博碩士論文 111324063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.138.174.45
姓名 何敏瑄(Min-Hsuan Ho)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 聚胜肽電解質材料合成及其性質研究分析
(Synthesis and Analysis of Polypeptide Based Polyelectrolyte Complex)
相關論文
★ 聚(4-乙烯基吡啶)和聚(2-乙烯基吡啶)薄膜的表面不穩定性★ 利用小角度X光散射和廣角度X光繞射探討聚環氧乙烷於醇類中的結晶現象
★ 溶劑品質對聚(苯乙烯-b-環氧乙烷)在四氫呋喃/醇類共溶劑中的鏈聚集、自組裝、微胞化的影響★ 可控矽烷化:以耐水解甲基丙烯酸酯氮矽三環 於矽基材上作為功能性高分子之構成單元
★ 含磷酸膽鹼雙離子之功能性嵌段共聚物塗層於熱塑型聚氨酯導管★ 光交聯及生物啟發磷膽鹽雙離子共聚物連續沉積醫療塗層於熱塑型聚氨酯材料
★ 分子自組裝結構對雙離子高分子醫療塗層穩定性與抗汙功能的影響★ 基於動態鍵的多功能丙烯酸交聯劑
★ 連續微流道反應器中進行防污聚合物篩選★ 用於聚氨酯植入物表面功能化具有潤滑和抗污性能之光交聯醫用塗層
★ 高度纏結的雙離子水凝膠★ Lubricant and Anti-fouling Coatings for Silicone Catheter
★ 可聚合界面活性劑:膠囊化有機色料於水相溶液中展現膠體穩定性及於纖維素上的防水性能★ 建立耐氧光聚合連續流反應器
★ 建立多功能芳香族雙硫鍵交聯丙烯酸彈性聚合物★ 熱誘導混合聚丙烯薄膜含雙離子共聚物的製備研究及其抗污性能的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 目前已有多項研究表明,聚陽離子和聚陰離子形成的聚電解質是很有發展性的一種膠囊技術,可用藥物釋放、製藥、食品、紡織等產業。於是本研究針陰陽離子進行配對,研究其混合後之型態組成及物理特性。
在實驗中,我們使用不同聚合度的聚賴胺酸 (PLL50、PLL100) 作為聚陽離子;聚麩胺酸 (PLGA100) 、聚天門冬胺酸 (PASP90、PASP140、PASP185、PASP250) 作為聚陰離子。將等電荷濃度的聚陽離子和聚陰離子在緩衝溶液中,透過靜電引力及氫鍵形成聚電解質複合體。在顯微鏡觀察下,聚賴胺酸和聚麩胺酸形成的複合體具有固體沉澱結構,而聚賴胺酸和聚天門冬胺酸形成的複合體則具有凝聚層結構。由FTIR及CD分析中,這兩種結構皆分別展現β-sheet和random coil的二級結構。在材料分析方面,發現凝聚複合體具有較弱的氫鍵,並表現出較高的親水性和水合能力。高水合特性也使其將來有機會應用於不沾黏塗層之開發。
摘要(英) Several studies have shown that polyelectrolyte complex can be a promising encapsulation technique and employed in pharmaceutical, drug delivery, food, and textile industries. Here, we focused on the synthesis and analysis the properties of the polyelectrolyte complex.
In the experiment, we used poly-L-lysine (PLL50, PLL100) as polycations and poly-L-glutamic acid (PLGA100), poly-aspartic acid (PASP90, PASP140, PASP185, PASP250) as polyanions with different degrees of polymerization. Polycations and polyanions of equal charge concentration were mixed in a buffered solution to form polyelectrolyte complexes via electrostatic attraction and hydrogen bonding. Under microscopic observation, the complexes formed by poly-L-lysine and poly-L-glutamic acid exhibited solid precipitates, while those formed by poly-L-lysine and poly-aspartic acid displayed PCs structure. In FTIR and CD analysis, two products exhibited secondary structures of β-sheet and random coil, respectively. After deposition on culture plates, thin film analysis showed that the PCs had weaker hydrogen bonds, higher hydrophilicity and hydration. This property also make it a candidate of non-fouling material for anti-fouling treatment.
關鍵字(中) ★ 聚電解質
★ 聚胜肽凝聚複合體
★ 二級結構
關鍵字(英) ★ polyelectrolyte complex
★ polypeptide complex
★ secondary structure
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
名詞簡稱 x
聚胜肽電解質代稱 x
一、文獻回顧 1
1-1 聚電解質 1
1-1-1 聚電解質多層薄膜 (Polyelectrolyte multilayer film, PEM film) 2
1-1-2 聚電解質複合體 (Polyelectrolyte complex, PEC) 4
1-1-3 複合凝聚 (Complex coacervate) 6
1-1-4 複合凝聚應用 8
1-2 聚琥珀醯亞胺和聚天門冬胺酸材料 9
1-2-1概述 9
1-2-2 聚天門冬胺酸形成聚電解質複合體 10
二、研究目的 11
三、藥品清單與實驗設備 12
3-1 實驗藥品清單 12
3-2 實驗設備清單 13
3-3 材料合成 14
3-3-1 聚琥珀醯亞胺 (Polysuccinimide, PSI) 14
3-3-2 聚天門冬胺酸鈉鹽 (Poly-aspartic acid sodium salt, PASP) 14
3-4實驗方法 15
3-4-1 聚電解質複合體之製備 15
3-4-2 濁度測定 15
3-4-3 液態核磁共振光譜 (1H NMR) 16
3-4-4 凝膠滲透層析 (GPC) 16
3-4-5 圓二色光譜 (CD) 16
3-4-6 傅立葉轉換紅外光譜 (FTIR) 17
3-4-7 界面電位測定 (Zeta potential) 19
3-4-8 表面元素之量測 (XPS) 19
3-4-9 接觸角之量測 (Contact angle) 19
3-4-10 耗散型石英微量天平 (QCM-D) 20
四、結果討論 21
4-1 聚天門冬胺酸鈉鹽合成性質分析鑑定 21
4-1-1 聚琥珀醯亞胺 (PSI) 之1H NMR圖譜 21
4-1-2 聚天門冬胺酸鈉鹽 (PASP) 之1H NMR圖譜 22
4-1-3 聚天門冬胺酸鈉鹽 (PASP) 之分子量測定 23
4-2 聚電解質複合體性質分析鑑定 24
4-2-1 聚電解質均聚物性質鑑定 24
4-2-2 聚電解質複合體相行為 26
4-2-3 聚電解質複合體二級結構分析 29
4-2-4 聚電解質複合體耐鹽穩定性測試 31
4-2-5 凝聚複合體性質分析 32
4-3 聚電解質複合體塗層性質分析 35
4-3-1 聚電解質複合體塗層表面元素分析 35
4-3-2 聚電解質複合體塗層表面官能基及氫鍵分析 37
4-3-3 聚電解質複合體塗層之水接觸角測定 39
4-3-4 聚電解質複合體塗層之耗散型石英微量天平 (QCM-D) 分析 40
五、結論 43
六、未來展望 44
七、參考文獻 45
八、附錄 49
參考文獻 1. Lankalapalli, S., & Kolapalli, V. (2009). Polyelectrolyte complexes: A review of their applicability in drug delivery technology. Indian journal of pharmaceutical sciences, 71(5), 481.
2. Kumar, R., Sharma, R. K., & Singh, A. P. (2018). Grafted cellulose: a bio-based polymer for durable applications. Polymer Bulletin, 75, 2213-2242.
3. Adelnia, H., Tran, H. D. N., Little, P. J., Blakey, I., & Ta, H. T. (2021). Poly(aspartic acid) in Biomedical Applications: From Polymerization, Modification, Properties, Degradation, and Biocompatibility to Applications. ACS Biomater Sci Eng, 7(6), 2083-2105.
4. Maćczak, P., Kaczmarek, H., & Ziegler-Borowska, M. (2020). Recent achievements in polymer bio-based flocculants for water treatment. Materials, 13(18), 3951.
5. Alsharabasy, A. M., Moghannem, S. A., & El-Mazny, W. N. (2016). Physical preparation of alginate/chitosan polyelectrolyte complexes for biomedical applications. J Biomater Appl, 30(7), 1071-1079.
6. Su′Ait, M., Ahmad, A., Badri, K., Mohamed, N., Rahman, M., Ricardo, C. A., & Scardi, P. (2014). The potential of polyurethane bio-based solid polymer electrolyte for photoelectrochemical cell application. International Journal of Hydrogen Energy, 39(6), 3005-3017.
7. Kolasinska, M., Krastev, R., Gutberlet, T., & Warszynski, P. (2009). Layer-by-Layer Deposition of Polyelectrolytes. Dipping versus Spraying. Langmuir, 25(2), 1224-1232.
8. Criado-Gonzalez, M., Mijangos, C., & Hernández, R. (2021). Polyelectrolyte Multilayer Films Based on Natural Polymers: From Fundamentals to Bio-Applications. Polymers, 13(14), 2254.
9. Tsai, H. A., Shen, C. N., & Chang, Y. C. (2012). Use of surface properties to control the growth and differentiation of mouse fetal liver stem/progenitor cell colonies. Biomacromolecules, 13(11), 3483-3493.
10. Costa, R. R., & Mano, J. F. (2014). Polyelectrolyte multilayered assemblies in biomedical technologies. Chemical Society Reviews, 43(10), 3453-3479.
11. Kulkarni, A. D., Vanjari, Y. H., Sancheti, K. H., Patel, H. M., Belgamwar, V. S., Surana, S. J., & Pardeshi, C. V. (2016). Polyelectrolyte complexes: Mechanisms, critical experimental aspects, and applications. Artificial cells, nanomedicine, and biotechnology, 44(7), 1615-1625.
12. Meka, V. S., Sing, M. K., Pichika, M. R., Nali, S. R., Kolapalli, V. R., & Kesharwani, P. (2017). A comprehensive review on polyelectrolyte complexes. Drug discovery today, 22(11), 1697-1706.

13. Cakmak, F. P., Choi, S., Meyer, M. O., Bevilacqua, P. C., & Keating, C. D. (2020). Prebiotically-relevant low polyion multivalency can improve functionality of membraneless compartments. Nat Commun, 11(1), 5949.
14. Tsuchida, E. (1994). Formation of polyelectrolyte complexes and their structures. Journal of Macromolecular Science—Pure and Applied Chemistry, 31(1), 1-15.
15. Shiu, C. C., Wang, S., Chang, C.-H., & Jan, J.-S. (2013). Poly (L-glutamic acid)-decorated hybrid colloidal particles from complex particle-templated silica mineralization. The Journal of Physical Chemistry B, 117(34), 10007-10016.
16. Bediako, J. K., Kang, J.-H., Yun, Y.-S., & Choi, S.-H. (2022). Facile processing of polyelectrolyte complexes for immobilization of heavy metal ions in wastewater. ACS Applied Polymer Materials, 4(4), 2346-2354.
17. Matsuo, M., & Kurihara, K. (2021). Proliferating coacervate droplets as the missing link between chemistry and biology in the origins of life. Nature Communications, 12(1), 5487.
18. Blocher, W. C., & Perry, S. L. (2017). Complex coacervate-based materials for biomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 9(4).
19. Perry, S. L., Leon, L., Hoffmann, K. Q., Kade, M. J., Priftis, D., Black, K. A., . . . Margossian, K. O. (2015). Chirality-selected phase behaviour in ionic polypeptide complexes. Nature Communications, 6(1), 6052.
20. Abbas, M., Lipiński, W. P., Wang, J., & Spruijt, E. (2021). Peptide-based coacervates as biomimetic protocells. Chemical Society Reviews, 50(6), 3690-3705.
21. Yewdall, N. A., André, A. A., Lu, T., & Spruijt, E. (2021). Coacervates as models of membraneless organelles. Current Opinion in Colloid & Interface Science, 52, 101416.
22. Balzer, C., Zhang, P., & Wang, Z.-G. (2022). Wetting behavior of polyelectrolyte complex coacervates on solid surfaces. Soft Matter, 18(34), 6326-6339.
23. Tian, Y., Hu, Q., Sun, Z., Yu, Y., Li, X., Tian, T., . . . Zhang, Z. (2024). Colon Targeting pH‐Responsive Coacervate Microdroplets for Treatment of Ulcerative Colitis. Small, 2311890.
24. Winslow, B. D., Shao, H., Stewart, R. J., & Tresco, P. A. (2010). Biocompatibility of adhesive complex coacervates modeled after the sandcastle glue of Phragmatopoma californica for craniofacial reconstruction. Biomaterials, 31(36), 9373-9381.
25. Yavvari, P. S., Awasthi, A. K., Sharma, A., Bajaj, A., & Srivastava, A. (2019). Emerging biomedical applications of polyaspartic acid-derived biodegradable polyelectrolytes and polyelectrolyte complexes. Journal of Materials Chemistry B, 7(13), 2102-2122.
26. Jalalvandi, E., & Shavandi, A. (2018). Polysuccinimide and its derivatives: Degradable and water soluble polymers (review). European Polymer Journal, 109, 43-54.


27. Harada, A., & Kataoka, K. (1998). Novel polyion complex micelles entrapping enzyme molecules in the core: preparation of narrowly-distributed micelles from lysozyme and poly (ethylene glycol)− poly (aspartic acid) block copolymer in aqueous medium. Macromolecules, 31(2), 288-294.
28. Tomida, M., Nakato, T., Matsunami, S., & Kakuchi, T. (1997). Convenient synthesis of high molecular weight poly(succinimide) by acid-catalysed polycondensation of l-aspartic acid. Polymer, 38(18), 4733-4736.
29. Wei, Y., Thyparambil, A., & Latour, R. (2014). Protein Helical Structure Determination Using CD Spectroscopy for Solutions with Strong Background Absorbance from 190-230 nm. Biochimica et biophysica acta, 1844.
30. Yang, H., Yang, S., Kong, J., Dong, A., & Yu, S. (2015). Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nature protocols, 10(3), 382-396.
31. Tonda-Turo, C., Carmagnola, I., & Ciardelli, G. (2018). Quartz crystal microbalance with dissipation monitoring: A powerful method to predict the in vivo behavior of bioengineered surfaces. Frontiers in Bioengineering and Biotechnology, 6, 158.
32. Matsubara, K., Nakato, T., & Tomida, M. (1997). H and 13C NMR Characterization of Poly(succinimide) Prepared by Thermal Polycondensation of l-Aspartic Acid1. Macromolecules, 30(8), 2305-2312.
33. Zhu, H., Liu, R., Shang, Y., & Sun, L. (2023). Polylysine complexes and their biomedical applications. Engineered Regeneration, 4(1), 20-27.
34. Zhang, Y., Song, W., Lu, Y., Xu, Y., Wang, C., Yu, D.-G., & Kim, I. (2022). Recent Advances in Poly(α-L-glutamic acid)-Based Nanomaterials for Drug Delivery. Biomolecules, 12(5), 636.
35. Bhattacharyya, D., & Butterfield, A. D. (2003). New insights into membrane science and technology: polymeric and biofunctional membranes: Elsevier.
36. Quan, B. D., Wojtas, M., & Sone, E. D. (2021). Polyaminoacids in Biomimetic Collagen Mineralization: Roles of Isomerization and Disorder in Polyaspartic and Polyglutamic Acids. Biomacromolecules, 22(7), 2996-3004.
37. Tudorachi, N., & Chiriac, A. P. (2011). TGA/FTIR/MS study on thermal decomposition of poly (succinimide) and sodium poly (aspartate). Polymer Testing, 30(4), 397-407.
38. Perry, S. L., Li, Y., Priftis, D., Leon, L., & Tirrell, M. (2014). The effect of salt on the complex coacervation of vinyl polyelectrolytes. Polymers, 6(6), 1756-1772.
39. Pathak, J., Priyadarshini, E., Rawat, K., & Bohidar, H. (2017). Complex coacervation in charge complementary biopolymers: Electrostatic versus surface patch binding. Advances in Colloid and Interface Science, 250, 40-53.
40. Nakashima, K. K., Vibhute, M. A., & Spruijt, E. (2019). Biomolecular chemistry in liquid phase separated compartments. Frontiers in molecular biosciences, 6, 21.
41. Cirulis, J., Bellingham, C., Davis, E., Hubmacher, D., Reinhard, D., Mecham, R., & Keeley, F. (2008). Fibrillins, fibulins and MAGP modulate the kinetics and morphology of in vitro self-assembly of a recombinant elastin-like polypeptide. Biochemistry, 47, 12601-12613.
42. Micsonai, A., Wien, F., Kernya, L., Lee, Y.-H., Goto, Y., Réfrégiers, M., & Kardos, J. (2015). Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proceedings of the National Academy of Sciences, 112(24), E3095-E3103.
43. Jackson, M., & Mantsch, H. H. (1995). The use and misuse of FTIR spectroscopy in the determination of protein structure. Critical reviews in biochemistry and molecular biology, 30(2), 95-120.
44. Krimm, S., & Bandekar, J. (1986). Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in protein chemistry, 38, 181-364.
45. Yang, C.-T., Wang, Y., Yu, S., & Chang, Y.-C. I. (2009). Controlled molecular organization of surface macromolecular assemblies based on stimuli-responsive polypeptide brushes. Biomacromolecules, 10(1), 58-65.
46. Fu, J., & Schlenoff, J. B. (2016). Driving Forces for Oppositely Charged Polyion Association in Aqueous Solutions: Enthalpic, Entropic, but Not Electrostatic. Journal of the American Chemical Society, 138(3), 980-990.
47. Chang, L.-W., Lytle, T. K., Radhakrishna, M., Madinya, J. J., Vélez, J., Sing, C. E., & Perry, S. L. (2017). Sequence and entropy-based control of complex coacervates. Nature Communications, 8(1), 1273.
48. Kim, H., Jeon, B.-j., Kim, S., Jho, Y., & Hwang, D. S. (2019). Upper critical solution temperature (UCST) Behavior of coacervate of cationic protamine and multivalent anions. Polymers, 11(4), 691.
49. Lu, T., Nakashima, K. K., & Spruijt, E. (2021). Temperature-responsive peptide–nucleotide coacervates. The Journal of Physical Chemistry B, 125(12), 3080-3091.
50. Keller, A., Broje, V., & Setty, K. (2007). Effect of advancing velocity and fluid viscosity on the dynamic contact angle of petroleum hydrocarbons. Journal of Petroleum Science and Engineering, 58(1-2), 201-206.
51. Myshakina, N. S., Ahmed, Z., & Asher, S. A. (2008). Dependence of Amide Vibrations on Hydrogen Bonding. The Journal of Physical Chemistry B, 112(38), 11873-11877.
52. Lu, R., Zhang, X., Cheng, X., Zan, X., & Geng, W. (2021). Secondary structure-dominated layer-by-layer growth mode of protein coatings. Langmuir, 37(44), 13000-13011.
53. Saarinen, T., Österberg, M., & Laine, J. (2008). Adsorption of polyelectrolyte multilayers and complexes on silica and cellulose surfaces studied by QCM-D. Colloids and Surfaces A: physicochemical and engineering aspects, 330(2-3), 134-142.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2024-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明