參考文獻 |
(1) Bonrath, W.; Gao, B.; Houston, P.; McClymont, T.; Müller, M.-A.; Schäfer, C.; Schweiggert, C.; Schütz, J.; Medlock, J. A. 75 Years of Vitamin A Production: A Historical and Scientific Overview of the Development of New Methodologies in Chemistry, Formulation, and Biotechnology. OPR&D 2023, 27 (9), 1557-1584.
(2) Krachko, T.; Lyaskovskyy, V.; Lutz, M.; Lammertsma, K.; Slootweg, J. C. rønsted Acid Promoted Reduction of Tertiary Phosphine Oxides. ZAAC 2017, 643 (14), 916-921.
(3) Emery, R. J.; Papadaki, M.; Dos Santos, L. M. F.; Mantzavinos, D. Extent of Sonochemical Degradation and Change of Toxicity of a Pharmaceutical Precursor (Triphenylphosphine oxide) in Water as a Function of Treatment Conditions. Environ. Int. 2005, 31 (2), 207-211.
(4) Lai, N. L.; Kwok, K. Y.; Wang, X.-h.; Yamashita, N.; Liu, G.; Leung, K. M.; Lam, P. K.; Lam, J. C. Assessment of Organophosphorus Flame Retardants and Plasticizers in Aquatic Environments of China (Pearl River Delta, South China Sea, Yellow River Estuary) and Japan (Tokyo Bay). J. Hazard. Mater. 2019, 371, 288-294.
(5) Bollmann, U. E.; Möller, A.; Xie, Z.; Ebinghaus, R.; Einax, J. W. Occurrence and Fate of Organophosphorus Flame Retardants and Plasticizers in Coastal and Marine Surface Waters. Water Res. 2012, 46 (2), 531-538.
(6) Anderson, D. M.; Hoagland, P.; Kaoru, Y.; White, A. W. Estimated Annual Economic Impacts from Harmful Algal Blooms (HABs) in the United States. 2000.
(7) Conley, D. J.; Paerl, H. W.; Howarth, R. W.; Boesch, D. F.; Seitzinger, S. P.; Havens, K. E.; Lancelot, C.; Likens, G. E. Controlling Eutrophication: Nitrogen and Phosphorus. AAAS: 2009; Vol. 323, pp 1014-1015.
(8) Schindler, D. W.; Hecky, R. E.; Findlay, D.; Stainton, M.; Parker, B.; Paterson, M.; Beaty, K.; Lyng, M.; Kasian, S. Eutrophication of Lakes cannot be Controlled by Reducing Nitrogen Input: Results of a 37-Year Whole-Ecosystem Experiment. PNAS 2008, 105 (32), 11254-11258.
(9) Elias, J. S.; Costentin, C.; Nocera, D. G. Direct Electrochemical P (V) to P (III) Reduction of Phosphine Oxide Facilitated by Triaryl Borates. J. Am. Chem. Soc. 2018, 140 (42), 13711-13718.
(10) van Kalkeren, H. A.; van Delft, F. L.; Rutjes, F. P. Organophosphorus Catalysis to Bypass Phosphine Oxide Waste. ChemSusChem 2013, 6 (9), 1615-1624.
(11) Kepp, K. P. A Quantitative Scale of Oxophilicity and Thiophilicity. Inorg. Chem. 2016, 55 (18), 9461-9470.
(12) Zhang, J.-Q.; Han, L.-B. Beyond Triphenylphosphine: Advances on the Utilization of Triphenylphosphine Oxide. J. Org. Chem. 2024.
(13) Berezin, A. Birefringence and Polarized Luminescence of a Manganese (ii) Chloride–Triphenylphosphine Oxide Compound: Application in LEDs and Photolithography. Mater. Chem. Front. 2023, 7 (12), 2475-2483.
(14) Mitsunobu, O.; Yamada, M. Preparation of Esters of Carboxylic and Phosphoric Acid via Quaternary Phosphonium Salts. BCSJ 1967, 40 (10), 2380-2382.
(15) Mitsunobu, O.; Eguchi, M. Preparation of Carboxylic Esters and Phosphoric Esters by The Activation of Alcohols. BCSJ 1971, 44 (12), 3427-3430.
(16) Mitsunobu, O. The Use of Diethyl Azodicarboxylate and Triphenylphosphine in Synthesis and Transformation of Natural Products. Synth. 1981, 1981 (01), 1-28.
(17) Hughes, D. L. Progress in the Mitsunobu Reaction. A Review. OPPI 1996, 28 (2), 127-164.
(18) Hughes, D.; Reamer, R.; Bergan, J.; Grabowski, E. A Mechanistic Study of the Mitsunobu Esterification Reaction. J. Am. Chem. Soc. 1988, 110 (19), 6487-6491.
(19) Hughes, D. L. The Mitsunobu Reaction. Org. react. 2004, 42, 335-656.
(20) von Itzstein, M.; Jenkins, I. D. The Mechanism of the Mitsunobu Reaction. II. Dialkoxytriphenylphosphoranes. Aust. J. Chem. 1983, 36 (3), 557-563.
(21) Harvey, P. J.; von Itzstein, M.; Jenkins, I. D. The Formation of Anhydrides in the Mitsunobu Reaction. Tetrahedron 1997, 53 (11), 3933-3942.
(22) Watanabe, T.; Gridnev, I. D.; Imamoto, T. Synthesis of a New Enantiomerically Pure P‐Chiral Phosphine and Its Use in Probing the Mechanism of the Mitsunobu Reaction. Chirality 2000, 12 (5‐6), 346-351.
(23) McNulty, J.; Capretta, A.; Laritchev, V.; Dyck, J.; Robertson, A. J. DimethylmalonyltrialkylphosphOranes: New General Reagents for Esterification Reactions Allowing Controlled Inversion or Retention of Configuration on Chiral Alcohols. J. Org. Chem. 2003, 68 (4), 1597-1600.
(24) Castro, B. R. Replacement of Alcoholic Hydroxyl Groups by Halogens and Other Nucleophiles via Oxyphosphonium Intermediates. Org. React. 2004, 29, 1-162.
(25) Nune, S. K. Mitsunobu Reagent [Triphenyl-Phosphine (TPP) and Diethyl Azodi-Carboxylate (DEAD)/Diisopropyl Azodicarboxylate (DIAD)]. Synlett 2003, 2003 (08), 1221-1222.
(26) Dandapani, S.; Curran, D. P. Separation‐Friendly Mitsunobu Reactions: A Microcosm of Recent Developments in Separation Strategies. Chem. Eur. J. 2004, 10 (13), 3130-3138.
(27) Dembinski, R. Recent Advances in the Mitsunobu Reaction: Modified Reagents and the Quest for Chromatography‐Free Separation. EurJOC 2004, 2004 (13), 2763-2772.
(28) Wiśniewski, K.; Kołdziejczyk, A. S.; Falkiewicz, B. Applications of the Mitsunobu Reaction in Peptide Chemistry. PSC 1998, 4 (1), 1-14.
(29) Parenty, A.; Moreau, X.; Campagne, J.-M. Macrolactonizations in the Total Synthesis of Natural Products. Chem. Rev. 2006, 106 (3), 911-939.
(30) Ahn, C.; Correia, R.; DeShong, P. Mechanistic Study of the Mitsunobu Reaction. J. Org. Chem. 2002, 67 (6), 1751-1753.
(31) Guanti, G.; Banfi, L.; Basso, A.; Bevilacqua, E.; Bondanza, L.; Riva, R. Efficient Chemoenzymatic Enantioselective Synthesis of Diacylglycerols (DAG). Tetrahedron: Asymmetry 2004, 15 (18), 2889-2892.
(32) Shi, Y.-J.; Hughes, D. L.; McNamara, J. M. Stereospecific Synthesis of Chiral Tertiary Alkyl-Aryl Ethers via Mitsunobu Reaction with Complete Inversion of Configuration. Tetrahedron lett. 2003, 44 (18), 3609-3611.
(33) Schenk, S.; Weston, J.; Anders, E. Density Functional Investigation of the Mitsunobu Reaction. J. Am. Chem. Soc. 2005, 127 (36), 12566-12576.
(34) Fitzjarrald, V. P.; Pongdee, R. A Convenient Procedure for the Esterification of Benzoic Acids with Phenols: a New Application for the Mitsunobu Reaction. Tetrahedron lett. 2007, 48 (20), 3553-3557.
(35) Dodge, J. A.; Trujillo, J. I.; Presnell, M. Effect of the Acidic Component on the Mitsunobu Inversion of A Sterically Hindered Alcohol. J. Org. Chem. 1994, 59 (1), 234-236.
(36) But, T. Y. S.; Toy, P. H. The Mitsunobu Reaction: Origin, Mechanism, Improvements, and Applications. Chem. Asian J. 2007, 2 (11), 1340-1355.
(37) Swamy, K. K.; Kumar, N. B.; Balaraman, E.; Kumar, K. P. Mitsunobu and Related Reactions: Advances and Applications. Chemical reviews 2009, 109 (6), 2551-2651.
(38) Wittig, G.; Geissler, G. Zur Reaktionsweise des Pentaphenyl‐phosphors und einiger Derivate. Justus Liebigs Ann. Chem. 1953, 580 (1), 44-57.
(39) Staudinger, H.; Meyer, J. Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und Phosphinimine. Helv. Chim. Acta 1919, 2, 635-646.
(40) Appel, R. Tertiary Phosphane/Tetrachloromethane, a Versatile Reagent for Chlorination, Dehydration, and P-N Linkage. Angew. Chem., Int. Ed. Engl. 1975, 14 (12), 801-811.
(41) Corey, E.; Fuchs, P. A Synthetic Method for Formyl→ Ethynyl Conversion. Tetrahedron Lett. 1972, 13 (36), 3769-3772.
(42) Fletcher, S. The Mitsunobu Reaction in the 21 st Century. Org. Chem. Front. 2015, 2 (6), 739-752.
(43) Beddoe, R. H.; Sneddon, H. F.; Denton, R. M. The Catalytic Mitsunobu Reaction: a Critical Analysis of the Turrent State-of-the-Art. OBC 2018, 16 (42), 7774-7781.
(44) Tamboli, Y.; Kashid, B. B.; Yadav, R. P.; Rafeeq, M.; Yeole, R.; Merwade, A. Y. Triphenylphosphine Oxide Removal from Reactions: The Role of Solvent and Temperature. ACS Omega 2021, 6 (21), 13940-13945.
(45) Hergueta, A. R. Easy Removal of Triphenylphosphine Oxide from Reaction Mixtures by Precipitation with CaBr2. OPR&D 2022, 26 (6), 1845-1853.
(46) Lee, T.; Kuo, C.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Technol. Int. 2006, 30 (10).
(47) Grosse Daldrup, J.-B.; Held, C.; Ruether, F.; Schembecker, G.; Sadowski, G. Measurement and Modeling Solubility of Aqueous Multisolute Amino-Acid Solutions. Ind. Eng. Chem. Res. 2010, 49 (3), 1395-1401.
(48) Gimeno, P.; Bousquet, C.; Lassu, N.; Maggio, A.-F.; Civade, C.; Brenier, C.; Lempereur, L. High-Performance Liquid Chromatography Method for the Determination of Hydrogen Peroxide Present or Released in Teeth Bleaching Kits and Hair Cosmetic Products. JPBA 2015, 107, 386-393.
(49) Deacon, G.; Green, J. Vibrational Spectra of Ligands and Complexes—II Infra-Red Spectra (3650–375 cm− 1 of Triphenyl-Phosphine, Triphenylphosphine Oxide, and Their Complexes. SAA 1968, 24 (7), 845-852.
(50) Hu, F.-H.; Wang, L.-S.; Cai, S.-F. Solubilities of Triphenylphosphine Oxide in Selected Solvents. JCED 2009, 54 (4), 1382-1384.
(51) Horrocks, A.; Davies, P.; Kandola, B. K.; Alderson, A. The Potential for Volatile Phosphorus-Containing Flame Retardants in Textile Back-Coatings. J. Fire Sci. 2007, 25 (6), 523-540.
(52) Xu, S.; Wang, H. A New Entrainer for Separation of Tetrahydrofuran–Water Azeotropic Mixture by Extractive Distillation. Chem. Eng. Process. 2006, 45 (11), 954-958.
(53) Tsunoda, T.; Kaku, H.; Itô, S. New Mitsunobu Reagents. Tcimail: 2004.
(54) Lee, T.; Lin, M. S. Sublimation Point Depression of Tris (8-hydroxyquinoline) Aluminum (III)(Alq3) by Crystal Engineering. Cryst. Growth Des. 2007, 7 (9), 1803-1810. |