參考文獻 |
1.Wey, J. S.; Karpinski, P. H., Batch Crystallization. In Handbook of Industrial Crystallization, 2nd ed.; Myerson, A. S., Ed. Butterworth-Heinemann, 2002, pp 231-248.
2.Pan, H. J.; Ward, J. D., Optimization of Simple Batch Crystallization Systems Considering Crystal Shape and Nucleation. Ind. Eng. Chem. Res., 2020, 59 (20), 9550-9561.
3.He, Y.; Gao, Z.; Zhang, T.; Sun, J.; Ma, Y.; Tian, N.; Gong, J., Seeding Techniques and Optimization of Solution Crystallization Processes. Org. Process Res. Dev., 2020, 24 (10), 1839-1849.
4.Zhang, F.; Shan, B.; Wang, Y.; Zhu, Z.; Yu, Z. Q.; Ma, C. Y., Progress and Opportunities for Utilizing Seeding Techniques in Crystallization Processes. Org. Process Res. Dev., 2021, 25 (7), 1496-1511.
5.Ulrich, J.; Jones, M. J., Seeding Technique in Batch Crystallization. In Industrial Crystallization Process Monitoring and Control, John Wiley & Sons, 2012, pp 127-138.
6.Tseng, Y. T.; Ward, J. D., Critical Seed Loading from Nucleation Kinetics. AICHE J., 2014, 60 (5), 1645-1653.
7.Doki, N.; Kubota, N.; Yokota, M.; Chianese, A., Determination of Critical Seed Loading Ratio for the Production of Crystals of Uni-Modal Size Distribution in Batch Cooling Crystallization of Potassium Alum. J. Chem. Eng. Jpn., 2002, 35 (7), 670-676.
8.Mullin, J. W., Nucleation. In Crystallization, 4th ed.; Elsevier, 2001, pp 181-215.
9.Hartel, R. W., Crystallization in Foods. In Handbook of industrial crystallization, 2nd ed.; Butterworth-Heinemann, 2002, pp 287-304.
10.Parambil, J. V.; Heng, J. Y., Seeding in Crystallisation. In Engineering Crystallography: From Molecule to Crystal to Functional Form, Springer Dordrecht, 2017, pp 235-245.
11.Kubota, N.; Doki, N.; Yokota, M.; Sato, A., Seeding Policy in Batch Cooling Crystallization. Powder Technol., 2001, 121 (1), 31-38.
12.Jagadesh, D.; Kubota, N.; Yokota, M.; Sato, A.; Tavare, N. S., Large and Mono-Sized Product Crystals from Natural Cooling Mode Batch Crystallizer. J. Chem. Eng. Jpn., 1996, 29 (5), 865-873.
13.Jagadesh, D.; Kubota, N.; Yokota, M.; Doki, N.; Sato, A., Seeding Effect on Batch Crystallization of Potassium Sulfate under Natural Cooling Mode and a Simple Design Method of Crystallizer. J. Chem. Eng. Jpn., 1999, 32 (4), 514-520.
14.Barrett, P.; Smith, B.; Worlitschek, J.; Bracken, V.; O′Sullivan, B.; O′Grady, D., A Review of the Use of Process Analytical Technology for the Understanding and Optimization of Production Batch Crystallization Processes. Org. Process Res. Dev., 2005, 9 (3), 348-355.
15.Aamir, E.; Nagy, Z. K.; Rielly, C. D., Evaluation of the Effect of Seed Preparation Method on the Product Crystal Size Distribution for Batch Cooling Crystallization Processes. Cryst. Growth Des., 2010, 10 (11), 4728-4740.
16.Malwade, C. R.; Qu, H., Process Analytical Technology for Crystallization of Active Pharmaceutical Ingredients. Curr. Pharm. Des., 2018, 24 (21), 2456-2472.
17.Kadam, S. S.; Mesbah, A.; Van der Windt, E.; Kramer, H. J., Rapid Online Calibration for ATR-FTIR Spectroscopy during Batch Crystallization of Ammonium Sulphate in a Semi-Industrial Scale Crystallizer. Chem. Eng. Res. Des., 2011, 89 (7), 995-1005.
18.Meng, Q.; Zhang, T.; Wei, W.; Mu, W.; Miao, M., Production of Mannitol from a High Concentration of Glucose by Candida parapsilosis SK26.001. Appl. Biochem. Biotechnol., 2017, 181 (1), 391-406.
19.Soetaert, W.; Vanhooren, P. T.; Vandamme, E. J., The Production of Mannitol by Fermentation. In Carbohydrate Biotechnology Protocols, Humana Totowa, 1999, pp 261-275.
20.Deis, R. C.; Kearsley, M. W., Sorbitol and Mannitol. In Sweeteners and Sugar Alternatives in Food Technology, 2nd ed.; John Wiley & Sons, 2012, pp 331-346.
21.Ghoreishi, S. M.; Shahrestani, R. G., Innovative Strategies for Engineering Mannitol Production. Trends Food Sci. Technol., 2009, 20 (6-7), 263-270.
22.Su, W.; Jia, N.; Li, H.; Hao, H.; Li, C., Polymorphism of D-Mannitol: Crystal Structure and the Crystal Growth Mechanism. Chin. J. Chem. Eng., 2017, 25 (3), 358-362.
23.Mareczek, L.; Riehl, C.; Harms, M.; Reichl, S., Understanding the Multidimensional Effects of Polymorphism, Particle Size and Processing for D-Mannitol Powders. Pharmaceutics, 2022, 14 (10).
24.Smith, R. R.; Shah, U. V.; Parambil, J. V.; Burnett, D. J.; Thielmann, F.; Heng, J. Y., The Effect of Polymorphism on Surface Energetics of D-Mannitol Polymorphs. AAPS J., 2017, 19 (1), 103-109.
25.Su, W.; Hao, H.; Glennon, B.; Barrett, M., Spontaneous Polymorphic Nucleation of D-Mannitol in Aqueous Solution Monitored with Raman Spectroscopy and FBRM. Cryst. Growth Des., 2013, 13 (12), 5179-5187.
26.Burger, A.; Henck, J. O.; Hetz, S.; Rollinger, J. M.; Weissnicht, A. A.; Stöttner, H., Energy/Temperature Diagram and Compression Behavior of the Polymorphs of D-Mannitol. J. Pharm. Sci., 2000, 89 (4), 457-468.
27.Yu, L.; Milton, N.; Groleau, E. G.; Mishra, D. S.; Vansickle, R. E., Existence of a Mannitol Hydrate During Freeze-Drying and Practical Implications. J. Pharm. Sci., 1999, 88 (2), 196-198.
28.Bruni, G.; Berbenni, V.; Milanese, C.; Girella, A.; Cofrancesco, P.; Bellazzi, G.; Marini, A., Physico-Chemical Characterization of Anhydrous D-Mannitol. J. Therm. Anal. Calorim., 2009, 95 (3), 871-876.
29.Vanhoorne, V.; Bekaert, B.; Peeters, E.; De Beer, T.; Remon, J. P.; Vervaet, C., Improved Tabletability after a Polymorphic Transition of Delta-Mannitol during Twin Screw Granulation. Int. J. Pharm., 2016, 506 (1-2), 13-24.
30.Wagner, C. M.; Pein, M.; Breitkreutz, J., Roll Compaction of Granulated Mannitol Grades and the Unprocessed Crystalline Delta-Polymorph. Powder Technol. 2015, 270, 470-475.
31.Cavatur, R. K.; Suryanarayanan, R., Characterization of Phase Transitions During Freeze-Drying By In Situ X-ray Powder Diffractometry. Pharm. Dev. Technol., 1998, 3 (4), 579-586.
32.Fronczek, F. R.; Kamel, H. N.; Slattery, M., Three Polymorphs (Alpha, Beta, and Delta) of D-Mannitol at 100 K. Acta Crystallogr. C., 2003, 59 (10), 567-570.
33.Nunes, C.; Suryanarayanan, R.; Botez, C. E.; Stephens, P. W., Characterization and Crystal Structure of D-Mannitol Hemihydrate. J. Pharm. Sci., 2004, 93 (11), 2800-2809.
34.Dai, Y.; Meng, Q.; Mu, W.; Zhang, T., Recent Advances in the Applications and Biotechnological Production of Mannitol. J. Funct. Foods, 2017, 36, 404-409.
35.Ghoreishi, S. M.; Sharifi, S., Modeling of Supercritical Extraction of Mannitol from Plane Tree Leaf. J. Pharm. Biomed. Anal., 2001, 24 (5-6), 1037-1048.
36.Ghoreishi, S. M.; Shahrestani, R. G., Subcritical Water Extraction of Mannitol from Olive Leaves. J. Food Eng., 2009, 93 (4), 474-481.
37.Makkee, M.; Kieboom, A. P. G.; Van Bekkum, H., Production Methods of D‐Mannitol. Starch‐Stärke, 1985, 37 (4), 136-141.
38.Leo, K.; Morris, L. M., Hexitols by Hydrogenation of Sucrose. US2759024A, 1956.
39.Brandner, J. D.; Wright, L. W., Production of Mannitol and Sorbitol by Hydrogenating Sugars under Neutral, then Alkaline and Finally Acidic Conditions. US3329729A, 1967.
40.de Berardinis, A. J., Process for Producing Mannitol. US3763246A, 1973.
41.Upare, P. P.; Hwang, Y. K.; Kim, J. C.; Lee, J. H.; Kwak, S. K.; Hwang, D. W., A Robust and Highly Selective Catalytic System of Copper-Silica Nanocomposite and 1-Butanol in Fructose Hydrogenation to Mannitol. ChemSusChem, 2020, 13 (18), 5050-5057.
42.Rodiansono, R.; Shimazu, S., Effective Production of Sorbitol and Mannitol from Sugars Catalyzed by Ni Nanoparticles Supported on Aluminium Hydroxide. Bull. Chem. React. Eng. Catal., 2013, 8 (1), 40-46.
43.Kruse, W. M., Process for Preparing Mannitol from Glucose. US4029878A, 1977.
44.Takemura, M.; Iijima, M.; Tateno, Y.; Osada, Y.; Maruyama, H., Process for Preparing D-Mannitol. US4083881A, 1978.
45.Kulbe, K. D.; Howaldt, M. W.; Schmidt, K.; Röthig, T. R.; Chmiel, H., Rejection and Continuous Regeneration of the Native Coenzyme NAD (P)H in a Charged Ultrafiltration Membrane Enzyme Reactor. Ann. N. Y. Acad. Sci., 1990, 613 (1), 820-826.
46.von Weymarn, N.; Airaksinen, U., Process for Producing D-Mannitol. US8338147B2, 2012.
47.Slatner, M.; Nagl, G.; Haltrich, D.; Kulbe, K. D.; Nidetzky, B., Enzymatic Production of Pure D-Mannitol at High Productivity. Biocatal. Biotransformation, 1998, 16 (5), 351-363.
48.Soetaert, W.; Schwengers, D.; Buchholz, K.; Vandamme, E. J., A Wide Range of Carbohydrate Modifications by a Single Micro-Organism: Leuconostoc Mesenteroides. In Carbohydrate Bioengineering, Proceedings of an International Conference, Elsevier, 1995, Vol. 10, pp 351-358.
49.Kaup, B.; Bringer-Meyer, S.; Sahm, H., Metabolic Engineering of Escherichia Coli: Construction of an Efficient Biocatalyst for D-Mannitol Formation in a Whole-Cell Biotransformation. Appl. Microbiol. Biotechnol., 2004, 64 (3), 333-9.
50.Findlay, A., The Solubility of Mannitol, Picric Acid, and Anthracene. J. Chem. Soc., Trans., 1902, 81, 1217-1221.
51.Zumbe, A.; Lee, A.; Storey, D., Polyols in Confectionery: The Route to Sugar-Free, Reduced Sugar and Reduced Calorie Confectionery. Br. J. Nutr., 2001, 85 (S1), S31-S45.
52.Geankoplis, C. J., Principles of Momentum Transfer and Applications. In Transport Process and Unit Operations, 3rd ed.; PTR Prentice Hall, 1995, pp 114-213.
53.Chen, W.; Zhang, Y.; Chen, H.; Jin, W.; Chen, X.; Huang, X.; Xie, Y.; Fang, H.; Hong, Z., Development of a Pure Certified Reference Material of D-Mannitol. Molecules, 2023, 28 (19), 6794-6807.
54.Yoshinari, T.; Forbes, R. T.; York, P.; Kawashima, Y., Moisture Induced Polymorphic Transition of Mannitol and Its Morphological Transformation. Int. J. Pharm., 2002, 247 (1-2), 69-77.
55.Lee, Y. Y.; Wu, J. X.; Yang, M.; Young, P. M.; van den Berg, F.; Rantanen, J., Particle Size Dependence of Polymorphism in Spray-Dried Mannitol. Eu.r J. Pharm. Sci., 2011, 44 (1-2), 41-48.
56.Kaialy, W.; Hussain, T.; Alhalaweh, A.; Nokhodchi, A., Towards a More Desirable Dry Powder Inhaler Formulation: Large Spray-Dried Mannitol Microspheres Outperform Small Microspheres. Pharm. Res., 2014, 31 (1), 60-76.
57.Wang, Y.; Chuai, X.; Li, Y.; Guo, J.; Yang, J.; Liu, Z.; Xu, S., Nucleation Behaviors of Adipic Acid in Different Polarity Solvent Based on Metastable Zone Width. Crystals, 2022, 12 (2), 202-218.
58.Yadav, J.; Dumitrescu, D. G.; Kendall, T.; Guguta, C.; Patel, S. A., Effect of Solvent Composition on Solubility, Thermodynamics, Metastable Zone Width (MSZW) and Crystal Habit of L-Ascorbic Acid. Crystals, 2022, 12 (12), 1798-1814.
59.Mersmann, A.; Bartosch, K., How to Predict the Metastable Zone Width. J. Cryst. Growth, 1998, 183 (1-2), 240-250.
60.Ulrich, J.; Strege, C., Some Aspects of the Importance of Metastable Zone Width and Nucleation in Industrial Crystallizers. J. Cryst. Growth, 2002, 237, 2130-2135.
61.Kubota, N., A New Interpretation of Metastable Zone Widths Measured for Unseeded Solutions. J. Cryst. Growth, 2008, 310 (3), 629-634.
62.Liu, J. J.; Ma, C. Y.; Hu, Y. D.; Wang, X. Z., Effect of Seed Loading and Cooling Rate on Crystal Size and Shape Distributions in Protein crystallization—A Study Using Morphological Population Balance Simulation. Comput. Chem. Eng., 2010, 34 (12), 1945-1952.
63.Pandalaneni, K.; Amamcharla, J. K., Evaluating the Crystallization of Lactose at Different Cooling Rates from Milk and Whey Permeates in Terms of Crystal Yield and Purity. J. Dairy Sci., 2018, 101 (10), 8805-8821.
64.Canning, T. F.; Randolph, A. D., Some Aspects of Crystallization Theory: Systems that Violate McCabe′s Delta L Law. AICHE J., 1967, 13 (1), 5-10.
65.Bransom, S. H., Factors in the Design of Continuous Crystallizers. Brit. Chem. Eng., 1960, 5, 838–844.
66.Shiau, L. D.; Berglund, K., Growth Kinetics of Fructose Crystals Formed by Contact Nucleation. AlChE J., 1987, 33 (6), 1028-1033.
67.Wantha, L.; Flood, A. E., Crystal Growth Rates and Secondary Nucleation Threshold for γ-DL-Methionine in Aqueous Solution. J. Cryst. Growth, 2011, 318 (1), 117-121.
68.Yang, L.; Ren, X.; Li, T.; Wang, S.; Zhang, T., Preparation of Ultrafine TATB and the Technology for Crystal Morphology Control. Chin. J. Chem., 2012, 30 (2), 293-298.
69.Terdenge, L. M.; Wohlgemuth, K., Impact of Agglomeration on Crystalline Product Quality within the Crystallization Process Chain. Cryst. Res. Technol., 2016, 51 (9), 513-523. |