博碩士論文 111223049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:107 、訪客IP:3.135.217.182
姓名 彭登鴻(Teng-Hung Peng)  查詢紙本館藏   畢業系所 化學學系
論文名稱 非甲烷總碳氫層析法分析儀改良及實場驗證
相關論文
★ 三種自製非甲烷總碳氫分析儀系統改良並應用於煙道及周界監測★ 熱脫附方法應用於揮發性有機污染物分析與氣相層析質譜儀離子源穩定性探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-1以後開放)
摘要(中) 大氣中的揮發性有機化合物 (Volatile organic compounds, VOCs)
中高達70%可歸類為非甲烷總碳氫化合物 (Non-methane
hydrocarbons, NMHC),而其中又以固定排放源的石化產業鏈作為最
大貢獻者,這些工業廢氣經管道或逸散排放至大氣中將造成空氣污染,
長期排放也會對工廠附近的居民造成健康危害,為此本研究透過建立
一套完整的監測系統,即時掌握管道排放濃度。
本研究以符合標準方法(NIEA A723.75B)的逆吹層析原理自製自
動化非甲烷總碳氫化合物分析儀,NMHC 的計算方式是由總碳氫化
合物 (Total hydrocarbons, THC) 經換算成單位碳濃度後扣除甲烷
(Methane)得到。此方法相較於普遍使用的觸媒法,藉由儀器的樣品捕
集和逆吹技術可大幅增加層析管柱的使用壽命。儀器開發完成後須在
實驗室內建立相關品保品管規範,包含了:丙烷回收率修正為79.6%,
施打50ppm甲烷標準氣體進行6重複測試時,THC側的精密度(RSD)
和準確度(Bias) 分別為0.59%和 -1.86%;CH4側的精密度(RSD) 和準
確度(Bias)分別為0.84 和 - 2.20%,儀器的偵測極限 (Method detection
limit, MDL) 測試結果THC側及 CH4側皆為0.05ppm,為了模擬監測
高含水量(%)的排放管道環境,採用加濕甲烷、丙烷和民生氣體施打
入儀器中,其感度分別為95.60%~102.00%、77.02%~79.08%和
79.89%~82.26%。除此之外,由於不同物種在火焰離子化偵測器
(Flame ionization detector, FID) 中的感度存在差異,導致經換算成單
位甲烷濃度時,將造成檢量線斜率不一致的結果,因此本研究提出一個校正方式,將丙烷的碳感度 (Carbon response, CR) 經感度因子修正
後,從3修正為2.58,能有助於將甲烷和丙烷的THC檢量線斜率統
一,避免在實場監測中造成濃度誤差。
為了驗證儀器在排放管道監測時是否和實驗室內一樣具高可靠
性,因此進行了15場次不同製程排放管道的實場監測,並且藉由離
線式氣相層析質譜儀 (Gas Chromatography/Mass Spectrometry,
GC/MS) 針對排放管道排放源 NMHC 進行物種層析分離分析,補強
了總碳氫分析儀無法得知個別成分之特性。
研究最後針對標準方法內品保規範的誤差原因設計實驗進行探
究,透過變異數計算分析將影響品保查核誤差最大的因子,也就是
FID 的點火氣源流量控制設備加以改善,以提高監測數據的可信度,
以利儀器進行長期連續監測。
摘要(英) Among the volatile organic compounds (VOCs) in the atmosphere, up
to 70% can be classified as non-methane hydrocarbons (NMHCs). The
petrochemical industry chain being the largest contributor among
stationary emission sources. These industrial exhaust gases are discharged
into the atmosphere via pipelines. These might cause air pollution and
health risks to residents near the factories. Therefore, it is necessary to
design and test an analyzer that can monitor the flue gas from of stack
emissions in real-time.
This study follows the standard method (NIEA A723.75B) and
develops an automated non-methane hydrocarbons analyzer using the back
flush chromatographic method. The calculation of NMHC is derived by
subtracting methane (CH4) from total hydrocarbons (THC). Compared to
the commonly used catalytic method, the sample collection and back flush
techniques significantly extend the lifespan of the chromatographic column.
After the instrument development, relevant quality assurance and quality
control standards need to be established in the laboratory. Propane recovery
was adjusted to 79.6%. When performing 6 repeated tests using 50 ppm
methane standard gas, the precision (RSD) and accuracy (Bias) for THC
were 0.59% and -1.86%, respectively; for CH4, the precision (RSD) and
accuracy (Bias) were 0.84% and -2.20%, respectively. The MDL test
results showed that both the THC and CH4 path were 0.05 ppm. To simulate the environment of emission conditions from smokestacks pipelines with
high moisture content (%), humidified methane, propane, and livelihood
gas were injected into the analyzer. The sensitivity for humidified methane,
propane, and livelihood gas ranged from 95.60% to 102.00%, 77.02% to
79.08%, and 79.89% to 82.26%, respectively. Additionally, due to the
varyed sensitivities of individual NMHC species in the Flame Ionization
Detector (FID), when converting them to unit methane concentration, this
can lead to inconsistent calibration curve slopes. Therefore, this study
proposes a correction method where the carbon response (CR) of propane
is adjusted from 3 to 2.58. This adjustment helps unify the slopes of the
THC calibration curves between different species, and improve accuracyin
field monitoring.
To verify its high reliability during the monitoring of smokestacks,
fifteen field test were conducted on different smokestacks with varied
chemical processes. Offline GC/MS was used to perform speciation of
NMHC, compensating for the inability to identify specific compounds
individually.
Lastly, investigation of the major sources of error in measurements
were made. Via variance calculations, it was found that the flow rate
instability for the hydrogen and air streams to FID was the most significant
source of error.
關鍵字(中) ★ 非甲烷總碳氫層析法
★ 檢量線校正
★ 實場監測
★ 品保查核優化
關鍵字(英)
論文目次 摘要 ......................................................................................................... I
Abstract ................................................................................................. III
謝誌 ........................................................................................................ V
目錄 ..................................................................................................... VII
圖目錄 .................................................................................................... X
表目錄 ................................................................................................ XIV
第一章、前言 ......................................................................................... 1
1-1研究背景 ................................................................................... 1
1-2臭氧前驅物及光化學反應 ........................................................ 4
1-3研究目的 ................................................................................... 9
1-4非甲烷總碳氫化合物測量方法整理 ...................................... 15
1-4-1觸媒法文獻回顧 ............................................................ 17
1-4-2層析法文獻回顧 ............................................................ 20
1-4-3非甲烷總碳氫化合物分析儀應用 ................................. 24
第二章、非甲烷總碳氫逆吹層析法 .................................................... 27
2-1逆吹層析法方法概要.............................................................. 27
2-2自動化控制組件 ..................................................................... 31
2-2-1氣體切換器元件 ............................................................ 31
2-2-2自動化控制組件 ............................................................ 36

VIII

2-2-3自動化監測軟體 ............................................................ 42
2-3儀器穩定性與系統參數測試 .................................................. 48
2-3-1丙烷回收率測試 ............................................................ 49
2-3-2檢量線線性與精密度、準確度測試 ............................. 52
2-3-3方法偵測極限 ................................................................ 55
2-3-4加濕測試 ........................................................................ 57
2-4總碳氫化合物檢量線差異校正 .............................................. 61
2-4-1真實濃度計算 ................................................................ 65
第三章、非甲烷總碳氫逆吹層析法實場應用 ..................................... 71
3-1實場監測背景 ......................................................................... 71
3-2儀器架設 ................................................................................. 73
3-2-1A/B閥介紹 ..................................................................... 76
3-2-2實場監測流程及數據品保品管 ..................................... 78
3-3實場監測實例 ......................................................................... 81
3-3-1實場監測實例離線式分析............................................. 88
第四章、非甲烷總碳氫觸媒法品保查核優化 ..................................... 93
4-1連續進樣觸媒法回顧.............................................................. 93
4-1-1連續進樣觸媒法品保查核分析 ..................................... 99


4-1-2變異數計算結果分析 .................................................. 106
4-2流動注射觸媒法品保查核驗證 ............................................ 109
第五章、結論 ..................................................................................... 117
文獻參考 ............................................................................................. 119
參考文獻 1. 空氣品質監測網-空氣品質指標的定義
https://airtw.moenv.gov.tw/CHT/Information/Standard/AirQualityIndicato
r.aspx.
2. Chen, S.-P., et al., Taiwan ozone trend in response to reduced
domestic precursors and perennial transboundary influence.
Environmental Pollution, 2021. 289: p. 117883.
3. Rani, B., et al., Photochemical smog pollution and its mitigation
measures. Journal of Advanced Scientific Research, 2011. 2(04): p. 28-33.
4. United States Environmental Protection Agency : Health Effects of
Ozone in the General Population.
https://www.epa.gov/ozone-pollution-and-your-patients-health/health
effects-ozone-general-population.
5. United States Environmental Protection Agency : What is the
definition of VOC?
https://www.epa.gov/air-emissions-inventories/what-definition-voc.
6. 行政院環境保護署主管法規系統-揮發性有機物空氣污染管制及
排放標準
https://oaout.moenv.gov.tw/law/.
7. Chang, C.-C., et al., Source characterization of ozone precursors by
complementary approaches of vehicular indicator and principal
component analysis. Atmospheric Environment, 2009. 43(10): p. 1771
1778.
8. Li, Y., et al., Unmanned aerial vehicle measurements of volatile
organic compounds over a subtropical forest in China and implications
for emission heterogeneity. ACS Earth and Space Chemistry, 2021. 5(2):
p. 247-256.
9. Chang, C.-C., et al., Seasonal characteristics of biogenic and
anthropogenic isoprene in tropical–subtropical urban environments.
Atmospheric environment, 2014. 99: p. 298-308.
10. Li, Y., et al. Unmanned Aerial Vehicle (UAV) Measurements of
Volatile Organic Compounds over a Subtropical Forest in China and
Implications for Emission Heterogeneity. in AGU Fall Meeting Abstracts.
2020.
11. Borbon, A., et al., An investigation into the traffic-related fraction of
isoprene at an urban location. Atmospheric Environment, 2001. 35(22): p.
3749-3760.
12. Ryerson, T., et al., Observations of ozone formation in power plant
plumes and implications for ozone control strategies. Science, 2001.
292(5517): p. 719-723.
13. Atkinson, R., A structure‐activity relationship for the estimation of
rate constants for the gas‐phase reactions of OH radicals with organic
compounds. International journal of chemical kinetics, 1987. 19(9): p.
799-828.
14. Global Monitoring Laboratory - Carbon Cycle Gases MLO.
https://gml.noaa.gov/dv/iadv/graph.php?code=MLO&program=ccgg&typ
e=ts.
15. Karakurt, I., G. Aydin, and K. Aydiner, Sources and mitigation of
methane emissions by sectors: A critical review. Renewable energy, 2012.
39(1): p. 40-48.
16. Wittenberg, K., Enteric methane emissions and mitigation
opportunities for Canadian cattle production systems.
17. Steed Jr, J. and A.G. Hashimoto, Methane emissions from typical
manure management systems. Bioresource technology, 1994. 50(2): p.
123-130.
18. Mitchell, C., Methane emissions from the coal and natural gas
industries in the UK. Chemosphere, 1993. 26(1-4): p. 441-446.
19. 空氣品質改善維護資訊網-空氣污染物排放量清冊
https://air.moenv.gov.tw/EnvTopics/AirQuality_6.aspx.
20. Chen, S.-P., et al., Network monitoring of speciated vs. total non
methane hydrocarbon measurements. Atmospheric Environment, 2014.
90: p. 33-42.
21. Chen, S.-P., et al., Optimizing the emission inventory of volatile
organic compounds (VOCs) based on network observations. Atmospheric
Environment, 2014. 84: p. 1-8.
22. Kansal, A., Sources and reactivity of NMHCs and VOCs in the
atmosphere: A review. Journal of hazardous materials, 2009. 166(1): p.
17-26.
23. 全國法規資料庫-空氣污染防制法
https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=o0020001.
24. 行政院環境保護署主管法規共用系統-移動污染源空氣污染防制
費收費費率
https://oaout.moenv.gov.tw/law/LawContent.aspx?id=GL005188&kw=%
e7%a7%bb%e5%8b%95%e6%b1%a1%e6%9f%93%e6%ba%90%e7%a9
%ba%e6%b0%a3%e6%b1%a1%e6%9f%93%e9%98%b2%e5%88%b6%
e8%b2%bb%e6%94%b6%e8%b2%bb%e8%b2%bb%e7%8e%87.
25. 全國法規資料庫-固定污染源空氣污染防制費收費費率
https://oaout.moenv.gov.tw/Law/LawContent.aspx?id=GL007883.
26. 中華民國 111 年度空氣污染防制總檢討
27. 全國法規資料庫-固定污染源空氣污染物連續自動監測設施管理
辦法
https://law.moj.gov.tw/LawClass/LawAll.aspx?PCODE=O0020068.
28. 全國法規資料庫-揮發性有機物空氣污染管制及排放標準
https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020030.
29. JISB7956_2006 大気中の炭化水素自動計測器
https://www.jemima.or.jp/tech/5-01-04.html.
30. Gao, S., et al., Obtaining accurate non-methane hydrocarbon data for
ambient air in urban areas: comparison of non-methane hydrocarbon data
between indirect and direct methods. Atmospheric Measurement
Techniques, 2023. 16(23): p. 5709-5723.
31. Model 55i Instruction Manual Direct Methane, Non-Methane
Hydrocarbon Analyzer
32. Kim, S.C. and W.G. Shim, Catalytic combustion of VOCs over a
series of manganese oxide catalysts. Applied Catalysis B: Environmental,
2010. 98(3-4): p. 180-185.
33. Matějová, L., et al., Total oxidation of model volatile organic
compounds over some commercial catalysts. Applied Catalysis A:
General, 2012. 443: p. 40-49.
34. Saitoh, O., M. Imaki, and H. Asami, Separation method of methane
from other hydrocarbons than methane. 1977, Google Patents.
35. 空氣中總碳氫化合物自動檢測方法
https://www.moenv.gov.tw/DisplayFile.aspx?FileID=94F4A22323B0137
0.
36. 排放管道中總碳氫化合物及非甲烷總碳氫化合物含量自動檢測
方法-觸媒 轉化法(NIEA A758.70B)
https://www.rootlaw.com.tw/LawContent.aspx?LawID=A040300081085
900-1080102.
37. Gaseous Nonmethane Organic Emissions-Method 25.
https://www.epa.gov/emc/method-25-gaseous-nonmethane-organic
emissions.
38. 排放管道中總碳氫化合物及非甲烷總碳氫化合物含量自動檢測
方法-線上火燄離子化偵測法(NIEA A723.75B)
https://www.rootlaw.com.tw/LawContent.aspx?LawID=A040300081098
700-1110112.
39. Wang, M., et al., Trends of non-methane hydrocarbons (NMHC)
emissions in Beijing during 2002–2013. Atmospheric Chemistry and
Physics, 2015. 15(3): p. 1489-1502.
40. 111 年空氣品質監測年報.
41. Tsai, S.M., et al., Characterization of non-methane hydrocarbons
emitted from various cookstoves used in China. Environmental science &
technology, 2003. 37(13): p. 2869-2877.
42. Batterman, S.A., et al., Non-methane hydrocarbon emissions from
vehicle fuel caps. Atmospheric Environment, 2005. 39(10): p. 1855-1867.
43. 林天立, 開發甲烷/非甲烷總烴分析儀應用於污染源觸發採樣, in
化學系. 2019, 國立中央大學: 桃園市.
44. Ou-Yang, C.-F., et al., Characterization of industrial plumes of
volatile organic compounds by guided sampling. Chemosphere, 2020.
241: p. 124957.
45. 陳致廷, 改良觸媒法非甲烷總碳氫化合物分析儀應用於空氣品質
監測, in 化學系. 2022, 國立中央大學: 桃園市.
46. Bourtsoukidis, E., et al., Non-methane hydrocarbon (C 2–C 8)
sources and sinks around the Arabian Peninsula. Atmospheric Chemistry
and Physics, 2019. 19(10): p. 7209-7232.
47. Chang, C.-C., H.-K. Yak, and J.-L. Wang, Consumption of
hydrocarbons and its relationship with ozone formation in two Chinese
megacities. Atmosphere, 2020. 11(4): p. 326.
48. Helmig, D., et al., Climatology and atmospheric chemistry of the
non-methane hydrocarbons ethane and propane over the North Atlantic.
Elementa, 2015. 3: p. 000054.
49. 環境檢驗方法偵測極限測定指引(NIEA-PA107)
https://www.moenv.gov.tw/nera/87209A918A0BE150.
50. 排放管道中粒狀污染物採樣及其濃度之測定方法(NIEA
A101.77C)
https://www.rootlaw.com.tw/LawContent.aspx?LawID=A040300081098
000-1101203.
51. Szulejko, J.E., Y.H. Kim, and K.H. Kim, Method to predict gas
chromatographic response factors for the trace‐level analysis of volatile
organic compounds based on the effective carbon number concept.
Journal of separation science, 2013. 36(20): p. 3356-3365.
52. Musumarra, G., et al., Prediction of gas chromatographic response
factors by the PLS method. Tetrahedron Computer Methodology, 1989.
2(1): p. 17-36.
53. Qin, Z., et al., Combustion chemistry of propane: a case study of
detailed reaction mechanism optimization. Proceedings of the
Combustion Institute, 2000. 28(2): p. 1663-1669.
54. 蓄熱式焚化爐系統介紹
http://www.crown-tech.com.tw/edcontent.php?lang=tw&tb=2&id=17.
55. 施昱廷, 以氣相層析搭載電子捕捉偵測技術驗證自製前濃縮儀穩
定性, in 化學系. 2023, 國立中央大學: 桃園市.
56. Fisher, R.A., XV.—The correlation between relatives on the
supposition of Mendelian inheritance. Earth and Environmental Science
Transactions of the Royal Society of Edinburgh, 1919. 52(2): p. 399-433.
57. 詹竣丞, 觸媒式非甲烷總碳氫分析儀開發與驗證, in 化學系.
2020, 國立中央大學: 桃園市.
指導教授 王家麟 王介亨(Jia-Lin Wang Chieh-Heng Wang) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明