參考文獻 |
〔1〕Yamaguchi, M.; Dimroth, F.; Geisz, J. F.; Ekins-Daukes, N. J., “Multi-junction solar cells paving the way for super high-efficiency.” Journal of Applied Physics. 2021, 129 (24)
〔2〕Ahmadpanah, F. S.; Orouji, A. A.; Gharibshahian, I., “Improving the efficiency of CIGS solar cells using an optimized p-type CZTSSe electron reflector layer.” Journal of Materials Science: Materials in Electronics. 2021, 32 (17), 22535-47.
〔3〕Wu, Y.; Fan, Q.; Fan, B.; Qi, F.; Wu, Z.; Lin, F. R.; Li, Y.; Lee, C.-S.; Woo, H. Y.; Yip, H.-L., “Non-fullerene acceptor doped block copolymer for efficient and stable organic solar cells.” ACS Energy Letters 2022, 7 (7), 2196-202.
〔4〕Chang, P.-H.; Sil, M. C.; Reddy, K. S. K.; Lin, C.-H.; Chen, C.-M., “Polyimide-based covalent organic framework as a photocurrent enhancer for efficient dye-sensitized solar cells.” ACS applied materials & interfaces 2022, 14 (22), 25466-77.
〔5〕Kim, H.; Lim, J.; Sohail, M.; Nazeeruddin, M. K., “Superhalogen passivation for efficient and stable perovskite solar cells.” Solar Rrl 2022, 6 (7), 2200013.
〔6〕Lu, H.; Liu, Y.; Ahlawat, P.; Mishra, A.; Tress, W. R.; Eickemeyer, F. T.; Yang, Y.; Fu, F.; Wang, Z.; Avalos, C. E., “Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells.” Science 2020, 370 (6512), eabb8985.
〔7〕Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E., “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.” Scientific reports 2012, 2 (1), 591.
〔8〕Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y., “Interface engineering of highly efficient perovskite solar cells.” Science 2014, 345 (6196), 542-46.
〔9〕Kim, G.; Min, H.; Lee, K. S.; Lee, D. Y.; Yoon, S. M.; Seok, S. I., “Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells.” Science 2020, 370 (6512), 108-12.
〔10〕Schulz, P., “Interface design for metal halide perovskite solar cells.” ACS Energy Letters 2018, 3 (6), 1287-93.
〔11〕Aktas, E.; Rajamanickam, N.; Pascual, J.; Hu, S.; Aldamasy, M. H.; Di Girolamo, D.; Li, W.; Nasti, G.; Martínez-Ferrero, E.; Wakamiya, A., “Challenges and strategies toward long-term stability of lead-free tin-based perovskite solar cells.” Communications Materials 2022, 3 (1), 104.
〔12〕Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.” Journal of the American chemical society 2009, 131 (17), 6050-51.
〔13〕Wu, B.; Fu, K.; Yantara, N.; Xing, G.; Sun, S.; Sum, T. C.; Mathews, N., “Charge accumulation and hysteresis in perovskite‐based solar cells: An electro‐optical analysis.” Advanced Energy Materials 2015, 5 (19), 1500829.
〔14〕Nemnes, G. A.; Besleaga, C.; Stancu, V.; Dogaru, D. E.; Leonat, L. N.; Pintilie, L.; Torfason, K.; Ilkov, M.; Manolescu, A.; Pintilie, I., “Normal and inverted hysteresis in perovskite solar cells.” The Journal of Physical Chemistry C 2017, 121 (21), 11207-14.
〔15〕Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., “Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency.” Energy & Environmental Science 2015, 8 (5), 1602-08.
〔16〕Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G., “Recent progress in electron transport layers for efficient perovskite solar cells.” Journal of Materials Chemistry A 2016, 4 (11), 3970-90.
〔17〕Said, A. A.; Xie, J.; Zhang, Q., “Recent progress in organic electron transport materials in inverted perovskite solar cells.” Small 2019, 15 (27), 1900854.
〔18〕Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.” Nano letters 2013, 13 (4), 1764-69.
〔19〕Yu, H.; Ryu, J.; Lee, J. W.; Roh, J.; Lee, K.; Yun, J.; Lee, J.; Kim, Y. K.; Hwang, D.; Kang, J., “Large grain-based hole-blocking layer-free planar-type perovskite solar cell with best efficiency of 18.20%.” ACS Applied materials & interfaces 2017, 9 (9), 8113-20.
〔20〕Liu, X.; Shi, X.; Liu, C.; Ren, Y.; Wu, Y.; Yang, W.; Alsaedi, A.; Hayat, T.; Kong, F.; Liu, X., “A simple carbazole-triphenylamine hole transport material for perovskite solar cells.” The Journal of Physical Chemistry C 2018, 122 (46), 26337-43.
〔21〕Sun, N.; Gao, W.; Dong, H.; Liu, Y.; Liu, X.; Wu, Z.; Song, L.; Ran, C.; Chen, Y., “Architecture of pin Sn-based perovskite solar cells: characteristics, advances, and perspectives.” ACS Energy Letters 2021, 6 (8), 2863-75.
〔22〕Han, G. S.; Kim, J.; Bae, S.; Han, S.; Kim, Y. J.; Gong, O. Y.; Lee, P.; Ko, M. J.; Jung, H. S., “Spin-coating process for 10 cm× 10 cm perovskite solar modules enabled by self-assembly of SnO2 nanocolloids.” ACS Energy Letters 2019, 4 (8), 1845-51.
〔23〕Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A., “Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance.” Science 2016, 354 (6309), 206-09.
〔24〕Hu, H.; Ren, Z.; Fong, P. W.; Qin, M.; Liu, D.; Lei, D.; Lu, X.; Li, G., “Room‐temperature meniscus coating of > 20% perovskite solar cells: a film formation mechanism investigation.” Advanced Functional Materials 2019, 29 (25), 1900092.
〔25〕Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A., “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency.” Energy & environmental science 2016, 9 (6), 1989-97.
〔26〕Kung, P. K.; Li, M. H.; Lin, P. Y.; Chiang, Y. H.; Chan, C. R.; Guo, T. F.; Chen, P., “A review of inorganic hole transport materials for perovskite solar cells.” Advanced Materials Interfaces 2018, 5 (22), 1800882.
〔27〕Ren, G.; Han, W.; Deng, Y.; Wu, W.; Li, Z.; Guo, J.; Bao, H.; Liu, C.; Guo, W., “Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review.” Journal of Materials Chemistry A 2021, 9 (8), 4589-625.
〔28〕Wang, K.-C.; Shen, P.-S.; Li, M.-H.; Chen, S.; Lin, M.-W.; Chen, P.; Guo, T.-F., “Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells.” ACS applied materials & interfaces 2014, 6 (15), 11851-58.
〔29〕Ge, Q. Q.; Shao, J. Y.; Ding, J.; Deng, L. Y.; Zhou, W. K.; Chen, Y. X.; Ma, J. Y.; Wan, L. J.; Yao, J.; Hu, J. S., “A two‐dimensional hole‐transporting material for high‐performance perovskite solar cells with 20% average efficiency.” Angewandte Chemie 2018, 130 (34), 11125-31.
〔30〕Shen, C.; Wu, Y.; Zhang, H.; Li, E.; Zhang, W.; Xu, X.; Wu, W.; Tian, H.; Zhu, W. H., “Semi‐locked tetrathienylethene as a building block for hole‐transporting materials: toward efficient and stable perovskite solar cells.” Angewandte Chemie International Edition 2019, 58 (12), 3784-89.
〔31〕Zhao, J.; Zheng, X.; Deng, Y.; Li, T.; Shao, Y.; Gruverman, A.; Shield, J.; Huang, J., Is “Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?” Energy & Environmental Science 2016, 9 (12), 3650-56.
〔32〕Yildirim, O.; Bonomo, M.; Barbero, N.; Atzori, C.; Civalleri, B.; Bonino, F.; Viscardi, G.; Barolo, C., “Application of metal-organic frameworks and covalent organic frameworks as (photo) active material in hybrid photovoltaic technologies.” Energies 2020, 13 (21), 5602.
〔33〕Song, Z.; Watthage, S. C.; Phillips, A. B.; Heben, M. J., “Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications.” Journal of photonics for energy 2016, 6 (2), 022001-01.
〔34〕Wang, Y.; Liao, Q.; Chen, J.; Huang, W.; Zhuang, X.; Tang, Y.; Li, B.; Yao, X.; Feng, X.; Zhang, X., “Teaching an old anchoring group new tricks: enabling low-cost, eco-friendly hole-transporting materials for efficient and stable perovskite solar cells.” Journal of the American Chemical Society 2020, 142 (39), 16632-43.
〔35〕Huang, J.; Yang, J.; Sun, H.; Feng, K.; Liao, Q.; Li, B.; Yan, H.; Guo, X., “A Cost‐Effective D‐A‐D Type Hole‐Transport Material Enabling 20% Efficiency Inverted Perovskite Solar Cells.” Chinese Journal of Chemistry 2021, 39 (6), 1545-52.
〔36〕Ou, Y.; Sun, A.; Li, H.; Wu, T.; Zhang, D.; Xu, P.; Zhao, R.; Zhu, L.; Wang, R.; Xu, B., “Developing D–π–D hole-transport materials for perovskite solar cells: the effect of the π-bridge on device performance.” Materials Chemistry Frontiers 2021, 5 (2), 876-84.
〔37〕Niu, T.; Zhu, W.; Zhang, Y.; Xue, Q.; Jiao, X.; Wang, Z.; Xie, Y.-M.; Li, P.; Chen, R.; Huang, F., “D-A-π-A-D-type dopant-free hole transport material for low-cost, efficient, and stable perovskite solar cells.” Joule 2021, 5 (1), 249-69.
〔38〕Zhu, H.; Shen, Z.; Pan, L.; Han, J.; Eickemeyer, F. T.; Ren, Y.; Li, X.; Wang, S.; Liu, H.; Dong, X., “Low-cost dopant additive-free hole-transporting material for a robust perovskite solar cell with efficiency exceeding 21%.” ACS Energy Letters 2020, 6 (1), 208-15.
〔39〕Lee, K.-M.; Yang, J.-Y.; Lai, P.-S.; Luo, K.-J.; Yang, T.-Y.; Liau, K.-L.; Abate, S. Y.; Lin, Y.-D., “A star-shaped cyclopentadithiophene-based dopant-free hole-transport material for high-performance perovskite solar cells.” Chemical Communications 2021, 57 (52), 6444-47.
〔40〕Wu, B.; Fu, Q.; Sun, L.; Liu, Y.; Sun, Z.; Xue, S.; Liu, Y.; Liang, M., “Conjugation engineering of spiro-based hole transport materials for efficient and stable perovskite solar cells.” ACS Energy Letters 2022, 7 (8), 2667-76.
〔41〕Jia, J.; Zhang, Y.; Duan, L.; Wu, Q.; Chen, Y.; Xue, S., “An asymmetrically substituted dithieno [3, 2-b: 2′, 3′-d] pyrrole organic small-molecule hole-transporting material for high-performance perovskite solar cells.” Chinese Journal of Chemical Engineering 2022, 45, 51-57.
〔42〕Ali, F.; Roldán‐Carmona, C.; Sohail, M.; Nazeeruddin, M. K., “Applications of self‐assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability.” Advanced Energy Materials 2020, 10 (48), 2002989.
〔43〕Kim, S. Y.; Cho, S. J.; Byeon, S. E.; He, X.; Yoon, H. J., “Self‐assembled monolayers as interface engineering nanomaterials in perovskite solar cells.” Advanced Energy Materials 2020, 10 (44), 2002606.
〔44〕Almasabi, K.; Zheng, X.; Turedi, B.; Alsalloum, A. Y.; Lintangpradipto, M. N.; Yin, J.; Gutiérrez-Arzaluz, L.; Kotsovos, K.; Jamal, A.; Gereige, I., “Hole-transporting self-assembled monolayer enables efficient single-crystal perovskite solar cells with enhanced stability.” ACS Energy Letters 2023, 8 (2), 950-56.
〔45〕Liu, X.; Ma, S.; Ding, Y.; Gao, J.; Liu, X.; Yao, J.; Dai, S., “Molecular engineering of simple carbazole‐triphenylamine hole transporting materials by replacing benzene with pyridine unit for perovskite solar cells.” Solar Rrl 2019, 3 (5), 1800337.
〔46〕Ma, S.; Liu, X.; Zhang, X.; Ghadari, R.; Ding, Y.; Cai, M.; Dai, S., “Introducing ammonium salt into hole transporting materials for perovskite solar cells.” Chemical Communications 2020, 56 (92), 14471-74.
〔47〕Tingare, Y. S.; Lin, C.-H.; Su, C.; Chou, S.-C.; Hsu, Y.-C.; Ghosh, D.; Lai, N.-W.; Lew, X.-R.; Tretiak, S.; Tsai, H., “Ionization of hole-transporting materials as a method for improving the photovoltaic performance of perovskite solar cells.” Journal of Materials Chemistry A 2024, 12 (4), 2140-50.
〔48〕Hung, C.-M.; Lin, J.-T.; Yang, Y.-H.; Liu, Y.-C.; Gu, M.-W.; Chou, T.-C.; Wang, S.-F.; Chen, Z.-Q.; Wu, C.-C.; Chen, L.-C., “Modulation of Perovskite Grain Boundaries by Electron Donor–Acceptor Zwitterions R, R-Diphenylamino-phenyl-pyridinium-(CH2) n-sulfonates: All-Round Improvement on the Solar Cell Performance.” JACS Au 2022, 2 (5), 1189-99.
〔49〕Li, T.-Y.; Su, C.; Akula, S. B.; Sun, W.-G.; Chien, H.-M.; Li, W.-R., “New pyridinium ylide dyes for dye sensitized solar cell applications.” Organic letters 2016, 18 (14), 3386-89.
〔50〕Wang, J.; Liu, Y.; Xiao, X.; Bi, Z.; Lu, Y.; Sheng, G.; Cai, X.; Zhu, Y.; Xu, X.; Xu, G., “An efficient post-treatment strategy with acetylacetone for low temperature CsPbI2Br solar cells.” Solar Energy 2021, 216, 7-13.
〔51〕Wang, R.; Gao, H.; Yu, R.; Jia, H.; Ma, Z.; He, Z.; Zhang, Y.; Yang, J.; Zhang, L.; Tan, Z. a., “β-Diketone Coordination Strategy for Highly Efficient and Stable Pb–Sn Mixed Perovskite Solar Cells.” The Journal of Physical Chemistry Letters 2021, 12 (49), 11772-78. |