博碩士論文 111223016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:106 、訪客IP:3.145.41.173
姓名 楊璿毓(Hsuan-Yu Yang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 合成吡啶偶極體及二烯醇作為電洞傳輸材料並探討螯合作用對於反式鈣鈦礦太陽能電池性能的影響
(Synthesis of Pyridinium Ylide and Dienols Based Hole Transporting Materials to Investigate the Chelation Effects on the Performance of the Inverted Perovskite Solar Cells)
相關論文
★ 固相組合式合成Dioxopiperazine與Carbolinone衍生物★ 一、開發組合式藥物合成所需具安全閥(Safety Catch)之鍵鏈劑 二、開發新型紫外光吸收劑
★ 1. 固相組合式合成benzoimidazolone 衍生物 2. 研發新型有機盤狀液晶★ 一、液相合成carbolinone衍生物 二、有機雜環液晶之合成與探討
★ 1. 具安全閥(safety-catch)之新型鍵鏈劑應用於組合式化學之合成 2. 合成含羧酸基短鏈式之有機污染衍生物★ 合成新穎非可逆擬胜肽小分子蛋 白質酪胺酸磷酸酶 1B 抑制劑
★ 固相組合式合成Isoquinolinone及Carbolinone 衍生物★ 利用固相合成方法開發新型紫外線吸收劑 (UV-absorbers)
★ 研發及製備銥(Ir)金屬環狀錯合物之 新型Ligand★ 合成銥金屬錯合物發光材料
★ 開發固相合成法製備銥(Ir)錯合物之發光體★ 1.合成環境荷爾蒙烷基酚聚乙氧基酸衍生物 2.固相組合式合成蛋白質酪胺酸磷酸
★ 設計與合成銥金屬錯合物藍光材料★ 開發可應用於組合式合成烯類化合物之新型具安全閥鍵鏈劑
★ 利用有機金屬組合式合成加速紅色磷光材料的篩選與開發★ 固相組合式合成新穎蛋白質酪胺酸磷酸酶1B抑制劑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-5以後開放)
摘要(中) 這些年來,有機材料作為的太陽能電池,如有機光伏(OPVs)、染料敏化太陽能電池(DSSCs)和鈣鈦礦太陽能電池 (PSCs),其發展受到了廣泛的注目及重視。當中又以鈣鈦礦太陽能電池 (PSCs)最受期待及具有極高的發展潛能。2009年鈣鈦礦被作為太陽能電池材料,時至今日,已經從原先的3.9%到現在的26.1%。
本篇研究設計並合成出兩系列的電洞傳輸材料(HTMs)並將其運用在反式鈣鈦礦太陽能電池中。第一系列為TCPS series,以Triphenylamine作為Donor、Carbazole作為π-bridge、Pyridine作為Acceptor並在末端接上Anchoring group。形成這種以「推電子基團→π共軛系統→拉電子基團= 錨定基團」為架構的Pyridinium衍生物。末端錨定基團以烯醇的形式能延長整體的共軛長度,使整體具有更好的電洞遷移率。第二系列為DE series以乙醯丙酮作為Acceptor旁邊接上一個碳設計出具有兩個enol form的分子結構,並在一端接上作為Donor的 Triphenylamine,而另一端則引入不同推電子基團來延長整體的共軛性,提升電洞遷移率。這兩系列也能藉由enol form與鈣鈦礦吸光層上未配位的鉛離子產生作用力鈍化缺陷,並且經由螯合作用吸附在ITO基板上,藉此改善界面特性,提高電荷傳輸效率,進一步探討對元件性能的影響。
摘要(英) In recent years, solar cells based on organic materials, such as Organic Photovoltaics (OPVs), Dye-Sensitized Solar Cells (DSSCs), and Perovskite Solar Cells (PSCs), have garnered widespread attention and focus. Among these, Perovskite Solar Cells (PSCs) are the most anticipated and have shown tremendous potential for development. Since perovskites were first used as solar cell materials in 2009, their efficiency has increased significantly from an initial 3.9% to the current 26.1%.
This study designed and synthesized two series of hole transport materials (HTMs) and applied them in inverted perovskite solar cells. The first series, named the TCPS series, uses triphenylamine as the donor, carbazole as the π-bridge, and pyridine as the acceptor, with an anchoring group attached at the end. This forms a pyridinium derivative with a "Donor → π-conjugated system → Acceptor = Anchoring group" structure. The terminal anchoring group, in the form of an enol, extends the overall conjugation length, resulting in improved hole mobility.The second series, referred to as the DE series, uses acetylacetone as the acceptor, with a carbon adjacent to it to design a molecular structure featuring two enol forms. Triphenylamine, serving as the donor, is attached at one end, while different electron-donating groups are introduced at the other end to further extend the conjugation and enhance hole mobility. These two series can also interact with uncoordinated lead ions in the perovskite absorber layer through the enol form to passivate defects. Additionally, they can adsorb onto the ITO substrate through chelation, thereby improving interfacial properties and charge transport efficiency. The impact on device performance is further explored.
關鍵字(中) ★ 鈣鈦礦太陽能電池 關鍵字(英) ★ Perovskite Solar Cells
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 ix
一、緒論 1
1-1 前言 1
1-2太陽能電池 (Solar Cell) 3
1-3鈣鈦礦太陽能電池 5
1-3-1電池元件之基本架構 7
1-3-2鈣鈦礦太陽能電池之工作原理 11
1-3-3鈣鈦礦太陽能電池之元件製程 12
1-4太陽能電池之光伏參數及其相關特性 13
1-5電洞傳輸層材料之文獻回顧 16
1-5-1線型結構(Linear-type) 16
1-5-2星型結構(Star-shape type) 20
1-5-3螺旋型結構(Spiro type) 22
1-5-4不對稱型結構(Asymmetric type) 24
1-6自組裝單層膜(Self-Assembled Monolayers, SAMs) 25
1-6-1 SAMs之基本架構 26
1-6-2 SAMs之吸附機制 27
1-6-3 SAMs之文獻回顧 28
二、結構設計概念 30
2-1 TCPS series 30
2-2 DE series 36
三、結果與討論 40
3-1 TCPS series 40
3-1-1合成策略 40
3-1-2密度泛函理論計算(Density Functional Theory, DFT) 44
3-1-3 光物理性質探討 52
3-1-4 電化學之性質探討 54
3-1-5 熱穩定性分析 59
3-2 DE series 60
3-2-1合成策略 60
3-2-2密度泛函理論計算(Density Functional Theory, DFT) 62
四、結論及未來展望 68
4-1 TCPS series 68
4-2 DE series 69
五、實驗步驟、藥品及儀器 70
5-1實驗步驟 70
5-1-1 TCPS series 70
5-1-2 DE series 77
5-2藥品 80
5-3實驗儀器 81
參考文獻 83
附錄 90
參考文獻 〔1〕Yamaguchi, M.; Dimroth, F.; Geisz, J. F.; Ekins-Daukes, N. J., “Multi-junction solar cells paving the way for super high-efficiency.” Journal of Applied Physics. 2021, 129 (24)
〔2〕Ahmadpanah, F. S.; Orouji, A. A.; Gharibshahian, I., “Improving the efficiency of CIGS solar cells using an optimized p-type CZTSSe electron reflector layer.” Journal of Materials Science: Materials in Electronics. 2021, 32 (17), 22535-47.
〔3〕Wu, Y.; Fan, Q.; Fan, B.; Qi, F.; Wu, Z.; Lin, F. R.; Li, Y.; Lee, C.-S.; Woo, H. Y.; Yip, H.-L., “Non-fullerene acceptor doped block copolymer for efficient and stable organic solar cells.” ACS Energy Letters 2022, 7 (7), 2196-202.
〔4〕Chang, P.-H.; Sil, M. C.; Reddy, K. S. K.; Lin, C.-H.; Chen, C.-M., “Polyimide-based covalent organic framework as a photocurrent enhancer for efficient dye-sensitized solar cells.” ACS applied materials & interfaces 2022, 14 (22), 25466-77.
〔5〕Kim, H.; Lim, J.; Sohail, M.; Nazeeruddin, M. K., “Superhalogen passivation for efficient and stable perovskite solar cells.” Solar Rrl 2022, 6 (7), 2200013.
〔6〕Lu, H.; Liu, Y.; Ahlawat, P.; Mishra, A.; Tress, W. R.; Eickemeyer, F. T.; Yang, Y.; Fu, F.; Wang, Z.; Avalos, C. E., “Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells.” Science 2020, 370 (6512), eabb8985.
〔7〕Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E., “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.” Scientific reports 2012, 2 (1), 591.
〔8〕Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y., “Interface engineering of highly efficient perovskite solar cells.” Science 2014, 345 (6196), 542-46.
〔9〕Kim, G.; Min, H.; Lee, K. S.; Lee, D. Y.; Yoon, S. M.; Seok, S. I., “Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells.” Science 2020, 370 (6512), 108-12.
〔10〕Schulz, P., “Interface design for metal halide perovskite solar cells.” ACS Energy Letters 2018, 3 (6), 1287-93.

〔11〕Aktas, E.; Rajamanickam, N.; Pascual, J.; Hu, S.; Aldamasy, M. H.; Di Girolamo, D.; Li, W.; Nasti, G.; Martínez-Ferrero, E.; Wakamiya, A., “Challenges and strategies toward long-term stability of lead-free tin-based perovskite solar cells.” Communications Materials 2022, 3 (1), 104.
〔12〕Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.” Journal of the American chemical society 2009, 131 (17), 6050-51.
〔13〕Wu, B.; Fu, K.; Yantara, N.; Xing, G.; Sun, S.; Sum, T. C.; Mathews, N., “Charge accumulation and hysteresis in perovskite‐based solar cells: An electro‐optical analysis.” Advanced Energy Materials 2015, 5 (19), 1500829.
〔14〕Nemnes, G. A.; Besleaga, C.; Stancu, V.; Dogaru, D. E.; Leonat, L. N.; Pintilie, L.; Torfason, K.; Ilkov, M.; Manolescu, A.; Pintilie, I., “Normal and inverted hysteresis in perovskite solar cells.” The Journal of Physical Chemistry C 2017, 121 (21), 11207-14.
〔15〕Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., “Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency.” Energy & Environmental Science 2015, 8 (5), 1602-08.
〔16〕Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G., “Recent progress in electron transport layers for efficient perovskite solar cells.” Journal of Materials Chemistry A 2016, 4 (11), 3970-90.
〔17〕Said, A. A.; Xie, J.; Zhang, Q., “Recent progress in organic electron transport materials in inverted perovskite solar cells.” Small 2019, 15 (27), 1900854.
〔18〕Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.” Nano letters 2013, 13 (4), 1764-69.
〔19〕Yu, H.; Ryu, J.; Lee, J. W.; Roh, J.; Lee, K.; Yun, J.; Lee, J.; Kim, Y. K.; Hwang, D.; Kang, J., “Large grain-based hole-blocking layer-free planar-type perovskite solar cell with best efficiency of 18.20%.” ACS Applied materials & interfaces 2017, 9 (9), 8113-20.
〔20〕Liu, X.; Shi, X.; Liu, C.; Ren, Y.; Wu, Y.; Yang, W.; Alsaedi, A.; Hayat, T.; Kong, F.; Liu, X., “A simple carbazole-triphenylamine hole transport material for perovskite solar cells.” The Journal of Physical Chemistry C 2018, 122 (46), 26337-43.
〔21〕Sun, N.; Gao, W.; Dong, H.; Liu, Y.; Liu, X.; Wu, Z.; Song, L.; Ran, C.; Chen, Y., “Architecture of pin Sn-based perovskite solar cells: characteristics, advances, and perspectives.” ACS Energy Letters 2021, 6 (8), 2863-75.
〔22〕Han, G. S.; Kim, J.; Bae, S.; Han, S.; Kim, Y. J.; Gong, O. Y.; Lee, P.; Ko, M. J.; Jung, H. S., “Spin-coating process for 10 cm× 10 cm perovskite solar modules enabled by self-assembly of SnO2 nanocolloids.” ACS Energy Letters 2019, 4 (8), 1845-51.
〔23〕Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A., “Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance.” Science 2016, 354 (6309), 206-09.
〔24〕Hu, H.; Ren, Z.; Fong, P. W.; Qin, M.; Liu, D.; Lei, D.; Lu, X.; Li, G., “Room‐temperature meniscus coating of > 20% perovskite solar cells: a film formation mechanism investigation.” Advanced Functional Materials 2019, 29 (25), 1900092.
〔25〕Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A., “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency.” Energy & environmental science 2016, 9 (6), 1989-97.
〔26〕Kung, P. K.; Li, M. H.; Lin, P. Y.; Chiang, Y. H.; Chan, C. R.; Guo, T. F.; Chen, P., “A review of inorganic hole transport materials for perovskite solar cells.” Advanced Materials Interfaces 2018, 5 (22), 1800882.
〔27〕Ren, G.; Han, W.; Deng, Y.; Wu, W.; Li, Z.; Guo, J.; Bao, H.; Liu, C.; Guo, W., “Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review.” Journal of Materials Chemistry A 2021, 9 (8), 4589-625.
〔28〕Wang, K.-C.; Shen, P.-S.; Li, M.-H.; Chen, S.; Lin, M.-W.; Chen, P.; Guo, T.-F., “Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells.” ACS applied materials & interfaces 2014, 6 (15), 11851-58.
〔29〕Ge, Q. Q.; Shao, J. Y.; Ding, J.; Deng, L. Y.; Zhou, W. K.; Chen, Y. X.; Ma, J. Y.; Wan, L. J.; Yao, J.; Hu, J. S., “A two‐dimensional hole‐transporting material for high‐performance perovskite solar cells with 20% average efficiency.” Angewandte Chemie 2018, 130 (34), 11125-31.
〔30〕Shen, C.; Wu, Y.; Zhang, H.; Li, E.; Zhang, W.; Xu, X.; Wu, W.; Tian, H.; Zhu, W. H., “Semi‐locked tetrathienylethene as a building block for hole‐transporting materials: toward efficient and stable perovskite solar cells.” Angewandte Chemie International Edition 2019, 58 (12), 3784-89.
〔31〕Zhao, J.; Zheng, X.; Deng, Y.; Li, T.; Shao, Y.; Gruverman, A.; Shield, J.; Huang, J., Is “Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?” Energy & Environmental Science 2016, 9 (12), 3650-56.
〔32〕Yildirim, O.; Bonomo, M.; Barbero, N.; Atzori, C.; Civalleri, B.; Bonino, F.; Viscardi, G.; Barolo, C., “Application of metal-organic frameworks and covalent organic frameworks as (photo) active material in hybrid photovoltaic technologies.” Energies 2020, 13 (21), 5602.
〔33〕Song, Z.; Watthage, S. C.; Phillips, A. B.; Heben, M. J., “Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications.” Journal of photonics for energy 2016, 6 (2), 022001-01.
〔34〕Wang, Y.; Liao, Q.; Chen, J.; Huang, W.; Zhuang, X.; Tang, Y.; Li, B.; Yao, X.; Feng, X.; Zhang, X., “Teaching an old anchoring group new tricks: enabling low-cost, eco-friendly hole-transporting materials for efficient and stable perovskite solar cells.” Journal of the American Chemical Society 2020, 142 (39), 16632-43.
〔35〕Huang, J.; Yang, J.; Sun, H.; Feng, K.; Liao, Q.; Li, B.; Yan, H.; Guo, X., “A Cost‐Effective D‐A‐D Type Hole‐Transport Material Enabling 20% Efficiency Inverted Perovskite Solar Cells.” Chinese Journal of Chemistry 2021, 39 (6), 1545-52.
〔36〕Ou, Y.; Sun, A.; Li, H.; Wu, T.; Zhang, D.; Xu, P.; Zhao, R.; Zhu, L.; Wang, R.; Xu, B., “Developing D–π–D hole-transport materials for perovskite solar cells: the effect of the π-bridge on device performance.” Materials Chemistry Frontiers 2021, 5 (2), 876-84.
〔37〕Niu, T.; Zhu, W.; Zhang, Y.; Xue, Q.; Jiao, X.; Wang, Z.; Xie, Y.-M.; Li, P.; Chen, R.; Huang, F., “D-A-π-A-D-type dopant-free hole transport material for low-cost, efficient, and stable perovskite solar cells.” Joule 2021, 5 (1), 249-69.
〔38〕Zhu, H.; Shen, Z.; Pan, L.; Han, J.; Eickemeyer, F. T.; Ren, Y.; Li, X.; Wang, S.; Liu, H.; Dong, X., “Low-cost dopant additive-free hole-transporting material for a robust perovskite solar cell with efficiency exceeding 21%.” ACS Energy Letters 2020, 6 (1), 208-15.
〔39〕Lee, K.-M.; Yang, J.-Y.; Lai, P.-S.; Luo, K.-J.; Yang, T.-Y.; Liau, K.-L.; Abate, S. Y.; Lin, Y.-D., “A star-shaped cyclopentadithiophene-based dopant-free hole-transport material for high-performance perovskite solar cells.” Chemical Communications 2021, 57 (52), 6444-47.
〔40〕Wu, B.; Fu, Q.; Sun, L.; Liu, Y.; Sun, Z.; Xue, S.; Liu, Y.; Liang, M., “Conjugation engineering of spiro-based hole transport materials for efficient and stable perovskite solar cells.” ACS Energy Letters 2022, 7 (8), 2667-76.
〔41〕Jia, J.; Zhang, Y.; Duan, L.; Wu, Q.; Chen, Y.; Xue, S., “An asymmetrically substituted dithieno [3, 2-b: 2′, 3′-d] pyrrole organic small-molecule hole-transporting material for high-performance perovskite solar cells.” Chinese Journal of Chemical Engineering 2022, 45, 51-57.
〔42〕Ali, F.; Roldán‐Carmona, C.; Sohail, M.; Nazeeruddin, M. K., “Applications of self‐assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability.” Advanced Energy Materials 2020, 10 (48), 2002989.
〔43〕Kim, S. Y.; Cho, S. J.; Byeon, S. E.; He, X.; Yoon, H. J., “Self‐assembled monolayers as interface engineering nanomaterials in perovskite solar cells.” Advanced Energy Materials 2020, 10 (44), 2002606.
〔44〕Almasabi, K.; Zheng, X.; Turedi, B.; Alsalloum, A. Y.; Lintangpradipto, M. N.; Yin, J.; Gutiérrez-Arzaluz, L.; Kotsovos, K.; Jamal, A.; Gereige, I., “Hole-transporting self-assembled monolayer enables efficient single-crystal perovskite solar cells with enhanced stability.” ACS Energy Letters 2023, 8 (2), 950-56.
〔45〕Liu, X.; Ma, S.; Ding, Y.; Gao, J.; Liu, X.; Yao, J.; Dai, S., “Molecular engineering of simple carbazole‐triphenylamine hole transporting materials by replacing benzene with pyridine unit for perovskite solar cells.” Solar Rrl 2019, 3 (5), 1800337.
〔46〕Ma, S.; Liu, X.; Zhang, X.; Ghadari, R.; Ding, Y.; Cai, M.; Dai, S., “Introducing ammonium salt into hole transporting materials for perovskite solar cells.” Chemical Communications 2020, 56 (92), 14471-74.
〔47〕Tingare, Y. S.; Lin, C.-H.; Su, C.; Chou, S.-C.; Hsu, Y.-C.; Ghosh, D.; Lai, N.-W.; Lew, X.-R.; Tretiak, S.; Tsai, H., “Ionization of hole-transporting materials as a method for improving the photovoltaic performance of perovskite solar cells.” Journal of Materials Chemistry A 2024, 12 (4), 2140-50.
〔48〕Hung, C.-M.; Lin, J.-T.; Yang, Y.-H.; Liu, Y.-C.; Gu, M.-W.; Chou, T.-C.; Wang, S.-F.; Chen, Z.-Q.; Wu, C.-C.; Chen, L.-C., “Modulation of Perovskite Grain Boundaries by Electron Donor–Acceptor Zwitterions R, R-Diphenylamino-phenyl-pyridinium-(CH2) n-sulfonates: All-Round Improvement on the Solar Cell Performance.” JACS Au 2022, 2 (5), 1189-99.
〔49〕Li, T.-Y.; Su, C.; Akula, S. B.; Sun, W.-G.; Chien, H.-M.; Li, W.-R., “New pyridinium ylide dyes for dye sensitized solar cell applications.” Organic letters 2016, 18 (14), 3386-89.
〔50〕Wang, J.; Liu, Y.; Xiao, X.; Bi, Z.; Lu, Y.; Sheng, G.; Cai, X.; Zhu, Y.; Xu, X.; Xu, G., “An efficient post-treatment strategy with acetylacetone for low temperature CsPbI2Br solar cells.” Solar Energy 2021, 216, 7-13.
〔51〕Wang, R.; Gao, H.; Yu, R.; Jia, H.; Ma, Z.; He, Z.; Zhang, Y.; Yang, J.; Zhang, L.; Tan, Z. a., “β-Diketone Coordination Strategy for Highly Efficient and Stable Pb–Sn Mixed Perovskite Solar Cells.” The Journal of Physical Chemistry Letters 2021, 12 (49), 11772-78.
指導教授 李文仁(Wen-Ren Li) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明