參考文獻 |
[1] W John Thomas F, Crittenden B. Adsorption technology and design. Butterworth-Heinemann; 1998.
[2] Wu Y, Weckhuysen BM. Separation and purification of hydrocarbons with porous materials. Angew Chem Int Ed 2021; 60: 18930-49.
https://doi.org/10.1002/anie.202104318.
[3] Mango FD. The light hydrocarbons in petroleum: A critical review. Org Geochem 1997; 26: 417-40.
https://doi.org/10.1016/S0146-6380(97)00031-4.
[4] AYDIN H, İLKILIÇ C. Air pollution, pollutant emissions and harmful effects. J Eng Technol 2017; 1: 8-15.
https://doi.org/en/pub/jetech/issue/33471/356673.
[5] Bamdad H, Hawboldt K, MacQuarrie S. A review on common adsorbents for acid gases removal: Focus on biochar. Renew Sust Energ Rev 2018; 81: 1705-20.
https://doi.org/10.1016/j.rser.2017.05.261.
[6] Florides GA, Christodoulides P. Global warming and carbon dioxide through sciences. Environ Int 2009; 35: 390-401.
https://doi.org/10.1016/j.envint.2008.07.007.
[7] Saeedi A, Najibi A, Mohammadi-Bardbori A. Effects of long-term exposure to hydrogen sulfide on human red blood cells. J Occup Environ Med 2015; 6: 20.
https://doi.org/10.15171/ijoem.2015.482.
[8] Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc 1938; 60: 309-19.
[9] Wikipedia c, BET theory, in.
[10] Sircar S. Basic research needs for design of adsorptive gas separation processes. Ind Eng Chem Res 2006; 45: 5435-48.
https://doi.org/10.1021/ie051056a.
[11] Yang RT. Adsorbents: Fundamentals and applications. John Wiley & Sons; 2003.
[12] Menéndez-Díaz J, Martín-Gullón I. Types of carbon adsorbents and their production. In: Interface science and technology: Elsevier; 2006, p. 1-47.
[13] Wikipedia c, Adsorption, in.
[14] Sabzehmeidani MM, Mahnaee S, Ghaedi M, Heidari H, Roy VA. Carbon based materials: A review of adsorbents for inorganic and organic compounds. Materials Advances 2021; 2: 598-627.
https://doi.org/10.1039/D0MA00087F.
[15] IndustryARC updated the market research study on “adsorbents Market” - Forecast (2024 - 2030), https://www.linkedin.com/pulse/industryarc-updated-market-research-study-adsorbents-manikanta-b-cy0wc
[16] Crom A, Holley K, Feldblyum J. Implementation of high school level laboratory experiments demonstrating nanoscale porosity in metal–organic frameworks. 2023.
https://doi.org/10.26434/chemrxiv-2023-9tmfh.
[17] Zhou H-C, Long JR, Yaghi OM, Introduction to metal–organic frameworks, in, ACS Publications, 2012, pp. 673-4.
[18] Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science 2013; 341: 1230444.
https://doi.org/10.1126/science.1230444.
[19] Yaghi OM, O′Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials. Nature 2003; 423: 705-14.
https://doi.org/10.1038/nature01650.
[20] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O′Keeffe M, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002; 295: 469-72.
https://doi.org/10.1126/science.1067208.
[21] Albolkany MK, Liu C, Wang Y, Chen CH, Zhu C, Chen X, et al. Molecular surgery at microporous MOF for mesopore generation and renovation. Angew Chem Int Ed 2021; 60: 14601-8.
https://doi.org/10.1002/anie.202103104.
[22] Vermoortele F, Ameloot R, Alaerts L, Matthessen R, Carlier B, Fernandez EVR, et al. Tuning the catalytic performance of metal–organic frameworks in fine chemistry by active site engineering. Journal of Materials Chemistry 2012; 22: 10313-21.
https://doi.org/10.1039/C2JM16030G.
[23] Aggarwal V, Solanki S, Malhotra BD. Applications of metal–organic framework-based bioelectrodes. Chem Sci 2022; 13: 8727-43.
https://doi.org/10.1039/D2SC03441G.
[24] Ahmad M, Luo Y, Wöll C, Tsotsalas M, Schug A. Design of metal-organic framework templated materials using high-throughput computational screening. Molecules 2020; 25: 4875.
https://doi.org/10.3390/molecules25214875
[25] Shahzad K, Mardare AI, Hassel AW. Accelerating materials discovery: combinatorial synthesis, high-throughput characterization, and computational advances. Science and Technology of Advanced Materials: Methods 2024; 4: 2292486.
https://doi.org/10.1080/27660400.2023.2292486.
[26] Xu D, Zhang Q, Huo X, Wang Y, Yang M. Advances in data‐assisted high‐throughput computations for material design. Materials Genome Engineering Advances 2023; 1: e11.
https://doi.org/10.1002/mgea.11.
[27] Cho EH, Lin L-C. Nanoporous material recognition via 3D convolutional neural networks: Prediction of adsorption properties. The journal of physical chemistry letters 2021; 12: 2279-85.
https://doi.org/10.1021/acs.jpclett.1c00293.
[28] Sakamaki Y, Tsuji M, Heidrick Z, Watson O, Durchman J, Salmon C, et al. Preparation and applications of metal-organic frameworks (MOFs): A laboratory activity and demonstration for high school and/or undergraduate students. Journal of chemical education 2020; 97: 1109-16.
https://doi.org/10.1021/acs.jchemed.9b01166.
[29] Chung YG, Haldoupis E, Bucior BJ, Haranczyk M, Lee S, Zhang H, et al. Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: CoRE MOF 2019. J Chem Eng Data 2019; 64: 5985-98.
https://doi.org/10.1021/acs.jced.9b00835.
[30] Wikipedia c, Molecular modelling, in.
[31] Barbhuiya S, Das BB. Molecular dynamics simulation in concrete research: a systematic review of techniques, models and future directions. Journal of Building Engineering 2023; 107267.
https://doi.org/10.1016/j.jobe.2023.107267.
[32] Jose R, Bangar G, Pal S, Rajaraman G. Role of molecular modelling in the development of metal-organic framework for gas adsorption applications. Journal of Chemical Sciences 2023; 135: 19.
[33] 刘海莲, 刘姝, 任瑞霞, 宋雯雯. 分子模拟技术在分子筛的吸附扩散研究中的应用. 化学与粘合 2011; 33: 60-4.
[34] Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science 2015; 349: 255-60.
https://doi.org/10.1126/science.aaa8415.
[35] Machine Learning and deep Learning in computational toxicology (Book).
[36] Demir H, Daglar H, Gulbalkan HC, Aksu GO, Keskin S. Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coord Chem Rev 2023; 484: 215112.
https://doi.org/10.1016/j.ccr.2023.215112.
[37] Moghadam PZ, Rogge SM, Li A, Chow C-M, Wieme J, Moharrami N, et al. Structure-mechanical stability relations of metal-organic frameworks via machine learning. Matter 2019; 1: 219-34.
https://doi.org/10.1016/j.matt.2019.03.002.
[38] Dai D, Liu Q, Hu R, Wei X, Ding G, Xu B, et al. Method construction of structure-property relationships from data by machine learning assisted mining for materials design applications. Materials & Design 2020; 196: 109194.
https://doi.org/10.1016/j.matdes.2020.109194.
[39] Chong S, Lee S, Kim B, Kim J. Applications of machine learning in metal-organic frameworks. Coord Chem Rev 2020; 423.
https://doi.org/10.1016/j.ccr.2020.213487.
[40] Fanourgakis GS, Gkagkas K, Tylianakis E, Froudakis GE. A universal machine learning algorithm for large-scale screening of materials. J Am Chem Soc 2020; 142: 3814-22.
https://doi.org/10.1021/jacs.9b11084.
[41] Sung I-T, Lin L-C. In silico study of metal–organic frameworks for CO2/CO separation: Molecular simulations and machine learning. J Phys Chem C 2023; 127: 13886-99.
https://doi.org/10.1021/acs.jpcc.3c02452.
[42] Halder P, Singh JK. High-throughput screening of metal–organic frameworks for ethane–ethylene separation using the machine learning technique. Energy & Fuels 2020; 34: 14591-7.
https://doi.org/10.1021/acs.energyfuels.0c03063.
[43] Pardakhti M, Moharreri E, Wanik D, Suib SL, Srivastava R. Machine learning using combined structural and chemical descriptors for prediction of methane adsorption performance of metal organic frameworks (MOFs). ACS Comb Sci 2017; 19: 640-5.
https://doi.org/10.1021/acscombsci.7b00056.
[44] Butler KT, Frost JM, Skelton JM, Svane KL, Walsh A. Computational materials design of crystalline solids. Chem Soc Rev 2016; 45: 6138-46.
https://doi.org/10.1039/C5CS00841G.
[45] Bucior BJ, Bobbitt NS, Islamoglu T, Goswami S, Gopalan A, Yildirim T, et al. Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks. Mol Syst Des Eng 2019; 4: 162-74.
https://doi.org/10.1039/C8ME00050F.
[46] Anderson R, Rodgers J, Argueta E, Biong A, Gómez-Gualdrón DA. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: From molecular simulation to machine learning. Chem Mater 2018; 30: 6325-37.
https://doi.org/10.1021/acs.chemmater.8b02257.
[47] Fernandez M, Trefiak NR, Woo TK. Atomic property weighted radial distribution functions descriptors of metal–organic frameworks for the prediction of gas uptake capacity. J Phys Chem C 2013; 117: 14095-105.
https://doi.org/10.1021/jp404287t.
[48] Hung T-H, Xu Z-X, Kang D-Y, Lin L-C. Chemistry-encoded convolutional neural networks for predicting gaseous adsorption in porous materials. J Phys Chem C 2022; 126: 2813-22.
https://doi.org/10.1021/acs.jpcc.1c09649.
[49] Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. Elsevier; 2023.
[50] Widom B. Some topics in the theory of fluids. The Journal of Chemical Physics 1963; 39: 2808-12.
https://doi.org/10.1063/1.1734110.
[51] Dubbeldam D, Calero S, Ellis DE, Snurr RQ. Raspa: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol Simulat 2016; 42: 81-101.
https://doi.org/10.1080/08927022.2015.1010082.
[52] Lin S-T, Sandler SI. A priori phase equilibrium prediction from a segment contribution solvation model. Ind Eng Chem Res 2002; 41: 899-913.
https://doi.org/10.1021/ie001047w.
[53] Klamt A, Schüürmann G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perk Trans 2 1993; 799–805.
https://doi.org/10.1039/P29930000799.
[54] Klamt A. Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena. J Phys Chem 1995; 99: 2224-35.
https://doi.org/10.1021/J100007A062.
[55] Hsieh C-M, Sandler SI, Lin S-T. Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions. Fluid Phase Equilib 2010; 297: 90-7.
https://doi.org/10.1016/j.fluid.2010.06.011.
[56] Chen T, Guestrin C. Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining 2016; 785-94.
https://doi.org/10.1145/2939672.2939785.
[57] Moghadam PZ, Li A, Liu X-W, Bueno-Perez R, Wang S-D, Wiggin SB, et al. Targeted classification of metal–organic frameworks in the Cambridge structural database (CSD). Chem Sci 2020; 11: 8373-87.
https://doi.org/10.1039/D0SC01297A.
[58] Bucior BJ, Rosen AS, Haranczyk M, Yao Z, Ziebel ME, Farha OK, et al. Identification schemes for metal–organic frameworks to enable rapid search and cheminformatics analysis. Cryst Growth Des 2019; 19: 6682-97.
https://doi.org/10.1021/acs.cgd.9b01050.
[59] Zou C, Penley DR, Cho EH, Lin L-C. Efficient and accurate charge assignments via a multilayer connectivity-based atom contribution (m-CBAC) approach. J Phys Chem C 2020; 124: 11428-37.
https://doi.org/10.1021/acs.jpcc.0c01524.
[60] Cho EH, Lin L-C. Electrostatic potential optimized molecular models for molecular simulations: CO, CO2, COS, H2S, N2, N2O, and SO2. J Chem Theory Comput 2019; 15: 6323-32.
https://doi.org/10.1021/acs.jctc.9b00653.
[61] Martin MG, Siepmann JI. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B 1998; 102: 2569-77.
https://doi.org/10.1021/jp972543+.
[62] Wick CD, Martin MG, Siepmann JI. Transferable potentials for phase equilibria. 4. United-atom description of linear and branched alkenes and alkylbenzenes. J Phys Chem B 2000; 104: 8008-16.
https://doi.org/10.1021/jp001044x.
[63] Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 2009; 37: W623-W33.
https://doi.org/10.1093/nar/gkp456.
[64] Te Velde Gt, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, et al. Chemistry with ADF. J Comput Chem 2001; 22: 931-67.
https://doi.org/10.1002/jcc.1056.
[65] Perdew JP. Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 1986; 34: 7406.
https://doi.org/10.1103/PhysRevB.34.7406.
[66] Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 1988; 38: 3098.
https://doi.org/10.1103/PhysRevA.38.3098.
[67] Paulechka E, Diky V, Kazakov A, Kroenlein K, Frenkel M. Reparameterization of COSMO-SAC for phase equilibrium properties based on critically evaluated data. Journal of Chemical Engineering Data 2015; 60: 3554-61.
[68] Bell IH, Mickoleit E, Hsieh C-M, Lin S-T, Vrabec J, Breitkopf C, et al. A benchmark open-source implementation of COSMO-SAC. J Chem Theory Comput 2020; 16: 2635-46.
https://doi.org/10.1021/acs.jctc.9b01016.
[69] Willems TF, Rycroft CH, Kazi M, Meza JC, Haranczyk M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater 2012; 149: 134-41.
https://doi.org/10.1016/j.micromeso.2011.08.020.
[70] Yang C, Qi J, Wang A, Zha J, Liu C, Yao S. Application of machine learning in MOFs for gas adsorption and separation. Mater Res Express 2023; 10: 122001.
https://doi.org/10.1088/2053-1591/ad0c07.
[71] Uzun A, Keskin S. Site characteristics in metal organic frameworks for gas adsorption. Prog Surf Sci 2014; 89: 56-79.
https://doi.org/10.1016/j.progsurf.2013.11.001.
[72] Wang C, Luo H, Li H, Zhu X, Yu B, Dai S. Tuning the physicochemical properties of diverse phenolic ionic liquids for equimolar CO2 capture by the substituent on the anion. Eur J Chem 2012; 18: 2153-60.
https://doi.org/10.1002/chem.201103092.
[73] Saha D, Kienbaum MJ. Role of oxygen, nitrogen and sulfur functionalities on the surface of nanoporous carbons in CO2 adsorption: a critical review. Microporous Mesoporous Mater 2019; 287: 29-55.
https://doi.org/10.1016/j.micromeso.2019.05.051. |