, T., et al., High-strain sensitive zwitterionic hydrogels with swelling-resistant and controllable rehydration for sustainable wearable sensor. Journal of Colloid and Interface Science, 2022. 620: p. 14-23.
101. Yang, W., et al., The effect of lightly crosslinked poly (carboxybetaine) hydrogel coating on the performance of sensors in whole blood. Biomaterials, 2012. 33(32): p. 7945-7951.
102. Azzaroni, O., A.A. Brown, and W.T. Huck, UCST wetting transitions of polyzwitterionic brushes driven by self‐association. Angewandte Chemie International Edition, 2006. 45(11): p. 1770-1774.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明