博碩士論文 111324046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.188.69.167
姓名 洪鈺哲(Yu-Zhe Hong)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Trial of Empirical Seeding Equation Modification for Batch Cooling Crystallization of Needle Shape D-Mannitol Crystal in Water)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 晶種結晶技術是化學和製藥相關產業常用的方法之一,用於控制產品的晶體大小分佈並提高產品純度,一些研究皆使用了一個基於質能平衡建立的簡單經驗式來預估不同晶種大小和晶種添加量下所會獲取到的產品晶體大小。然而,該經驗式提供的假設過於理想使其無法應用於實際情況。在這篇研究中,我們希望通過考慮操作變因,如降溫範圍和晶種添加量,來修改這個經驗式,該研究還旨在提供正確的晶種結晶操作方法,其中要設計一個晶種結晶實驗有三個重要因素:(1)亞穩區寬度,(2)晶種製備方法,以及(3)晶種添加量,這三個重要因子皆會極大程度地去影響到實驗的操作方式及最終的結果。我們選擇D-甘露醇在水中的批次冷卻結晶作為我們的操作系統,並使用88至125 μm大小的晶種和自然冷卻,而冷卻溫度範圍和晶種添加量將是每組實驗中最主要的操作參數,在實驗操作期間,透過在不同時間點進行取樣,可以進一步監測晶體成核和晶體生長的行為。在這篇研究中所操作的溫度範圍為40至30 °C、45至30 °C和48至30 °C,而晶種添加量分別為1、3和5 wt%,該添加量是利用實驗所使用的主要材料D-甘露醇在水中的溶解度來去推測理論產率進而計算實際要使用的晶種重量。最終修改後的經驗方程形式會是Lp/Ls=αCs^β,其中Lp是產物晶體的大小,Ls是經種晶體的大小,Cs是晶種的添加量,α=α′exp(-Ea/RTs),而β在目前的實驗設計中推測是隨應用系統改變的常數,α將是與溫度相關的變數,用於理解溫度對於該系統造成的效應,其中Ea是包含了所有結晶過程發生事件的活化能,R是理想氣體常數,而TS是晶種投入的溫度,在批次結晶的過程中我們使用不同時間點的取樣資料來獲取晶體成核和成長行為,從而揭示過程中發生的情況,進而協助說明實驗得到最終晶體性質。
這裡所建立的改良型晶種結晶經驗式對於實驗產生的晶體大小給予相當準確的預測,在一組使用降溫範圍43到30 °C與晶種添加量4 wt%的驗證實驗中,其結果與預測的數值只有大概0.3 %的偏差,即使是將製程進行放大也能相當準確的預測,偏差大概是4.1 %,因此由此我們可知道這篇研究所進行的實驗是可以放大並可以使用我們所建立的經驗式,只要溫度等其他條件能有良好的控制。另外我們也嘗試將實驗的數據點減少至只有4組實驗,發現了所得到的經驗式其實也可以提供相當好的預測,也表示了即使減少實驗量也能得到相當好的預測。
摘要(英) The seeding technique is a common method used in the chemical or pharmaceutical industry for achieving good control over the crystal size distribution of the product. Some studies are using a simple empirical equation based on mass balance to estimate the product size from different seed crystal sizes and seed loadings. However, the assumptions provided in this empirical equation makes it enable to be applied in practical situations. Here, we want to focus on modifying the empirical equation by considering the operating parameters such as temperature cooling ranges and seed loadings. This study also aims to promote the proper way to do seeding. To design a seeding crystallization experiment, three important factors would need to be determined: (1) metastable zone width, (2) seed crystal preparation method, and (3) seed loading amount. The batch cooling crystallization of D-mannitol in water was chosen as our model system, operating with 88 to 125μm size seeds and natural cooling, the cooling temperature range and seed loading amount will be the main parameters that change in each set of experiments. Crystal nucleation and crystal growth were monitored by sampling at different time points. The temperature ranges were 40° to 30 °C, 45° to 30 °C, and 48° to 30 °C, the seed loading amounts were 1, 3, and 5wt% of the theoretical yield based on the solubility. The final modified empirical equation is in the form of Lp/Ls=αCs^β, where Lp is the product size, Ls is the seed size, Cs is the seed loading, α=α′exp(-Ea/RTs) that is related to the operation temperature range and β is a constant that changes with the system applied. α will be the variant related to the temperature for understanding the temperature effect where Ea is the activation energy include all the events happened in crystallization process, R is the ideal gas constant, and TS is the seeding temperature. Furthermore, sampling data at different time points were used to get the nucleation and growth behavior shedding some lights on what happened in the process.
The modified empirical seeding equation established in this study provides a fairly accurate prediction of the crystal size produced by the experiments. In a set of verification experiments using a cooling range of 43° to 30 °C and a seed loading amount of 4 wt%, the results were consistent, with a deviation of only about 0.3 % from the predicted value. Even when the process is scaled up, the predictions remain quite accurate, with a deviation of about 4.1 %. Therefore, we can conclude that the experiments conducted in this study can be effectively scaled up using our method. The established empirical formula can predict outcomes accurately, provided that temperature and other conditions are well controlled. Additionally, we attempted to reduce the number of experimental data points to just four sets of experiments. The resulting empirical equation still provided good predictions, demonstrating that even with fewer experiments, reliable predictions can be achieved.
關鍵字(中) ★ 亞穩區寬度
★ 冷卻溫度區間
★ 晶種添加量
★ 晶種大小
★ 晶種製備方法
關鍵字(英) ★ Metastable zone width
★ Temperature cooling range
★ Seed loading
★ Seed size
★ Seed preparation
論文目次 摘要 i
Abstract iii
Acknowledgement v
Table of Contents vi
List of Figures ix
List of Tables xiv
Chapter 1 Introduction 1
1.1 Seeding Technique 1
1.2 Brief Introduction of D-Mannitol 5
1.2.1 Chemical Properties, Application, and Polymorphism of D-Mannitol 5
1.2.2 Production of D-Mannitol 8
1.3 Conceptual Framework 10
Chapter 2 Experimental Section 12
2.1 Materials 12
2.1.1 Chemical 12
2.1.2 Solvents 12
2.2 Initial Solvent Screening for D-Mannitol 14
2.3 Calibration Line for Refractive Index Transformation 15
2.4 Solubility Curve for D-Mannitol Solution 16
2.5 Design of Seeding Experiments 17
2.5.1 Seed Crystals Preparation Method 17
2.5.2 Measurement of Metastable Zone Width 18
2.5.3 Seeding in Batch Cooling Crystallization 19
2.5.4 Seeding Experiment for Verification of the Modified Equation 22
2.5.5 Scale-up Experiment for Batch Cooling Crystallization 23
2.6 Analytical Instruments 25
2.6.1 Digital Refractometry 25
2.6.2 Optical microscopy (OM) 25
2.6.3 Powder X-ray Diffraction (PXRD) 26
2.6.4 Fourier-Transform Infrared Spectroscopy (FT-IR) 26
2.6.5 Differential Scanning Calorimetry (DSC) 27
Chapter 3 Results and Discussion 28
3.1 Solid State Characterization of the Purchased D-Mannitol 28
3.1.1 FT-IR Spectra and DSC Scans 28
3.1.2 PXRD Patterns 31
3.2 Initial Solvent Screening 32
3.2.1 Form Space for D-Mannitol in Different Solvents 32
3.2.2 Calibration Line of D-Mannitol in Water 34
3.2.3 Solubility Curve of D-Mannitol in Water at Various Temperature 35
3.2.4 Metastable Zone Width in Different Temperature Ranges of D-Mannitol in Water 36
3.3 Seeding Effect in Batch Cooling Crystallization 39
3.3.1 Seeding Parameters Effect on Empirical Seeding Equation 39
3.3.2 Crystallization Behavior During Seeding Process 49
3.3.3 Different Operation Condition for Modified Equation Verification 62
3.3.4 Reduction of the Number of Experiments for Empirical Equation Construction 66
3.3.5 Suggestion for Scaling Up the Experiments 70
Chapter 4 Conclusions 74
Chapter 5 Future works 76
References 80
參考文獻 1.Wey, J. S.; Karpinski, P. H., Batch Crystallization. In Handbook of Industrial Crystallization, 2nd ed.; Myerson, A. S., Ed. Butterworth-Heinemann, 2002, pp 231-248.
2.Pan, H. J.; Ward, J. D., Optimization of Simple Batch Crystallization Systems Considering Crystal Shape and Nucleation. Ind. Eng. Chem. Res., 2020, 59 (20), 9550-9561.
3.He, Y.; Gao, Z.; Zhang, T.; Sun, J.; Ma, Y.; Tian, N.; Gong, J., Seeding Techniques and Optimization of Solution Crystallization Processes. Org. Process Res. Dev., 2020, 24 (10), 1839-1849.
4.Zhang, F.; Shan, B.; Wang, Y.; Zhu, Z.; Yu, Z. Q.; Ma, C. Y., Progress and Opportunities for Utilizing Seeding Techniques in Crystallization Processes. Org. Process Res. Dev., 2021, 25 (7), 1496-1511.
5.Ulrich, J.; Jones, M. J., Seeding Technique in Batch Crystallization. In Industrial Crystallization Process Monitoring and Control, John Wiley & Sons, 2012, pp 127-138.
6.Tseng, Y. T.; Ward, J. D., Critical Seed Loading from Nucleation Kinetics. AICHE J., 2014, 60 (5), 1645-1653.
7.Doki, N.; Kubota, N.; Yokota, M.; Chianese, A., Determination of Critical Seed Loading Ratio for the Production of Crystals of Uni-Modal Size Distribution in Batch Cooling Crystallization of Potassium Alum. J. Chem. Eng. Jpn., 2002, 35 (7), 670-676.
8.Mullin, J. W., Nucleation. In Crystallization, 4th ed.; Elsevier, 2001, pp 181-215.
9.Hartel, R. W., Crystallization in Foods. In Handbook of industrial crystallization, 2nd ed.; Butterworth-Heinemann, 2002, pp 287-304.
10.Parambil, J. V.; Heng, J. Y., Seeding in Crystallisation. In Engineering Crystallography: From Molecule to Crystal to Functional Form, Springer Dordrecht, 2017, pp 235-245.
11.Kubota, N.; Doki, N.; Yokota, M.; Sato, A., Seeding Policy in Batch Cooling Crystallization. Powder Technol., 2001, 121 (1), 31-38.
12.Jagadesh, D.; Kubota, N.; Yokota, M.; Sato, A.; Tavare, N. S., Large and Mono-Sized Product Crystals from Natural Cooling Mode Batch Crystallizer. J. Chem. Eng. Jpn., 1996, 29 (5), 865-873.
13.Jagadesh, D.; Kubota, N.; Yokota, M.; Doki, N.; Sato, A., Seeding Effect on Batch Crystallization of Potassium Sulfate under Natural Cooling Mode and a Simple Design Method of Crystallizer. J. Chem. Eng. Jpn., 1999, 32 (4), 514-520.
14.Barrett, P.; Smith, B.; Worlitschek, J.; Bracken, V.; O′Sullivan, B.; O′Grady, D., A Review of the Use of Process Analytical Technology for the Understanding and Optimization of Production Batch Crystallization Processes. Org. Process Res. Dev., 2005, 9 (3), 348-355.
15.Aamir, E.; Nagy, Z. K.; Rielly, C. D., Evaluation of the Effect of Seed Preparation Method on the Product Crystal Size Distribution for Batch Cooling Crystallization Processes. Cryst. Growth Des., 2010, 10 (11), 4728-4740.
16.Malwade, C. R.; Qu, H., Process Analytical Technology for Crystallization of Active Pharmaceutical Ingredients. Curr. Pharm. Des., 2018, 24 (21), 2456-2472.
17.Kadam, S. S.; Mesbah, A.; Van der Windt, E.; Kramer, H. J., Rapid Online Calibration for ATR-FTIR Spectroscopy during Batch Crystallization of Ammonium Sulphate in a Semi-Industrial Scale Crystallizer. Chem. Eng. Res. Des., 2011, 89 (7), 995-1005.
18.Meng, Q.; Zhang, T.; Wei, W.; Mu, W.; Miao, M., Production of Mannitol from a High Concentration of Glucose by Candida parapsilosis SK26.001. Appl. Biochem. Biotechnol., 2017, 181 (1), 391-406.
19.Soetaert, W.; Vanhooren, P. T.; Vandamme, E. J., The Production of Mannitol by Fermentation. In Carbohydrate Biotechnology Protocols, Humana Totowa, 1999, pp 261-275.
20.Deis, R. C.; Kearsley, M. W., Sorbitol and Mannitol. In Sweeteners and Sugar Alternatives in Food Technology, 2nd ed.; John Wiley & Sons, 2012, pp 331-346.
21.Ghoreishi, S. M.; Shahrestani, R. G., Innovative Strategies for Engineering Mannitol Production. Trends Food Sci. Technol., 2009, 20 (6-7), 263-270.
22.Su, W.; Jia, N.; Li, H.; Hao, H.; Li, C., Polymorphism of D-Mannitol: Crystal Structure and the Crystal Growth Mechanism. Chin. J. Chem. Eng., 2017, 25 (3), 358-362.
23.Mareczek, L.; Riehl, C.; Harms, M.; Reichl, S., Understanding the Multidimensional Effects of Polymorphism, Particle Size and Processing for D-Mannitol Powders. Pharmaceutics, 2022, 14 (10).
24.Smith, R. R.; Shah, U. V.; Parambil, J. V.; Burnett, D. J.; Thielmann, F.; Heng, J. Y., The Effect of Polymorphism on Surface Energetics of D-Mannitol Polymorphs. AAPS J., 2017, 19 (1), 103-109.
25.Su, W.; Hao, H.; Glennon, B.; Barrett, M., Spontaneous Polymorphic Nucleation of D-Mannitol in Aqueous Solution Monitored with Raman Spectroscopy and FBRM. Cryst. Growth Des., 2013, 13 (12), 5179-5187.
26.Burger, A.; Henck, J. O.; Hetz, S.; Rollinger, J. M.; Weissnicht, A. A.; Stöttner, H., Energy/Temperature Diagram and Compression Behavior of the Polymorphs of D-Mannitol. J. Pharm. Sci., 2000, 89 (4), 457-468.
27.Yu, L.; Milton, N.; Groleau, E. G.; Mishra, D. S.; Vansickle, R. E., Existence of a Mannitol Hydrate During Freeze-Drying and Practical Implications. J. Pharm. Sci., 1999, 88 (2), 196-198.
28.Bruni, G.; Berbenni, V.; Milanese, C.; Girella, A.; Cofrancesco, P.; Bellazzi, G.; Marini, A., Physico-Chemical Characterization of Anhydrous D-Mannitol. J. Therm. Anal. Calorim., 2009, 95 (3), 871-876.
29.Vanhoorne, V.; Bekaert, B.; Peeters, E.; De Beer, T.; Remon, J. P.; Vervaet, C., Improved Tabletability after a Polymorphic Transition of Delta-Mannitol during Twin Screw Granulation. Int. J. Pharm., 2016, 506 (1-2), 13-24.
30.Wagner, C. M.; Pein, M.; Breitkreutz, J., Roll Compaction of Granulated Mannitol Grades and the Unprocessed Crystalline Delta-Polymorph. Powder Technol. 2015, 270, 470-475.
31.Cavatur, R. K.; Suryanarayanan, R., Characterization of Phase Transitions During Freeze-Drying By In Situ X-ray Powder Diffractometry. Pharm. Dev. Technol., 1998, 3 (4), 579-586.
32.Fronczek, F. R.; Kamel, H. N.; Slattery, M., Three Polymorphs (Alpha, Beta, and Delta) of D-Mannitol at 100 K. Acta Crystallogr. C., 2003, 59 (10), 567-570.
33.Nunes, C.; Suryanarayanan, R.; Botez, C. E.; Stephens, P. W., Characterization and Crystal Structure of D-Mannitol Hemihydrate. J. Pharm. Sci., 2004, 93 (11), 2800-2809.
34.Dai, Y.; Meng, Q.; Mu, W.; Zhang, T., Recent Advances in the Applications and Biotechnological Production of Mannitol. J. Funct. Foods, 2017, 36, 404-409.
35.Ghoreishi, S. M.; Sharifi, S., Modeling of Supercritical Extraction of Mannitol from Plane Tree Leaf. J. Pharm. Biomed. Anal., 2001, 24 (5-6), 1037-1048.
36.Ghoreishi, S. M.; Shahrestani, R. G., Subcritical Water Extraction of Mannitol from Olive Leaves. J. Food Eng., 2009, 93 (4), 474-481.
37.Makkee, M.; Kieboom, A. P. G.; Van Bekkum, H., Production Methods of D‐Mannitol. Starch‐Stärke, 1985, 37 (4), 136-141.
38.Leo, K.; Morris, L. M., Hexitols by Hydrogenation of Sucrose. US2759024A, 1956.
39.Brandner, J. D.; Wright, L. W., Production of Mannitol and Sorbitol by Hydrogenating Sugars under Neutral, then Alkaline and Finally Acidic Conditions. US3329729A, 1967.
40.de Berardinis, A. J., Process for Producing Mannitol. US3763246A, 1973.
41.Upare, P. P.; Hwang, Y. K.; Kim, J. C.; Lee, J. H.; Kwak, S. K.; Hwang, D. W., A Robust and Highly Selective Catalytic System of Copper-Silica Nanocomposite and 1-Butanol in Fructose Hydrogenation to Mannitol. ChemSusChem, 2020, 13 (18), 5050-5057.
42.Rodiansono, R.; Shimazu, S., Effective Production of Sorbitol and Mannitol from Sugars Catalyzed by Ni Nanoparticles Supported on Aluminium Hydroxide. Bull. Chem. React. Eng. Catal., 2013, 8 (1), 40-46.
43.Kruse, W. M., Process for Preparing Mannitol from Glucose. US4029878A, 1977.
44.Takemura, M.; Iijima, M.; Tateno, Y.; Osada, Y.; Maruyama, H., Process for Preparing D-Mannitol. US4083881A, 1978.
45.Kulbe, K. D.; Howaldt, M. W.; Schmidt, K.; Röthig, T. R.; Chmiel, H., Rejection and Continuous Regeneration of the Native Coenzyme NAD (P)H in a Charged Ultrafiltration Membrane Enzyme Reactor. Ann. N. Y. Acad. Sci., 1990, 613 (1), 820-826.
46.von Weymarn, N.; Airaksinen, U., Process for Producing D-Mannitol. US8338147B2, 2012.
47.Slatner, M.; Nagl, G.; Haltrich, D.; Kulbe, K. D.; Nidetzky, B., Enzymatic Production of Pure D-Mannitol at High Productivity. Biocatal. Biotransformation, 1998, 16 (5), 351-363.
48.Soetaert, W.; Schwengers, D.; Buchholz, K.; Vandamme, E. J., A Wide Range of Carbohydrate Modifications by a Single Micro-Organism: Leuconostoc Mesenteroides. In Carbohydrate Bioengineering, Proceedings of an International Conference, Elsevier, 1995, Vol. 10, pp 351-358.
49.Kaup, B.; Bringer-Meyer, S.; Sahm, H., Metabolic Engineering of Escherichia Coli: Construction of an Efficient Biocatalyst for D-Mannitol Formation in a Whole-Cell Biotransformation. Appl. Microbiol. Biotechnol., 2004, 64 (3), 333-9.
50.Findlay, A., The Solubility of Mannitol, Picric Acid, and Anthracene. J. Chem. Soc., Trans., 1902, 81, 1217-1221.
51.Zumbe, A.; Lee, A.; Storey, D., Polyols in Confectionery: The Route to Sugar-Free, Reduced Sugar and Reduced Calorie Confectionery. Br. J. Nutr., 2001, 85 (S1), S31-S45.
52.Geankoplis, C. J., Principles of Momentum Transfer and Applications. In Transport Process and Unit Operations, 3rd ed.; PTR Prentice Hall, 1995, pp 114-213.
53.Chen, W.; Zhang, Y.; Chen, H.; Jin, W.; Chen, X.; Huang, X.; Xie, Y.; Fang, H.; Hong, Z., Development of a Pure Certified Reference Material of D-Mannitol. Molecules, 2023, 28 (19), 6794-6807.
54.Yoshinari, T.; Forbes, R. T.; York, P.; Kawashima, Y., Moisture Induced Polymorphic Transition of Mannitol and Its Morphological Transformation. Int. J. Pharm., 2002, 247 (1-2), 69-77.
55.Lee, Y. Y.; Wu, J. X.; Yang, M.; Young, P. M.; van den Berg, F.; Rantanen, J., Particle Size Dependence of Polymorphism in Spray-Dried Mannitol. Eu.r J. Pharm. Sci., 2011, 44 (1-2), 41-48.
56.Kaialy, W.; Hussain, T.; Alhalaweh, A.; Nokhodchi, A., Towards a More Desirable Dry Powder Inhaler Formulation: Large Spray-Dried Mannitol Microspheres Outperform Small Microspheres. Pharm. Res., 2014, 31 (1), 60-76.
57.Wang, Y.; Chuai, X.; Li, Y.; Guo, J.; Yang, J.; Liu, Z.; Xu, S., Nucleation Behaviors of Adipic Acid in Different Polarity Solvent Based on Metastable Zone Width. Crystals, 2022, 12 (2), 202-218.
58.Yadav, J.; Dumitrescu, D. G.; Kendall, T.; Guguta, C.; Patel, S. A., Effect of Solvent Composition on Solubility, Thermodynamics, Metastable Zone Width (MSZW) and Crystal Habit of L-Ascorbic Acid. Crystals, 2022, 12 (12), 1798-1814.
59.Mersmann, A.; Bartosch, K., How to Predict the Metastable Zone Width. J. Cryst. Growth, 1998, 183 (1-2), 240-250.
60.Ulrich, J.; Strege, C., Some Aspects of the Importance of Metastable Zone Width and Nucleation in Industrial Crystallizers. J. Cryst. Growth, 2002, 237, 2130-2135.
61.Kubota, N., A New Interpretation of Metastable Zone Widths Measured for Unseeded Solutions. J. Cryst. Growth, 2008, 310 (3), 629-634.
62.Liu, J. J.; Ma, C. Y.; Hu, Y. D.; Wang, X. Z., Effect of Seed Loading and Cooling Rate on Crystal Size and Shape Distributions in Protein crystallization—A Study Using Morphological Population Balance Simulation. Comput. Chem. Eng., 2010, 34 (12), 1945-1952.
63.Pandalaneni, K.; Amamcharla, J. K., Evaluating the Crystallization of Lactose at Different Cooling Rates from Milk and Whey Permeates in Terms of Crystal Yield and Purity. J. Dairy Sci., 2018, 101 (10), 8805-8821.
64.Canning, T. F.; Randolph, A. D., Some Aspects of Crystallization Theory: Systems that Violate McCabe′s Delta L Law. AICHE J., 1967, 13 (1), 5-10.
65.Bransom, S. H., Factors in the Design of Continuous Crystallizers. Brit. Chem. Eng., 1960, 5, 838–844.
66.Shiau, L. D.; Berglund, K., Growth Kinetics of Fructose Crystals Formed by Contact Nucleation. AlChE J., 1987, 33 (6), 1028-1033.
67.Wantha, L.; Flood, A. E., Crystal Growth Rates and Secondary Nucleation Threshold for γ-DL-Methionine in Aqueous Solution. J. Cryst. Growth, 2011, 318 (1), 117-121.
68.Yang, L.; Ren, X.; Li, T.; Wang, S.; Zhang, T., Preparation of Ultrafine TATB and the Technology for Crystal Morphology Control. Chin. J. Chem., 2012, 30 (2), 293-298.
69.Terdenge, L. M.; Wohlgemuth, K., Impact of Agglomeration on Crystalline Product Quality within the Crystallization Process Chain. Cryst. Res. Technol., 2016, 51 (9), 513-523.
指導教授 李度(Tu Lee) 審核日期 2024-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明