博碩士論文 111324072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:13.59.116.142
姓名 何子菱(Zih-Ling He)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 開發以奈米零價鐵與兩階段厭氧共發酵之高固體發酵轉換菇包木屑產甲烷之研究
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-10以後開放)
摘要(中) 在當今世界人口不斷增長、資源逐漸匱乏的情況下,「循環利用」的概念日益重要,這也解釋了生質能源在再生能源中的獨特地位。厭氧發酵技術利用微生物在無氧環境下將廢棄物轉化為沼氣,這在資源循環中尤為關鍵。台灣每年消費超過十萬噸的菇類,產值約百億元,相應地,每年約有50萬噸的菇包木屑需要處理,常見處理方式如野外焚燒或堆置,不僅不利於環境保護,還造成污染。然而,菇包木屑含有大量纖維素,適合投入厭氧發酵系統轉化為生質能源氫氣和甲烷,實現廢棄物的有效利用,推動循環經濟。
本實驗旨在開發乾式厭氧發酵技術,以提高廢棄物處理的含量。乾式厭氧發酵具有高有機負荷能力和低反應體積需求,這意味著可以節省人力和時間成本。然而,由於流動性較低,乾式發酵質傳效果不佳,導致其生物反應速率低於濕式厭氧發酵。因此,本實驗提出在厭氧發酵系統中添加奈米零價鐵(nZVI),奈米零價鐵在系統中能促進VFA的生成,且提高氫氣和沼氣的總產量。而添加0.6克奈米零價鐵的系統有最佳的效果,沼氣產量為494 mL,其中甲烷產量為410.2 mL,比沒有添加奈米零價鐵的對照組(303.4 mL)高出106.8 mL,增幅達到35.2%。
由於系統中的酸鹼值在發酵後期會高於8,有大幅降低產甲烷菌的活性,因此會在發酵過程加入緩衝溶液,以穩定系統的pH值,保護和促進微生物的活性。未添加緩衝溶液的系統pH值急速上升至8.05,,而在加入緩衝溶液後,相較於對照組,系統的pH值均有下降的趨勢,且隨著緩衝溶液濃度的增加,pH值下降幅度更大。而濃度0.1M的緩衝溶液的酸鹼值降低至7.81,並且擁有最高產氣量為30毫升,其產氣量比對照組高出36毫升,增幅為7.3%,這表明緩衝溶液有效地穩定了系統的pH值,為甲烷菌提供了更適宜的生長環境,從而有助於提高甲烷產量。
摘要(英) As the world′s population continues to grow and resources become increasingly scarce, the concept of "recycling" becomes increasingly important, which explains the unique position of biomass energy among renewable sources. Anaerobic fermentation technology uses microorganisms to convert waste into biogas in an oxygen-free environment, which is particularly critical in resource recycling. Taiwan consumes more than 100,000 tons of mushrooms annually, with an output value of about 10 billion yuan. Consequently, about 500,000 tons of spent mushroom substrate need processing each year. Common methods such as burning or stacking in the wild harm the environment. However, spent mushroom substrate contains a large amount of cellulose and is suitable for anaerobic fermentation, converting it into hydrogen and methane, thereby achieving effective waste utilization and promoting a circular economy.
This experiment aims to develop dry anaerobic fermentation technology to improve waste treatment content. Dry anaerobic fermentation has a high organic loading capacity and low reaction volume requirements, saving labor and time costs. However, due to low fluidity, dry fermentation has poor mass transfer, resulting in a lower biological reaction rate than wet anaerobic fermentation. Therefore, this experiment proposes adding nanoscale zero-valent iron (nZVI) to the anaerobic fermentation system. Nanoscale zero-valent iron can promote the production of VFA and increase the total production of hydrogen and biogas. The system adding 0.6 grams of nZVI shows the best effect, with biogas production of 494 mL, including 410.2 mL of methane. This is 106.8 mL higher than the control group (303.4 mL) without nZVI, an increase of 35.2%.
Since the pH value in the system will be higher than 8 in the later stage of fermentation, greatly reducing the activity of methanogenic bacteria, buffer will be added during the fermentation process to stabilize the pH value and protect and promote the activity of microorganisms. In the system without buffer, the pH value increased rapidly to 8.05. After adding buffer, the pH value showed a downward trend compared to the control group. As the concentration of buffer solution increased, the pH value decreased further. The pH value of the buffer solution with a concentration of 0.1M was reduced to 7.81 and had the highest biogas production of 30 mL, which was 7.3% higher than the control group, showing that the buffer effectively stabilized the system′s pH value and provided a more suitable growth environment for methanogens, thereby helping to increase methane production.
關鍵字(中) ★ 兩階段厭氧發酵
★ 菇包木屑
★ 雞糞
★ 生質能源
★ 乾式厭氧發酵
★ 奈米零價鐵
★ 緩衝溶液
關鍵字(英) ★ Two-stage anaerobic fermentation
★ Spent mushroom substrate
★ Chicken manure
★ Bioenergy
★ Dry anaerobic fermentation
★ Nanoscale zero-valent iron
★ Buffer
論文目次 國 立 中 央 大 學 i
摘要 i
致謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章、序論 1
1-1 研究動機 1
1-2 研究目的 3
第二章、文獻回顧 4
2-1 生質能(Biomass Energy) 4
2-2 厭氧發酵 5
2-2-1 水解 6
2-2-2 揮發性脂肪酸生成 6
2-2-3 氫氣、乙酸生成 6
2-2-4 甲烷生成 6
2-3 影響厭氧發酵的環境因子 7
2-3-1 溫度 7
2-3-2 酸鹼值 8
2-3-3 揮發性脂肪酸(Volatile fatty acid) 9
2-3-4 碳氮比 (C/N ratio) 10
2-3-5 共發酵 (co-digestion) 11
2-4 兩階段厭氧發酵 12
2-5 乾式厭氧發酵 13
2-6 氨氮 14
2-7 緩衝溶液對厭氧發酵的影響 16
2-8 菇包木屑(SMS:Spent Mushroom Substrate) 18
2-9 零價鐵(ZVI: Zero-Valent Iron) 20
2-10 雞糞(CM: Chicken Manure) 22
2-11 預處理 24
2-11-1 雞糞處理 24
2-11-2 汙泥處理 24
第三章、實驗方法 25
3-1 實驗規劃 25
3-2 實驗材料 26
3-2-1 太空包菇包木屑(SMS) 26
3-2-2 雞糞(Chicken manure,CM) 26
3-2-3 厭氧汙泥(Anaerobic sludge) 26
3-3 實驗藥品 27
3-4 實驗儀器與設備 29
3-5 實驗方法 31
3-5-1 奈米零價鐵製備方法 31
3-5-2 菇包木屑製備方法 32
3-5-3 不同碳氮比之配法 32
3-5-4 緩衝溶液製備方法 33
3-5-5 產酸汙泥預處理 34
3-5-6 產甲烷汙泥馴養 34
3-6-7 1st-stage process (酸化/產氫) 35
3-6-8 2nd-stage process (產甲烷) 35
3-7 分析方法 36
3-6-1 總固體含量(TS: Total Solid)測量 36
3-6-2 揮發性固體量(VS: Volatile Solid)測量 36
3-6-3 氨氮含量檢測-靛酚比色法 37
3-6-4 沼氣(Biogas)測量 40
3-6-5沼氣成分測量-氣相層析儀(GC-TCD) 40
3-6-6發酵液成分測量(GC-FID) 44
第四章、 結果與討論 47
4-1 1st-stage最適碳氮比探討 47
4-1-1 VFA在1st-stage 不同碳氮比下的變化量 47
4-1-2 VFA組成在1st-stage不同碳氮比下的變化量 49
4-1-3 NH3-N在1st-stage不同碳氮比下的變化量 50
4-1-4 Biogas/H2/CO2 在1st-stage不同碳氮比下的變化量 52
4-1-5 pH在1st-stage不同碳氮比下的變化量 55
4-2 2nd-stage最適碳氮比探討 56
4-2-1 VFA在2nd-stage不同碳氮比下的變化量 56
4-2-2 NH3-N在2nd-stage不同碳氮比下的變化量 59
4-2-3 Biogas/CH4/CO2 在2nd-stage不同碳氮比下的變化量 60
4-2-4 pH在2nd-stage不同碳氮比下的變化量 63
4-3 不同添加量奈米零價鐵於2nd-stage之影響 64
4-3-1 VFA在2nd-stage不同添加量nZVI下的變化量 64
4-3-2 NH3-N在2nd-stage不同添加量nZVI下的變化量 66
4-3-3 Biogas/CH4/CO2 在2nd-stage不同添加量nZVI下的變化量 67
4-3-4 pH在2nd-stage不同添加量nZVI下的變化量 70
4-4 不同濃度緩衝溶液於2nd-stage之影響 71
4-4-1 VFA在2nd-stage不同濃度緩衝溶液下的變化量 71
4-4-2 NH3-N在2nd-stage不同濃度緩衝溶液下的變化量 73
4-4-3 Biogas/CH4/CO2 在2nd-stage不同濃度緩衝溶液下的變化量 74
4-4-4 pH在2nd-stage不同濃度緩衝溶液下的變化量 77
第五章、 結論與未來展望 78
5-1 結果討論 78
5-2 建議 80
參考文獻 [1] 環境資訊中心, 小菇不獨處,台灣年用5億菇類太空包,農試所新解方, 2019.
[2] Balat, M. and Ayar, G, "Biomass Energy in the World, Use of Biomass and Potential Trends," Energy Sources, vol. 27, no. 10, p. 931–940, 2005.
[3] Stephen Karekezi, Kusum Lata, Suani Teixeira Coelh, "Traditional Biomass Energy: Improving Its Use and Moving to Modern Energy Use," Renewable Energy, p. 32, 2006.
[4] Waqas Ahmad, Jan Nisar, Farooq Anwar, Faisal Muhammad, "Future prospects of biomass waste as renewable source of energy in Pakistan: A mini review," Bioresource Technology Reports, vol. 24, 2023.
[5] R. Kothari, V.V. Tyagi, A. Pathak, "Waste-to-energy: a way from renewable energy sources to sustainable development," Renew. Sustain. Energy Rev., vol. 14, no. 9, pp. 3164-3170, 2010.
[6] H.-Y. Jin, Z.-W. He, Y.-X. Ren, C.-C. Tang, A.-J. Zhou, W. Liu, Q. Sun, Z. Li, A. Wang, "Role of extracellular polymeric substances in methane production from waste activated sludge induced by conductive materials," Sci. Total Environ, vol. 853, 2022.
[7] P. Weiland, "Biogas production: current state and perspectives," Applied Microbiology and Biotechnology , vol. 85, p. 849–860, 200.
[8] Gavala, H.N., Angelidaki, I., Ahring, B.K., "Kinetics and Modeling of Anaerobic Digestion Process," Advances in Biochemical Engineering/Biotechnology, vol. 81, pp. 57-93, 2003.
[9] Zhiqiang Liu and Jian Lv, "The effect of total solids concentration and temperature on biogas production by anaerobic digestion," Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 38, p. 3534–3541, 2016.
[10] Wang, Shiwei, Fang Ma, Weiwei Ma, Ping Wang, Guang Zhao, and Xiaofei Lu, "Influence of Temperature on Biogas Production Efficiency and Microbial Community in a Two-Phase Anaerobic Digestion System," Water, vol. 11, no. 1, p. 133, 2019.
[11] Xiaonan Zhou, Yu Lu, Liu Huang, Qi Zhang, Xiangyou Wang, Jiying Zhu, "Effect of pH on volatile fatty acid production and the microbial community during anaerobic digestion of Chinese cabbage waste," Bioresource Technology, vol. 336, 2021.
[12] Zoetemeyer, R. J., van den Heuvel, J. C., & Cohen, A., "Zoetemeyer, R. J., van den Heuvel, J. C., & Cohen, A. (1982). pH influence on acidogenic dissimilation of glucose in an anaerobic digestor," Water Research, vol. 3, no. 16, p. 303–311, 1982.
[13] 環保監測工, “影響乾式厭氧發酵技術的六大因素剖析之紅外沼氣分析技術,” 31 05 2017.
[14] S. Jayaraj, B. DeepanraV. ,Sivasubramanian, "Study on the effect of pH on biogas production from food waste by anaerobic digestion," The 9th international green energy conference, 2014.
[15] Swarnima Agnihotri,Dong-Min Yin,Amir Mahboubi,Tugba Sapmaz,Sunita Varjani,Wei Qiao, "A Glimpse of the World of Volatile Fatty Acids Production and Application: A review," Bioengineered, vol. 13, no. 1, pp. 1249-1275 , 2022.
[16] Nativ P, Gräber Y, Aviezer Y, et al, "A Simple and accurate approach for determining the vfa concentration in anaerobic digestion liquors, relying on two titration points and an external inorganic carbon analysis," ChemEngineering, vol. 5, no. 2, 2021.
[17] Cavinato C, Da Ros C, Pavan P, et al, "Influence of temperature and hydraulic retention on the production of volatile fatty acids during anaerobic fermentation of cow manure and maize silage," Bioresour Technol, vol. 223, p. 59–64, 2017.
[18] Gameiro T, Lopes M, Marinho R, et al, "Hydrolytic-acidogenic fermentation of organic solid waste for volatile fatty acids production at different solids concentrations and alkalinity addition," Water Air Soil Pollut, vol. 227, 2016.
[19] Jiang J, Zhang Y, Li K, et al, "Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate," Bioresour Technol, vol. 143, p. 525–530, 2013.
[20] Sukphun P, Sittijunda S, Reungsang A, "Volatile fatty acid production from organic waste with the emphasis on membrane-based recovery," vol. 7, no. 3, 2021.
[21] Fabiane Granzotto,Djalma dias da Silveira,Eduarda Holz Bracher,Caroline Denise Noronha de Lima,Ronaldo Hoffmann, "Evaluation of the C/N Ratio in Anaerobic Digestion of Organic Restaurant Residue," Modern Environmental Science and Engineering, vol. 4, no. 6, pp. 553-555, 2018.
[22] H. DJ, "Effects of carbon: nitrogen ratio on anaerobic digestion of dairy manure," Agr Wastes, vol. 1, p. 267–278, 1979.
[23] Hema Rughoonundun , Romeela Mohee, Mark T. Holtzapple, "Influence of carbon-to-nitrogen ratio on the mixed-acid fermentation of wastewater sludge and pretreated bagasse," Bioresource Technology, vol. 112, pp. 91-97, 2012.
[24] Xiaojiao Wang, Gaihe Yang, Yongzhong Feng, Guangxin Ren, Xinhui Han, "Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw," Bioresource Technology, vol. 120, pp. 78-83, 2012.
[25] Maria Solé-Bundó , Fabiana Passos, Maycoll S. Romero-Güiza, Ivet Ferrer, Sergi Astals, "Co-digestion strategies to enhance microalgae anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, vol. 112, pp. 471-482, 2019.
[26] Xiaohu Dai, Nina Duan, Bin Dong, Lingling Dai, "High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance," Waste Management, vol. 33, no. 2, pp. 308-316, 2013.
[27] Kamonwan Khanthong, Rahul Kadam, Taeyoung Kim, Jungyu Park, "Synergetic effects of anaerobic co-digestion of food waste and algae on biogas production," Bioresource Technology, vol. 382, 2023.
[28] Cheng Sun, Liang Guo, Yongkang Zheng, Dan Yu, Chunji Jin, Yangguo Zhao, Zhiwen Yao, Mengchun Gao, Zonglian She, "Effect of mixed primary and secondary sludge for two-stage anaerobic digestion (AD)," Bioresource Technology, vol. 343, 2022.
[29] Giorgia De Gioannis, Aldo Muntoni, Alessandra Polettini, Raffaella Pomi, Daniela Spiga, "Energy recovery from one- and two-stage anaerobic digestion of food waste," Waste Management, vol. 68, pp. 595-602, 2017.
[30] Razieh Rafieenia, Alberto Pivato, Maria Cristina Lavagnolo, "Effect of inoculum pre-treatment on mesophilic hydrogen and methane production from food waste using two-stage anaerobic digestion," International Journal of Hydrogen Energy, vol. 43, no. 27, pp. 12013-12022, 2018.
[31] Shapovalov, Yevhenii, Sergey Zhadan, Günther Bochmann, Anatoly Salyuk, and Volodymyr Nykyforov, "Dry Anaerobic Digestion of Chicken Manure: A Review," Applied Sciences, vol. 10, no. 21, 2020.
[32] Forough Momayez, Keikhosro Karimi, Mohammad J. Taherzadeh, "Energy recovery from industrial crop wastes by dry anaerobic digestion: A review," Industrial Crops and Products, vol. 129, pp. 673-687, 2019.
[33] Fuqing Xu, Zhi-Wu Wang, Li Tang, Yebo Li, "A mass diffusion-based interpretation of the effect of total solids content on solid-state anaerobic digestion of cellulosic biomass," Bioresource Technology, vol. 167, pp. 178-185, 2014.
[34] Fatma Abouelenien, Yutaka Nakashimada, Naomichi Nishio, "Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture," Journal of Bioscience and Bioengineering, vol. 107, no. 3, pp. 293-295, 2009.
[35] K. Sheng, X. Chen, J. Pan, R. Kloss, Y. Wei, Y. Ying, "Effect of ammonia and nitrate on biogas production from food waste via anaerobic digestion," Biosyst. Eng., vol. 116, pp. 205-212, 2013.
[36] H. Chen, W. Wang, L. Xue, C. Chen, G. Liu, R. Zhang, "Effects of ammonia on anaerobic digestion of food waste: process performance and microbial community," Energy & Fuels, vol. 30, pp. 5749-5757, 2016.
[37] Kefang He, Ying Liu, Longjin Tian, Wanyou He, Qunpeng Cheng, "Review in anaerobic digestion of food waste," Heliyon, vol. 10, no. 7, 2024.
[38] Zhongjiang Wang, Fuqing Xu, Yebo Li, "Effects of total ammonia nitrogen concentration on solid-state anaerobic digestion of corn stover," Bioresource Technology, vol. 144, pp. 281-287, 2013.
[39] G. Zeeman, W.M. Wiegant, M.E. Koster-Treffers, G. Lettinga, "The influence of the total-ammonia concentration on the thermophilic digestion of cow manure," Agric. Wastes, vol. 14, pp. 19-35, 1985.
[40] J.J. Lay, Y.Y. Li, T. Noike, "Influences of pH and moisture content on the methane production in high-solids sludge digestion," Water Research, vol. 31, pp. 1518-1524, 1997.
[41] A.J. Ward, P.J. Hobbs, P.J. Holliman, D.L. Jones, "Optimisation of the anaerobic digestion of agricultural resources," Bioresource Technology, vol. 99, pp. 7928-7940, 2008.
[42] L.P. Hao, F. Lü, L. Li, L.M. Shao, P.J. He, "Shift of pathways during initiation of thermophilic methanogenesis at different initial pH," Bioresource Technology, vol. 126, pp. 418-424, 2012.
[43] W.J.J. Gao, H.J. Lin, K.T. Leung, B.Q. Liao, "Influence of elevated pH shocks on the performance of a submerged anaerobic membrane bioreactor," Process Biochemistry, vol. 45, pp. 1279-1287, 2010.
[44] Yucheng Lin, Fan Lü, Liming Shao, Pinjing He, "Influence of bicarbonate buffer on the methanogenetic pathway during thermophilic anaerobic digestion," Bioresource Technology, vol. 137, pp. 245-253, 2013.
[45] E. Atallah, J. Zeaiter, M.N. Ahmad, J.J. Leahy, W. Kwapinski, "Hydrothermal carbonization of spent mushroom compost waste compared against torrefaction and pyrolysis," Fuel Process. Technol, vol. 216, 2021.
[46] 農業部, “太空包栽培後介質再利用,” 108-03-27.
[47] T.-W. M. J.-S. C. F.-C. Y. Yoong Kit Leong, "Recent advances and future directions on the valorization of spent mushroom substrate (SMS): A review," Bioresource Technology, vol. 344, 2022.
[48] Xiaosha Luo et al., "Methane production and characteristics of the microbial community in the co-digestion of spent mushroom substrate with dairy manure," Bioresource Technology, vol. 250, pp. 611-620, 2018.
[49] R. Wang, C. Li, N. Lv, X. Pan, G. Cai, J. Ning, G. Zhu, "Deeper insights into effect of activated carbon and nano-zero-valent iron addition on acidogenesis and whole anaerobic digestion," Bioresour. Technol, vol. 324, 2021.
[50] H.Y. Jing, Y. Cui, M.Y. Ye, X.S. Yan, Y.P. Liu, "Effect of zero-valent iron on acidification and methane production using food waste under different food-to-microorganism ratios," Renew. Energ., vol. 198, pp. 131-143, 2022.
[51] X. Liu, S. Zhang, R. Cheng, R. Liu, Z. Liu, Q. Yang, "Effects of nZVI and Fe3O4 NPs on anaerobic methanogenesis, microbial communities and metabolic pathways for treating domestic wastewater at ambient temperature," J. Water Process Eng, vol. 48, 2022.
[52] Jingying Yang, Zhou Zhang, Zhenxing Huang, Wansheng Shi, Wenquan Ruan, Mingxing Zhao, "Effective anaerobic digestion performance from kitchen wastewater by nanoscale zero-valent iron composite materials: Hydrogen corrosion capability and biological biogas upgrading," Journal of Environmental Chemical Engineering, vol. 12, no. 3, 2024.
[53] X. Xiao, G. Sheng, Y. Mu, H. Yu, "describe ZVI-based anaerobic system," Water Res, vol. 47, no. 16, pp. 6007-6013, 2013.
[54] X. Kong, S. Yu, W. Fang, J. Liu, H. Li, "Enhancing syntrophic associations among clostridium butyricum, syntrophomonas and two types ofmethanogen by zero valent iron in an anaerobic assay with a high organic loading," Bioresour Technol, vol. 257, pp. 181-191, 2018.
[55] Xin Kong, Yonghong Wei, Shuang Xu, Jianguo Liu, Huan Li, Yili Liu, Shuyao Yu, "Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates," Bioresource Technology, vol. 211, pp. 65-71, 2016.
[56] Jun Zhou, Xiaogang You, Baowei Niu, Xiaoqi Yang, Lei Gong, Ying Zhou, Jin Wang, Haonan Zhang, "Enhancement of methanogenic activity in anaerobic digestion of high solids sludge by nano zero-valent iron," Science of The Total Environment, vol. 703, 2020.
[57] 葉明蘭, “只要肉和蛋?雞糞怎麼辦!養雞場的難題,” 財團法人公共電視文化事業基金會, 2023.
[58] P. Merlin Christy, L.R. Gopinath, D. Divya, "A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms," Renew. Sust. Energ. Rev, vol. 34, pp. 167-173, 2014.
[59] B.P. Kelleher, J.J. Leahy, A.M. Henihan, T.F. O′Dwyer, D. Sutton, M.J. Leahy, "Advances in poultry litter disposal technology – a review," Bioresour. Technol, vol. 83, pp. 27-36, 2002.
[60] Linas Jurgutis, Alvyra Slepetiene, Jonas Volungevicius, Kristina Amaleviciute-Volunge, "Biogas production from chicken manure at different organic loading rates in a mesophilic full scale anaerobic digestion plant," Biomass and Bioenergy, vol. 141, 2020.
[61] Le Zhang, Kai-Chee Loh, Jingxin Zhang, "Jointly reducing antibiotic resistance genes and improving methane yield in anaerobic digestion of chicken manure by feedstock microwave pretreatment and activated carbon supplementation," Chemical Engineering Journal, vol. 372, no. 15, pp. 815-824, 2019.
[62] 郭木鐸, "使用兩階段厭氧發酵處理農業廢棄物產生沼氣及其最適化操作," 2020.
[63] R. YUVAKKUMAR,V. ELANGO,V. RAJENDRAN,N. KANNAN, "PREPARATION AND CHARACTERIZATION OF ZERO VALENT IRON," Digest Journal of Nanomaterials and Biostructures, vol. 6, no. 4, pp. 1771-1776, 2011.
[64] AAT Bioquest, "Phosphate Buffer (pH 5.8 to 7.4) Preparation and Recipe," Quest Calculate™, 2024.
[65] “水中氨氮檢測方法-靛酚比色法,” 於 行政院公報, 中華民國 94 年 5 月 12 日.
[66] Kassab G, Khater D, Odeh F, Shatanawi K, Halalsheh M, Arafah M, van Lier JB., "Impact of Nanoscale Magnetite and Zero Valent Iron on the Batch-Wise Anaerobic Co-Digestion of Food Waste and Waste-Activated Sludge.," Water, vol. 12, no. 5, 2020.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2024-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明