博碩士論文 111324056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.116.27.225
姓名 吳孟宸(Meng-Chen Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討以 Saccharomyces boulardii 發酵 藍莓汁對提升 α-澱粉酶抑制能力之影響
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-11以後開放)
摘要(中) 糖尿病 ( diabetes ) 是影響身體血糖的代謝疾病,因為不同的病因分為幾個不同類型,其中最常見的兩種類型為第一型糖尿病(Type 1 diabetes)與第二型糖尿病(Type 2 diabetes),第一型糖尿病是因自體免疫或病毒等問題造成先天性胰島素缺乏所引起的糖尿病,而現代大多數糖尿病患者屬於第二型糖尿病,其通常與生活方式和遺傳因素相關,可能涉及胰島素抵抗和胰島素分泌不足等因素。糖尿病能透過藥物、飲食、規律運動等方式來控制病情,而伴隨著近年來人們更加注重健康飲食,使得益生菌及功能性食品的市場需求漸漸增加。
藍莓內富含的花青素,具有抗氧化、抗高血壓及抗高血糖等諸多改善人體的功效。多數研究證實藍莓經發酵後具有α-澱粉酶抑制活性,類似於α-澱粉抑制劑,可抑制澱粉酶的作用,使食物中的澱粉不易在口腔、小腸中分解轉變成葡萄糖,進而減少葡萄糖的吸收,達到預防糖尿病及減少肥胖的發生。微生物發酵工程一直是被廣泛應用在傳統的食品保存技術,並增加食物的營養價值。發酵食品常用的益生菌像是有乳酸菌、芽孢桿菌和酵母菌等,藉由不同菌種之間發酵的相互作用來提高生物活性功能的效果。
本研究將利用布拉氏酵母菌Saccharomyces boulardii CNCM I-745 對藍莓汁進行發酵,探討各種發酵條件-藍莓粉末添加量、不同碳源種類及濃度、發酵溫度、不同氮源種類及起始pH值,並依菌種生長活性、提升α-澱粉酶抑制能力、總多酚含量及DPPH自由基清除能力活性等參數進行最適化討論。本研究成功以最適化發酵條件— 添加4%藍莓粉末、2% Sucrose、3% YEP medium、發酵溫度37℃ 以及起始pH值5.0,在發酵後最大菌落數VCCmax 10.737 log CFU/mL、α-澱粉酶抑制有最高的活性89.2%、總多酚含量2698.41 mg GA/L以及DPPH自由基清除能力73.46 %。結合上述結果,S. boulardii CNCM I-745 菌種對藍莓汁進行發酵,可發展出具高生物活性的藍莓發酵產品,其應用於保健食品具有相當大的潛力。
摘要(英) Diabetes is a metabolic disease that affects blood sugar levels in the body and is classified into several different types based on various causes. The two most common types are Type 1 diabetes and Type 2 diabetes. Type 1 diabetes is caused by congenital insulin deficiency due to autoimmune issues or viral infections. In contrast, the majority of modern diabetes patients suffer from Type 2 diabetes, which is usually associated with lifestyle and genetic factors and
may involve insulin resistance and insufficient insulin secretion. Diabetes can be managed through medication, diet, and regular exercise. In recent years, as people have become more focused on healthy diet, the market demand for probiotics and functional foods has gradually increased.
Blueberries are rich in anthocyanins, which have numerous health benefits such as antioxidation, anti-hypertension and anti-hyperglycemia. Many studies have confirmed that fermented blueberries exhibit α-amylase inhibitory activity, similar to α-amylase inhibitors, which can inhibit the action of amylase, making it difficult for starch in food to be broken down into glucose in the mouth and small intestine, thereby reducing glucose absorption and preventing diabetes and obesity. Microbial fermentation engineering has been widely used in traditional food preservation techniques and enhances the nutritional value of food. Common probiotics used in fermented foods include lactic acid bacteria, Bacillus, and yeast, which through the interaction of different strains during fermentation, improve the bioactive functions.
This study uses Saccharomyces boulardii CNCM I-745 to ferment blueberry juice, exploring various fermentation conditions - the amount of blueberry powder added, types and
concentrations of carbon sources, fermentation temperature, types of nitrogen sources, and initial pH values. The study optimizes these parameters based on strain growth activity, α-amylase inhibitory activity, total polyphenol content, and DPPH radical scavenging activity.
Under optimal fermentation conditions - adding 4% blueberry powder, 2% sucrose, 3% YEP medium, a fermentation temperature of 37℃, and an initial pH of 5.0, the highest colony count (VCCmax) reached 10.737 log CFU/mL, α-amylase inhibition activity was at its highest at 89.2%, total polyphenol content was 2698.41 mg GA/L, and DPPH radical scavenging activity was 73.46%. These results indicate that the fermentation of blueberry juice using S. boulardii
CNCM I-745 can develop highly bioactive fermented blueberry products, which have great potential for application in health foods.
關鍵字(中) ★ 藍莓
★ 糖尿病
★ α-澱粉酶抑制活性
★ 抗氧化活性
★ 酵母菌
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
一、序論 1
1-1 研究動機 1
1-2 研究目的 2
二、文獻回顧 3
2-1 藍莓 3
2-1-1 藍莓的基本介紹 3
2-1-2 藍莓的成分 3
2-1-3 藍莓的生物活性及功效 5
2-2 糖尿病 (Diabetes) 9
2-2-1 糖尿病的基本介紹 9
2-2-2 糖尿病的類型和成因 10
2-2-3 第二型糖尿病的治療方法 11
2-3 酵母菌發酵 14
2-3-1 酵母菌的基本介紹 14
2-3-2 Saccharomyces boulardii菌種的基本介紹 16
2-4 胰島素 18
2-4-1 胰島素的出現 18
2-4-2 胰島素的分泌 19
2-4-3 胰島素的作用 20
2-4-4 胰島素阻抗 22
2-5 影響發酵工程之物化因子 23
2-5-1 培養基組成 23
2-5-2 發酵溫度 25
2-5-3 pH值 26
2-5-4 搖晃速率 27
三、實驗材料與方法 28
3-1 實驗架構 28
3-2 實驗材料 30
3-2-1 實驗菌株 30
3-2-2 實驗原料 31
3-2-3 實驗藥品 32
3-2-4 實驗儀器與設備 34
3-3 實驗方法 36
3-3-1 菌種保存 36
3-3-2 菌種液態種瓶培養 39
3-3-3 酵母菌發酵動力曲線測試 40
3-3-4 藍莓液態發酵最適化發酵條件探討 40
3-4 分析方法 44
3-4-1 菌落數分析 44
3-4-2 pH值分析 44
3-4-3 還原糖濃度分析 45
3-4-4 DPPH自由基清除能力分析 47
3-4-5 總多酚含量分析 48
3-4-6 α-澱粉酶抑制能力分析 49
四、結果與討論 51
4-1 菌種生長曲線 51
4-1-1 Saccharomyces boulardii CNCM I-745 之生長曲線 51
4-1-2 Saccharomyces cerevisiae BCRC 21812 之生長曲線 52
4-2 菌種篩選 53
4-3 藍莓粉末添加量對發酵藍莓之影響 55
4-3-1 藍莓粉末添加量對 S. boulardii CNCM I-745 生長之影響 55
4-3-2 藍莓粉末添加量對發酵藍莓α-澱粉酶抑制能力之影響 57
4-3-3 藍莓粉末添加量對發酵藍莓抗氧化物質及活性之影響 59
4-3-4 藍莓粉末添加量對發酵藍莓影響之結論 61
4-4 碳源對發酵藍莓之影響 62
4-4-1 碳源對S. boulardii CNCM I-745生長之影響 62
4-4-2 碳源對發酵藍莓α-澱粉酶抑制能力之影響 65
4-4-3 碳源對發酵藍莓抗氧化物質及活性之影響 67
4-4-4 Sucrose添加量對發酵藍莓α-澱粉酶抑制能力之影響 69
4-4-5 碳源對發酵藍莓影響之結論 71
4-5 發酵溫度對發酵藍莓之影響 72
4-5-1 發酵溫度對S. boulardii CNCM I-745生長之影響 72
4-5-2 發酵溫度對發酵藍莓α-澱粉酶抑制能力之影響 75
4-5-3 發酵溫度對發酵藍莓抗氧化物質及活性之影響 76
4-5-4 藍發酵溫度對發酵藍莓影響之結論 78
4-6 氮源對發酵藍莓之影響 79
4-6-1 氮源對S. boulardii CNCM I-745生長之影響 79
4-6-2 氮源對發酵藍莓α-澱粉酶抑制能力之影響 82
4-6-3 氮源對發酵藍莓抗氧化物質及活性之影響 83
4-6-4 氮源對發酵藍莓影響之結論 85
4-7 起始pH值對發酵藍莓之影響 86
4-7-1 起始pH值對S. boulardii CNCM I-745生長之影響 86
4-7-2 起始pH值對發酵藍莓α-澱粉酶抑制能力之影響 89
4-7-3 起始pH值對發酵藍莓抗氧化物質及活性之影響 90
4-7-4 起始pH值對發酵藍莓影響之結論 92
五、結論 93
參考文獻 94
參考文獻 [1] Y. Fang, G. H. Nunez, M. N. da Silva, D. A. Phillips, and P. R. Munoz, “A Review for
Southern Highbush Blueberry Alternative Production Systems,” Agronomy, vol. 10, no. 10,
Art. no. 10, Oct. 2020, doi: 10.3390/agronomy10101531.
[2] S. Nishiyama, M. Fujikawa, H. Yamane, K. Shirasawa, E. Babiker, and R. Tao,
“Genomic insight into the developmental history of southern highbush blueberry
populations,” Heredity, vol. 126, no. 1, pp. 194–205, Jan. 2021, doi: 10.1038/s41437-020
00362-0.
[3] N. Sivapragasam, N. Neelakandan, and H. P. V. Rupasinghe, “Potential health benefits of
fermented blueberry: A review of current scientific evidence,” Trends in Food Science &
Technology, vol. 132, pp. 103–120, Feb. 2023, doi: 10.1016/j.tifs.2023.01.002.
[4] E. Pojer, F. Mattivi, D. Johnson, and C. S. Stockley, “The Case for Anthocyanin
Consumption to Promote Human Health: A Review,” Comprehensive Reviews in Food
Science and Food Safety, vol. 12, no. 5, pp. 483–508, 2013, doi: 10.1111/1541-4337.12024.
[5] R. L. Prior, “Fruits and vegetables in the prevention of cellular oxidative damage234,”
The American Journal of Clinical Nutrition, vol. 78, no. 3, pp. 570S-578S, Sep. 2003, doi:
10.1093/ajcn/78.3.570S.
[6] A. J. Stull, K. C. Cash, W. D. Johnson, C. M. Champagne, and W. T. Cefalu, “Bioactives
in Blueberries Improve Insulin Sensitivity in Obese, Insulin-Resistant Men and Women, , ,”
The Journal of Nutrition, vol. 140, no. 10, pp. 1764–1768, Oct. 2010, doi:
10.3945/jn.110.125336.
[7] S.-H. Kwon et al., “Anti-obesity and hypolipidemic effects of black soybean
anthocyanins,” J Med Food, vol. 10, no. 3, pp. 552–556, Sep. 2007, doi:
10.1089/jmf.2006.147.
[8] I. C. W. Arts and P. C. H. Hollman, “Polyphenols and disease risk in epidemiologic studies,” Am J Clin Nutr, vol. 81, no. 1 Suppl, pp. 317S-325S, Jan. 2005, doi:
10.1093/ajcn/81.1.317S.
[9] A. Michalska and G. Łysiak, “Bioactive Compounds of Blueberries: Post-Harvest
Factors Influencing the Nutritional Value of Products,” International Journal of Molecular
Sciences, vol. 16, no. 8, Art. no. 8, Aug. 2015, doi: 10.3390/ijms160818642.
[10] L. Ma, Z. Sun, Y. Zeng, M. Luo, and J. Yang, “Molecular Mechanism and Health Role of
Functional Ingredients in Blueberry for Chronic Disease in Human Beings,” International
Journal of Molecular Sciences, vol. 19, no. 9, Art. no. 9, Sep. 2018, doi:
10.3390/ijms19092785.
[11] D. Sarkar, W. Agustinah, F. Woods, E. Coneva, E. Vinson, and K. Shetty, “In vitro
screening and evaluation of phenolic antioxidant-linked anti-hyperglycemic functions of
rabbit-eye blueberry ( Vaccinium ashei) cultivars,” Journal of Berry Research, vol. 7, no. 3,
pp. 163–177, Jan. 2017, doi: 10.3233/JBR-170154.
[12] L. Bell, D. J. Lamport, L. T. Butler, and C. M. Williams, “A study of glycaemic effects
following acute anthocyanin-rich blueberry supplementation in healthy young adults,” Food
& Function, vol. 8, no. 9, pp. 3104–3110, 2017, doi: 10.1039/C7FO00724H.
[13] N. B. Samad, T. Debnath, M. Ye, Md. A. Hasnat, and B. O. Lim, “In vitro antioxidant
and anti–inflammatory activities of Korean blueberry (Vaccinium corymbosum L.) extracts,”
Asian Pacific Journal of Tropical Biomedicine, vol. 4, no. 10, pp. 807–815, Oct. 2014, doi:
10.12980/APJTB.4.2014C1008.
[14] B.-T. Oh, S.-Y. Jeong, P. Velmurugan, J.-H. Park, and D.-Y. Jeong, “Probiotic-mediated
blueberry (Vaccinium corymbosum L.) fruit fermentation to yield functionalized products for
augmented antibacterial and antioxidant activity,” Journal of Bioscience and Bioengineering,
vol. 124, no. 5, pp. 542–550, Nov. 2017, doi: 10.1016/j.jbiosc.2017.05.011.
[15] W.-Y. Huang et al., “Protective Effects of Blueberry Anthocyanins against H2O2-Induced Oxidative Injuries in Human Retinal Pigment Epithelial Cells,” J. Agric. Food
Chem., vol. 66, no. 7, pp. 1638–1648, Feb. 2018, doi: 10.1021/acs.jafc.7b06135.
[16] X. Shen et al., “Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts
against the growth of Listeria monocytogenes and Salmonella Enteritidis,” Food Control, vol.
35, no. 1, pp. 159–165, Jan. 2014, doi: 10.1016/j.foodcont.2013.06.040.
[17] S. Silva, E. M. Costa, M. F. Pereira, M. R. Costa, and M. E. Pintado, “Evaluation of the
antimicrobial activity of aqueous extracts from dry Vaccinium corymbosum extracts upon food
microorganism,” Food Control, vol. 34, no. 2, pp. 645–650, Dec. 2013, doi:
10.1016/j.foodcont.2013.06.012.
[18] S. Silva et al., “Aqueous extracts of Vaccinium corymbosum as inhibitors of
Staphylococcus aureus,” Food Control, vol. 51, pp. 314–320, May 2015, doi:
10.1016/j.foodcont.2014.11.040.
[19] A. Bunea et al., “Anthocyanin determination in blueberry extracts from various cultivars
and their antiproliferative and apoptotic properties in B16-F10 metastatic murine melanoma
cells,” Phytochemistry, vol. 95, pp. 436–444, Nov. 2013, doi:
10.1016/j.phytochem.2013.06.018.
[20] X. ZU, Z. ZHANG, X. ZHANG, M. YOSHIOKA, Y. YANG, and J. LI, “Anthocyanins
extracted from Chinese blueberry (Vaccinium uliginosum L.) and its anticancer effects on
DLD-1 and COLO205 cells,” Chinese Medical Journal, vol. 123, no. 19, pp. 2714–2719, Oct.
2010, doi: 10.3760/cma.j.issn.0366-6999.2010.19.018.
[21] W. Lin and Z. Li, “Blueberries inhibit cyclooxygenase-1 and cyclooxygenase-2 activity
in human epithelial ovarian cancer,” Oncol Lett, vol. 13, no. 6, pp. 4897–4904, Jun. 2017, doi:
10.3892/ol.2017.6094.
[22] A. Faria, D. Pestana, D. Teixeira, V. de Freitas, N. Mateus, and C. Calhau, “Blueberry
anthocyanins and pyruvic acid adducts: anticancer properties in breast cancer cell lines,”Phytotherapy Research, vol. 24, no. 12, pp. 1862–1869, 2010, doi: 10.1002/ptr.3213.
[23] I.-C. Lee, D. Y. Kim, and B. Y. Choi, “Antioxidative Activity of Blueberry Leaf Extract
Prevents High-fat Diet-induced Obesity in C57BL/6 Mice,” J Cancer Prev, vol. 19, no. 3, pp.
209–215, Sep. 2014, doi: 10.15430/JCP.2014.19.3.209.
[24] S. S. Moghe, S. Juma, V. Imrhan, and P. Vijayagopal, “Effect of blueberry polyphenols
on 3T3-F442A preadipocyte differentiation,” J Med Food, vol. 15, no. 5, pp. 448–452, May
2012, doi: 10.1089/jmf.2011.0234.
[25] K. Papatheodorou, M. Banach, E. Bekiari, M. Rizzo, and M. Edmonds, “Complications
of Diabetes 2017,” Journal of Diabetes Research, vol. 2018, p. e3086167, Mar. 2018, doi:
10.1155/2018/3086167.
[26] G. Roglic, “WHO Global report on diabetes: A summary,” International Journal of
Noncommunicable Diseases, vol. 1, no. 1, p. 3, Jun. 2016, doi: 10.4103/2468-8827.184853.
[27] A. Katsarou et al., “Type 1 diabetes mellitus,” Nat Rev Dis Primers, vol. 3, no. 1, pp. 1
17, Mar. 2017, doi: 10.1038/nrdp.2017.16.
[28] American Diabetes Association, “2. Classification and Diagnosis of Diabetes: Standards
of Medical Care in Diabetes—2020,” Diabetes Care, vol. 43, no. Supplement_1, pp. S14
S31, Dec. 2019, doi: 10.2337/dc20-S002.
[29] N. Lascar, J. Brown, H. Pattison, A. H. Barnett, C. J. Bailey, and S. Bellary, “Type 2
diabetes in adolescents and young adults,” The Lancet Diabetes & Endocrinology, vol. 6, no.
1, pp. 69–80, Jan. 2018, doi: 10.1016/S2213-8587(17)30186-9.
[30] C. Kim, K. M. Newton, and R. H. Knopp, “Gestational Diabetes and the Incidence of
Type 2 Diabetes: A systematic review,” Diabetes Care, vol. 25, no. 10, pp. 1862–1868, Oct.
2002, doi: 10.2337/diacare.25.10.1862.
[31] B. B. Lowell and G. I. Shulman, “Mitochondrial Dysfunction and Type 2 Diabetes,”
Science, vol. 307, no. 5708, pp. 384–387, Jan. 2005, doi: 10.1126/science.1104343.
[32] M. Osterman, B. Hamilton, J. Martin, A. Driscoll, and C. Valenzuela, “Births: Final Data
for 2020,” National Center for Health Statistics (U.S.), Feb. 2021. doi: 10.15620/cdc:112078.
[33] A. H. Mokdad, M. K. Serdula, W. H. Dietz, B. A. Bowman, J. S. Marks, and J. P.
Koplan, “The Spread of the Obesity Epidemic in the United States, 1991-1998,” JAMA, vol.
282, no. 16, pp. 1519–1522, Oct. 1999, doi: 10.1001/jama.282.16.1519.
[34] L. Wang et al., “Trends in Prevalence of Diabetes and Control of Risk Factors in
Diabetes Among US Adults, 1999-2018,” JAMA, vol. 326, no. 8, pp. 704–716, Aug. 2021,
doi: 10.1001/jama.2021.9883.
[35] A. Ferrara, “Increasing Prevalence of Gestational Diabetes Mellitus: A public health
perspective,” Diabetes Care, vol. 30, pp. S141-6, Jul. 2007, doi: 10.2337/dc07-s206.
[36] “Factors predisposing to pre-eclampsia in women with gestatio... : Journal of
Hypertension.” Accessed: May 24, 2024. [Online]. Available:
https://journals.lww.com/jhypertension/abstract/2004/12000/factors_predisposing_to_pre_ecl
ampsia_in_women.20.aspx
[37] “A history of placental dysfunction and risk of placental abruption - Rasmussen - 1999 -
Paediatric and Perinatal Epidemiology - Wiley Online Library.” Accessed: May 24, 2024.
[Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365
3016.1999.00159.x?casa_token=gQgsSWje3hQAAAAA%3AwX6wph2ysnfqBmEOblM8PA
kp_XTIp6uCdrhDaUF3FmD48pKszAcCbNlzCvq5AjYeTOFNUnYXFPIQOQQ
[38] A. Usta et al., “Frequency of fetal macrosomia and the associated risk factors in
pregnancies without gestational diabetes mellitus,” Pan Afr Med J, vol. 26, p. 62, Feb. 2017,
doi: 10.11604/pamj.2017.26.62.11440.
[39] M. Shimizu et al., “Impact of the relationship between hemoglobin levels and renal
interstitial fibrosis on long-term outcomes in type 2 diabetes with biopsy-proven diabetic
nephropathy,” BMC Nephrol, vol. 22, no. 1, p. 319, Sep. 2021, doi: 10.1186/s12882-021-02510-y.
[40] “Clinical Care Guidelines for Cystic Fibrosis–Related Diabetes | Diabetes Care |
American Diabetes Association.” Accessed: May 25, 2024. [Online]. Available:
https://diabetesjournals.org/care/article/33/12/2697/39264/Clinical-Care-Guidelines-for
Cystic-Fibrosis
[41] J. K. DiStefano and R. M. Watanabe, “Pharmacogenetics of Anti-Diabetes Drugs,”
Pharmaceuticals, vol. 3, no. 8, Art. no. 8, Aug. 2010, doi: 10.3390/ph3082610.
[42] R. S. Hundal and S. E. Inzucchi, “Metformin,” Drugs, vol. 63, no. 18, pp. 1879–1894,
Sep. 2003, doi: 10.2165/00003495-200363180-00001.
[43] E. Diamanti-Kandarakis, C. D. Christakou, E. Kandaraki, and F. N. Economou,
“Metformin: an old medication of new fashion: evolving new molecular mechanisms and
clinical implications in polycystic ovary syndrome,” European Journal of Endocrinology, vol.
162, no. 2, pp. 193–212, Feb. 2010, doi: 10.1530/EJE-09-0733.
[44] “Mechanisms and Characteristics of Sulfonylureas and Glinides: Ingenta Connect.”
Accessed: May 26, 2024. [Online]. Available:
https://www.ingentaconnect.com/content/ben/ctmc/2020/00000020/00000001/art00005
[45] W. J. Malaisse, “Pharmacology of the Meglitinide Analogs,” Mol Diag Ther, vol. 2, no.
6, pp. 401–414, Dec. 2003, doi: 10.2165/00024677-200302060-00004.
[46] S. E. Inzucchi et al., “Management of Hyperglycemia in Type 2 Diabetes: A Patient
Centered Approach: Position Statement of the American Diabetes Association (ADA) and the
European Association for the Study of Diabetes (EASD),” Diabetes Spectrum, vol. 25, no. 3,
pp. 154–171, Aug. 2012, doi: 10.2337/diaspect.25.3.154.
[47] B. C. Lupsa and S. E. Inzucchi, “Use of SGLT2 inhibitors in type 2 diabetes: weighing
the risks and benefits,” Diabetologia, vol. 61, no. 10, pp. 2118–2125, Oct. 2018, doi: 10.1007/s00125-018-4663-6.
[48] G. Derosa and P. Maffioli, “α-Glucosidase inhibitors and their use in clinical practice,”
Arch Med Sci, vol. 8, no. 5, pp. 899–906, Nov. 2012, doi: 10.5114/aoms.2012.31621.
[49] S. R. Joshi, E. Standl, N. Tong, P. Shah, S. Kalra, and R. Rathod, “Therapeutic potential
of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review,” Expert
Opinion on Pharmacotherapy, vol. 16, no. 13, pp. 1959–1981, Sep. 2015, doi:
10.1517/14656566.2015.1070827.
[50] S. Dashko, N. Zhou, C. Compagno, and J. Piškur, “Why, when, and how did yeast evolve
alcoholic fermentation?,” FEMS Yeast Research, vol. 14, no. 6, pp. 826–832, Sep. 2014, doi:
10.1111/1567-1364.12161.
[51] G. M. Walker and G. G. Stewart, “Saccharomyces cerevisiae in the Production of
Fermented Beverages,” Beverages, vol. 2, no. 4, Art. no. 4, Dec. 2016, doi:
10.3390/beverages2040030.
[52] J.-M. Salmon, “Interactions between yeast, oxygen and polyphenols during alcoholic
fermentations: Practical implications,” LWT - Food Science and Technology, vol. 39, no. 9,
pp. 959–965, Nov. 2006, doi: 10.1016/j.lwt.2005.11.005.
[53] L. V. McFarland and P. Bernasconi, “Saccharomyces boulardii’. A Review of an
Innovative Biotherapeutic Agent,” Microbial Ecology in Health and Disease, vol. 6, no. 4, pp.
157–171, Jan. 1993, doi: 10.3109/08910609309141323.
[54] L. V. McFarland, “Systematic review and meta-analysis of Saccharomyces boulardii in
adult patients,” World J Gastroenterol, vol. 16, no. 18, pp. 2202–2222, May 2010, doi:
10.3748/wjg.v16.i18.2202.
[55] S. Sazawal, G. Hiremath, U. Dhingra, P. Malik, S. Deb, and R. E. Black, “Efficacy of
probiotics in prevention of acute diarrhoea: a meta-analysis of masked, randomised, placebo
controlled trials,” The Lancet Infectious Diseases, vol. 6, no. 6, pp. 374–382, Jun. 2006, doi: 10.1016/S1473-3099(06)70495-9.
[56] D. Czerucka and P. Rampal, “Experimental effects of Saccharomyces boulardii on
diarrheal pathogens,” Microbes and Infection, vol. 4, no. 7, pp. 733–739, Jun. 2002, doi:
10.1016/S1286-4579(02)01592-7.
[57] D. Czerucka, T. Piche, and P. Rampal, “Review article: yeast as probiotics
Saccharomyces boulardii,” Alimentary Pharmacology & Therapeutics, vol. 26, no. 6, pp.
767–778, 2007, doi: 10.1111/j.1365-2036.2007.03442.x.
[58] M. BLISS, “The history of insulin,” Diabetes care, vol. 16, pp. 4–7, 1993.
[59] C. C. Quianzon and I. Cheikh, “History of insulin,” Journal of Community Hospital
Internal Medicine Perspectives, vol. 2, no. 2, p. 18701, Jan. 2012, doi:
10.3402/jchimp.v2i2.18701.
[60] V. Lang and P. E. Light, “The molecular mechanisms and pharmacotherapy of ATP
sensitive potassium channel gene mutations underlying neonatal diabetes,”
Pharmacogenomics and Personalized Medicine, vol. 3, pp. 145–161, Nov. 2010, doi:
10.2147/PGPM.S6969.
[61] G. Wilcox, “Insulin and Insulin Resistance,” Clin Biochem Rev, vol. 26, no. 2, pp. 19–39,
May 2005.
[62] “Regional differences of insulin action in adipose tissue: insights from in vivo and in
vitro studies - Giorgino - 2005 - Acta Physiologica Scandinavica - Wiley Online Library.”
Accessed: May 31, 2024. [Online]. Available:
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365
201X.2004.01385.x?casa_token=BZH_eQH9geEAAAAA%3A21Mb7GVIYajP8IBcH2pb9lz-JiRQFAas3Zuv-svZaTX2PM-WJ6qbxU0pK1ts4K7ZNDgqWEswf_U9OTL2kg
[63] S. J. Hunter and W. T. Garvey, “Insulin action and insulin resistance: diseases involving
defects in insulin receptors, signal transduction, and the glucose transport effector system 1,”
The American Journal of Medicine, vol. 105, no. 4, pp. 331–345, Oct. 1998, doi: 10.1016/S0002-9343(98)00300-3.
[64] Y. Kido, J. Nakae, and D. Accili, “The Insulin Receptor and Its Cellular Targets1,” The
Journal of Clinical Endocrinology & Metabolism, vol. 86, no. 3, pp. 972–979, Mar. 2001, doi:
10.1210/jcem.86.3.7306.
[65] S.-H. Lee, S.-Y. Park, and C. S. Choi, “Insulin Resistance: From Mechanisms to
Therapeutic Strategies,” Diabetes Metab J, vol. 46, no. 1, pp. 15–37, Jan. 2022, doi:
10.4093/dmj.2021.0280.
[66] R. A. DeFronzo and D. Tripathy, “Skeletal Muscle Insulin Resistance Is the Primary
Defect in Type 2 Diabetes,” Diabetes Care, vol. 32, no. Suppl 2, pp. S157–S163, Nov. 2009,
doi: 10.2337/dc09-S302.
[67] H. M. O’Neill et al., “AMP-activated protein kinase (AMPK) β1β2 muscle null mice
reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake
during exercise,” Proceedings of the National Academy of Sciences, vol. 108, no. 38, pp.
16092–16097, Sep. 2011, doi: 10.1073/pnas.1105062108.
[68] B. Ahmed, R. Sultana, and M. W. Greene, “Adipose tissue and insulin resistance in
obese,” Biomedicine & Pharmacotherapy, vol. 137, p. 111315, May 2021, doi:
10.1016/j.biopha.2021.111315.
[69] Y. Lin, W. Zhang, C. Li, K. Sakakibara, S. Tanaka, and H. Kong, “Factors affecting
ethanol fermentation using Saccharomyces cerevisiae BY4742,” Biomass and Bioenergy, vol.
47, pp. 395–401, Dec. 2012, doi: 10.1016/j.biombioe.2012.09.019.
[70] F. R. G, “Effect of environment on microbial activity,” Comprehensive biotechnology,
vol. 1, pp. 251–280, 1985.
[71] L. V. A. Reddy and O. V. S. Reddy, “Effect of fermentation conditions on yeast growth
and volatile composition of wine produced from mango (Mangifera indica L.) fruit juice,”
Food and Bioproducts Processing, vol. 89, no. 4, pp. 487–491, Oct. 2011, doi: 10.1016/j.fbp.2010.11.007.
[72] G. L. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing
Sugar,” Anal. Chem., vol. 31, no. 3, pp. 426–428, Mar. 1959, doi: 10.1021/ac60147a030.
[73] M. Massaro et al., “A synergic nanoantioxidant based on covalently modified halloysite
trolox nanotubes with intra-lumen loaded quercetin,” J. Mater. Chem. B, vol. 4, no. 13, pp.
2229–2241, Mar. 2016, doi: 10.1039/C6TB00126B.
[74] P. Molyneux, “The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for
estimating antioxidant,” Songklanakarin Journal of Science and Technology (SJST), vol. 26,
no. 2, pp. 211–219, Mar. 2004.
[75] “[14] Analysis of total phenols and other oxidation substrates and antioxidants by means
of folin-ciocalteu reagent - ScienceDirect.” Accessed: May 08, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/abs/pii/S0076687999990171
[76] M. L. Way, J. E. Jones, D. S. Nichols, R. G. Dambergs, and N. D. Swarts, “A
Comparison of Laboratory Analysis Methods for Total Phenolic Content of Cider,”
Beverages, vol. 6, no. 3, Art. no. 3, Sep. 2020, doi: 10.3390/beverages6030055.
[77] S. J. Hossain, I. Tsujiyama, M. Takasugi, Md. A. Islam, R. S. Biswas, and H. Aoshima,
“Total Phenolic Content, Antioxidative, Anti-amylase, Anti-glucosidase, and Antihistamine
Release Activities of Bangladeshi Fruits,” Food Science and Technology Research, vol. 14,
no. 3, pp. 261–268, 2008, doi: 10.3136/fstr.14.261.
[78] X. Sun et al., “Antibacterial effect and mechanism of anthocyanin rich Chinese wild
blueberry extract on various foodborne pathogens,” Food Control, vol. 94, pp. 155–161, Dec.
2018, doi: 10.1016/j.foodcont.2018.07.012.
[79] S. Datta, D. J. Timson, and U. S. Annapure, “Antioxidant properties and global
metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii,” Journal
of the Science of Food and Agriculture, vol. 97, no. 9, pp. 3039–3049, 2017, doi: 10.1002/jsfa.8147.
[80] E. Apostolidis, Y.-I. Kwon, R. Ghaedian, and K. Shetty, “Fermentation of Milk and
Soymilk by Lactobacillus bulgaricus and Lactobacillus acidophilus Enhances Functionality
for Potential Dietary Management of Hyperglycemia and Hypertension,” Food
Biotechnology, vol. 21, no. 3, pp. 217–236, Sep. 2007, doi: 10.1080/08905430701534032.
[81] M. K. Roy, M. Koide, T. P. Rao, T. Okubo, Y. Ogasawara, and L. R. Juneja, “ORAC and
DPPH assay comparison to assess antioxidant capacity of tea infusions: Relationship between
total polyphenol and individual catechin content,” International Journal of Food Sciences and
Nutrition, Mar. 2010, doi: 10.3109/09637480903292601.
[82] P. P. McCue and K. Shetty, “Phenolic antioxidant mobilization during yogurt production
from soymilk using Kefir cultures,” Process Biochemistry, vol. 40, no. 5, pp. 1791–1797, Apr.
2005, doi: 10.1016/j.procbio.2004.06.067.
[83] Ma. J. Torija, N. Rozès, M. Poblet, J. M. Guillamón, and A. Mas, “Effects of
fermentation temperature on the strain population of Saccharomyces cerevisiae,”
International Journal of Food Microbiology, vol. 80, no. 1, pp. 47–53, Jan. 2003, doi: 10.1016/S0168-1605(02)00144-7.
[84] L. P. Du, R. X. Hao, D. G. Xiao, L. L. Guo, and W. D. Gai, “Research on the Characteristics and Culture Conditions of Saccharomyces boulardii,” Advanced Materials
Research, vol. 343–344, pp. 594–598, 2012, doi: 10.4028/www.scientific.net/AMR.343-344.594.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2024-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明