參考文獻 |
1. Lankalapalli, S., & Kolapalli, V. (2009). Polyelectrolyte complexes: A review of their applicability in drug delivery technology. Indian journal of pharmaceutical sciences, 71(5), 481.
2. Kumar, R., Sharma, R. K., & Singh, A. P. (2018). Grafted cellulose: a bio-based polymer for durable applications. Polymer Bulletin, 75, 2213-2242.
3. Adelnia, H., Tran, H. D. N., Little, P. J., Blakey, I., & Ta, H. T. (2021). Poly(aspartic acid) in Biomedical Applications: From Polymerization, Modification, Properties, Degradation, and Biocompatibility to Applications. ACS Biomater Sci Eng, 7(6), 2083-2105.
4. Maćczak, P., Kaczmarek, H., & Ziegler-Borowska, M. (2020). Recent achievements in polymer bio-based flocculants for water treatment. Materials, 13(18), 3951.
5. Alsharabasy, A. M., Moghannem, S. A., & El-Mazny, W. N. (2016). Physical preparation of alginate/chitosan polyelectrolyte complexes for biomedical applications. J Biomater Appl, 30(7), 1071-1079.
6. Su′Ait, M., Ahmad, A., Badri, K., Mohamed, N., Rahman, M., Ricardo, C. A., & Scardi, P. (2014). The potential of polyurethane bio-based solid polymer electrolyte for photoelectrochemical cell application. International Journal of Hydrogen Energy, 39(6), 3005-3017.
7. Kolasinska, M., Krastev, R., Gutberlet, T., & Warszynski, P. (2009). Layer-by-Layer Deposition of Polyelectrolytes. Dipping versus Spraying. Langmuir, 25(2), 1224-1232.
8. Criado-Gonzalez, M., Mijangos, C., & Hernández, R. (2021). Polyelectrolyte Multilayer Films Based on Natural Polymers: From Fundamentals to Bio-Applications. Polymers, 13(14), 2254.
9. Tsai, H. A., Shen, C. N., & Chang, Y. C. (2012). Use of surface properties to control the growth and differentiation of mouse fetal liver stem/progenitor cell colonies. Biomacromolecules, 13(11), 3483-3493.
10. Costa, R. R., & Mano, J. F. (2014). Polyelectrolyte multilayered assemblies in biomedical technologies. Chemical Society Reviews, 43(10), 3453-3479.
11. Kulkarni, A. D., Vanjari, Y. H., Sancheti, K. H., Patel, H. M., Belgamwar, V. S., Surana, S. J., & Pardeshi, C. V. (2016). Polyelectrolyte complexes: Mechanisms, critical experimental aspects, and applications. Artificial cells, nanomedicine, and biotechnology, 44(7), 1615-1625.
12. Meka, V. S., Sing, M. K., Pichika, M. R., Nali, S. R., Kolapalli, V. R., & Kesharwani, P. (2017). A comprehensive review on polyelectrolyte complexes. Drug discovery today, 22(11), 1697-1706.
13. Cakmak, F. P., Choi, S., Meyer, M. O., Bevilacqua, P. C., & Keating, C. D. (2020). Prebiotically-relevant low polyion multivalency can improve functionality of membraneless compartments. Nat Commun, 11(1), 5949.
14. Tsuchida, E. (1994). Formation of polyelectrolyte complexes and their structures. Journal of Macromolecular Science—Pure and Applied Chemistry, 31(1), 1-15.
15. Shiu, C. C., Wang, S., Chang, C.-H., & Jan, J.-S. (2013). Poly (L-glutamic acid)-decorated hybrid colloidal particles from complex particle-templated silica mineralization. The Journal of Physical Chemistry B, 117(34), 10007-10016.
16. Bediako, J. K., Kang, J.-H., Yun, Y.-S., & Choi, S.-H. (2022). Facile processing of polyelectrolyte complexes for immobilization of heavy metal ions in wastewater. ACS Applied Polymer Materials, 4(4), 2346-2354.
17. Matsuo, M., & Kurihara, K. (2021). Proliferating coacervate droplets as the missing link between chemistry and biology in the origins of life. Nature Communications, 12(1), 5487.
18. Blocher, W. C., & Perry, S. L. (2017). Complex coacervate-based materials for biomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 9(4).
19. Perry, S. L., Leon, L., Hoffmann, K. Q., Kade, M. J., Priftis, D., Black, K. A., . . . Margossian, K. O. (2015). Chirality-selected phase behaviour in ionic polypeptide complexes. Nature Communications, 6(1), 6052.
20. Abbas, M., Lipiński, W. P., Wang, J., & Spruijt, E. (2021). Peptide-based coacervates as biomimetic protocells. Chemical Society Reviews, 50(6), 3690-3705.
21. Yewdall, N. A., André, A. A., Lu, T., & Spruijt, E. (2021). Coacervates as models of membraneless organelles. Current Opinion in Colloid & Interface Science, 52, 101416.
22. Balzer, C., Zhang, P., & Wang, Z.-G. (2022). Wetting behavior of polyelectrolyte complex coacervates on solid surfaces. Soft Matter, 18(34), 6326-6339.
23. Tian, Y., Hu, Q., Sun, Z., Yu, Y., Li, X., Tian, T., . . . Zhang, Z. (2024). Colon Targeting pH‐Responsive Coacervate Microdroplets for Treatment of Ulcerative Colitis. Small, 2311890.
24. Winslow, B. D., Shao, H., Stewart, R. J., & Tresco, P. A. (2010). Biocompatibility of adhesive complex coacervates modeled after the sandcastle glue of Phragmatopoma californica for craniofacial reconstruction. Biomaterials, 31(36), 9373-9381.
25. Yavvari, P. S., Awasthi, A. K., Sharma, A., Bajaj, A., & Srivastava, A. (2019). Emerging biomedical applications of polyaspartic acid-derived biodegradable polyelectrolytes and polyelectrolyte complexes. Journal of Materials Chemistry B, 7(13), 2102-2122.
26. Jalalvandi, E., & Shavandi, A. (2018). Polysuccinimide and its derivatives: Degradable and water soluble polymers (review). European Polymer Journal, 109, 43-54.
27. Harada, A., & Kataoka, K. (1998). Novel polyion complex micelles entrapping enzyme molecules in the core: preparation of narrowly-distributed micelles from lysozyme and poly (ethylene glycol)− poly (aspartic acid) block copolymer in aqueous medium. Macromolecules, 31(2), 288-294.
28. Tomida, M., Nakato, T., Matsunami, S., & Kakuchi, T. (1997). Convenient synthesis of high molecular weight poly(succinimide) by acid-catalysed polycondensation of l-aspartic acid. Polymer, 38(18), 4733-4736.
29. Wei, Y., Thyparambil, A., & Latour, R. (2014). Protein Helical Structure Determination Using CD Spectroscopy for Solutions with Strong Background Absorbance from 190-230 nm. Biochimica et biophysica acta, 1844.
30. Yang, H., Yang, S., Kong, J., Dong, A., & Yu, S. (2015). Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nature protocols, 10(3), 382-396.
31. Tonda-Turo, C., Carmagnola, I., & Ciardelli, G. (2018). Quartz crystal microbalance with dissipation monitoring: A powerful method to predict the in vivo behavior of bioengineered surfaces. Frontiers in Bioengineering and Biotechnology, 6, 158.
32. Matsubara, K., Nakato, T., & Tomida, M. (1997). H and 13C NMR Characterization of Poly(succinimide) Prepared by Thermal Polycondensation of l-Aspartic Acid1. Macromolecules, 30(8), 2305-2312.
33. Zhu, H., Liu, R., Shang, Y., & Sun, L. (2023). Polylysine complexes and their biomedical applications. Engineered Regeneration, 4(1), 20-27.
34. Zhang, Y., Song, W., Lu, Y., Xu, Y., Wang, C., Yu, D.-G., & Kim, I. (2022). Recent Advances in Poly(α-L-glutamic acid)-Based Nanomaterials for Drug Delivery. Biomolecules, 12(5), 636.
35. Bhattacharyya, D., & Butterfield, A. D. (2003). New insights into membrane science and technology: polymeric and biofunctional membranes: Elsevier.
36. Quan, B. D., Wojtas, M., & Sone, E. D. (2021). Polyaminoacids in Biomimetic Collagen Mineralization: Roles of Isomerization and Disorder in Polyaspartic and Polyglutamic Acids. Biomacromolecules, 22(7), 2996-3004.
37. Tudorachi, N., & Chiriac, A. P. (2011). TGA/FTIR/MS study on thermal decomposition of poly (succinimide) and sodium poly (aspartate). Polymer Testing, 30(4), 397-407.
38. Perry, S. L., Li, Y., Priftis, D., Leon, L., & Tirrell, M. (2014). The effect of salt on the complex coacervation of vinyl polyelectrolytes. Polymers, 6(6), 1756-1772.
39. Pathak, J., Priyadarshini, E., Rawat, K., & Bohidar, H. (2017). Complex coacervation in charge complementary biopolymers: Electrostatic versus surface patch binding. Advances in Colloid and Interface Science, 250, 40-53.
40. Nakashima, K. K., Vibhute, M. A., & Spruijt, E. (2019). Biomolecular chemistry in liquid phase separated compartments. Frontiers in molecular biosciences, 6, 21.
41. Cirulis, J., Bellingham, C., Davis, E., Hubmacher, D., Reinhard, D., Mecham, R., & Keeley, F. (2008). Fibrillins, fibulins and MAGP modulate the kinetics and morphology of in vitro self-assembly of a recombinant elastin-like polypeptide. Biochemistry, 47, 12601-12613.
42. Micsonai, A., Wien, F., Kernya, L., Lee, Y.-H., Goto, Y., Réfrégiers, M., & Kardos, J. (2015). Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proceedings of the National Academy of Sciences, 112(24), E3095-E3103.
43. Jackson, M., & Mantsch, H. H. (1995). The use and misuse of FTIR spectroscopy in the determination of protein structure. Critical reviews in biochemistry and molecular biology, 30(2), 95-120.
44. Krimm, S., & Bandekar, J. (1986). Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in protein chemistry, 38, 181-364.
45. Yang, C.-T., Wang, Y., Yu, S., & Chang, Y.-C. I. (2009). Controlled molecular organization of surface macromolecular assemblies based on stimuli-responsive polypeptide brushes. Biomacromolecules, 10(1), 58-65.
46. Fu, J., & Schlenoff, J. B. (2016). Driving Forces for Oppositely Charged Polyion Association in Aqueous Solutions: Enthalpic, Entropic, but Not Electrostatic. Journal of the American Chemical Society, 138(3), 980-990.
47. Chang, L.-W., Lytle, T. K., Radhakrishna, M., Madinya, J. J., Vélez, J., Sing, C. E., & Perry, S. L. (2017). Sequence and entropy-based control of complex coacervates. Nature Communications, 8(1), 1273.
48. Kim, H., Jeon, B.-j., Kim, S., Jho, Y., & Hwang, D. S. (2019). Upper critical solution temperature (UCST) Behavior of coacervate of cationic protamine and multivalent anions. Polymers, 11(4), 691.
49. Lu, T., Nakashima, K. K., & Spruijt, E. (2021). Temperature-responsive peptide–nucleotide coacervates. The Journal of Physical Chemistry B, 125(12), 3080-3091.
50. Keller, A., Broje, V., & Setty, K. (2007). Effect of advancing velocity and fluid viscosity on the dynamic contact angle of petroleum hydrocarbons. Journal of Petroleum Science and Engineering, 58(1-2), 201-206.
51. Myshakina, N. S., Ahmed, Z., & Asher, S. A. (2008). Dependence of Amide Vibrations on Hydrogen Bonding. The Journal of Physical Chemistry B, 112(38), 11873-11877.
52. Lu, R., Zhang, X., Cheng, X., Zan, X., & Geng, W. (2021). Secondary structure-dominated layer-by-layer growth mode of protein coatings. Langmuir, 37(44), 13000-13011.
53. Saarinen, T., Österberg, M., & Laine, J. (2008). Adsorption of polyelectrolyte multilayers and complexes on silica and cellulose surfaces studied by QCM-D. Colloids and Surfaces A: physicochemical and engineering aspects, 330(2-3), 134-142. |