博碩士論文 111223033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:118 、訪客IP:18.119.166.49
姓名 畢惠筑(HUI CHU PI)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Extrapolative Machine Learning for High Voc in Non- Fullerene Ternary Organic Solar Cells: Identifying Matched Energy Levels through High-Throughput Screening)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ 染料敏化太陽能電池吸光性質的計算研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-26以後開放)
摘要(中) 研究中探索了機器學習在提高非富勒烯三元有機太陽能電池(Ternary Organic Solar cell, TOSC)開路電壓(open-circuit voltage , VOC)方面的潛力。為了解決TOSC 中低 VOC 阻礙功率轉換效率進一步提高的挑戰。收集了 2016 年至 2023 年的 407 個實驗數據點,並專注於非富勒烯體異質接面 TOSC的主動層。 VOC 值的高斯分佈顯示集中在 0.875 V 左右,突顯了能階匹配以實現 VOC 以上 0.95 V 的必要性。
採用極限梯度提升 (XGBoost) 和人工神經網路 (ANN) 兩種機器學習模型,使用供體、受體 1 和受體 2的能階及三者組成的質量百分濃度比作為描述子來預測 VOC。 ANN 模型表現出優越的性能,驗證和測試相關係數分別為 0.84 和 0.88,並且其強大的外推能力也得到了驗證。 SHAP值分析確定A1_LUMO是影響VOC預測的關鍵因素。
為了評估外推法,我們定義了一個包含前 5% VOC 值的外推測試集。 ANN/EXP 模型的精確度為 75%,召回率為 43%,F1 分數為 55%,顯著優於 XGBoost/EXP 模型,後者未能推斷出非凡的 VOC 系統。 ANN/DFT 模型展示了顯著的外推能力,實現了 100% 的精度、43% 的召回率和 60% 的 F1 分數。這些結果強調了 ANN 模型在預測異常 VOC 值方面的卓越表現。
對222,374個TOSC材料重組進行高通量虛擬篩選,鑑定出9,742個預測VOC > 0.95 V的組合和1,398個> 1 V的組合,並使用密度泛函理論 (DFT) 描述子對哈佛乾淨能源計畫資料庫 (HCEPDB) 預測後的進一步片段分析證實了能階匹配在優化 VOC 方面的重要性。
這項研究強調了具有強大外推能力的 ANN 模型的潛力,可以透過預測最佳材料組合和能階範圍(甚至對於不可見的數據)來指導高效 TOSC 的設計。這種方法有望加速先進有機光伏材料的開發,在克服當前 VOC 限制和提高太陽能電池整體效率方面邁出重要一步。
摘要(英) This study investigates the potential of machine learning (ML) to enhance the open-circuit voltage (VOC) in non-fullerene ternary organic solar cells (TOSCs). We addressed the challenge of low VOC, which impedes further improvements in power conversion efficiency (PCE), by collecting 407 experimental data points from 2016 to 2023, focusing on the active layers of non-fullerene TOSCs. The VOC values′ Gaussian distribution centers around 0.875 V, highlighting the need for matched energy levels to achieve VOC above 0.95 V.
Two ML models, Extreme Gradient Boosting (XGBoost) and Artificial Neural Network (ANN), were employed to predict VOC using energy level descriptors and mass percentage concentration ratio of donor, acceptor 1, and acceptor 2 components. The ANN model demonstrated superior performance, with validation and test correlation coefficients of 0.84 and 0.88, respectively, and was verified for its robust extrapolative capability. SHAP value analysis identified A1_LUMO as the key factor influencing VOC prediction.
To assess extrapolation, we defined an extrapolated test set comprising the top 5% of VOC values. The ANN/EXP model achieved a precision of 75%, a recall of 43%, and an F1 score of 55%, significantly outperforming the XGBoost/EXP model, which failed to extrapolate extraordinary VOC systems. The ANN/DFT model demonstrated significant extrapolation capabilities, achieving a precision of 100%, a recall of 43%, and an F1 score of 60%. These results underscore the superior performance of ANN models in predicting extraordinary VOC values.
High-throughput virtual screening of 222,374 TOSC material combinations identified 9,742 combinations with predicted VOC > 0.95 V and 1,398 combinations > 1 V. Optimal energy level ranges for high VOC prediction were established, and Density Functional Theory (DFT) calculations on the Harvard Clean Energy Project Database (HCEPDB) further validated the importance of energy level matching.
This research highlights the potential of ANN models with strong extrapolative capabilities to guide the design of high-efficiency TOSCs by predicting optimal material combinations and energy level ranges, even for unseen data. This approach promises to accelerate the development of advanced organic photovoltaic materials, offering a significant step forward in overcoming current VOC limitations and enhancing overall solar cell efficiency.
關鍵字(中) ★ 機器學習
★ 三元有機太陽能電池
★ 開路電壓
★ 外推法
關鍵字(英) ★ Machine Learning
★ Ternary Organic Solar Cells
★ open-circuit voltage
★ Extrapolation
論文目次 摘要 I
Abstract II
List of Figures VI
List of Tables & Schemes IX
Chapter1. Introduction 1
Chapter2. Methods 6
2.1 Database Creation 6
2.2 Development and Performance Evaluation of Machine Learning Models 7
2.2.1 eXtreme Gradient Boosting (XGBoost) 7
2.2.2 Artificial Neural Network (ANN) 8
2.3 Obtaining HOMO and LUMO Descriptors through DFT Computations 11
Chapter3. Result & Discussion 13
3.1 Machine Learning Model 13
3.1.1 Database Analysis--Descriptors Correlation 13
3.1.2 Performance of ML models 15
3.2 Assessing Extrapolative Capacity of ML models 20
3.2.1 Defining Extrapolation 20
3.2.1 Performance of ML models on Extrapolation 21
3.3 EXP-Recombination Virtual Screening 26
3.3.1 D:A1:A2 EXP Device Recombination 26
3.3.2 Prediction and Screening of Energy Levels Matching Highest VOC 27
3.4 D:A1:A2 Harvad Clean Energy Database Virtual Screening 35
3.4.1 D:A1:A2 Harvad Clean Energy Database Combination 35
3.4.2 DFT-ANN-Model-Performance 36
3.4.3 Prediction and Screening of Highest VOC Fragments 38
Chapter4. Conclusion 42
Supporting Information 44
Reference 57
參考文獻 1. Sundaresan, C.; Vebber, M. C.; Brusso, J. L.; Tao, Y.; Alem, S.; Lessard, B. H., Low-Cost Silicon Phthalocyanine as a Non-Fullerene Acceptor for Flexible Large Area Organic Photovoltaics. ACS Omega 2023, 8 (1), 1588-1596.
2. Pascual-San-José, E.; Rodríguez-Martínez, X.; Adel-Abdelaleim, R.; Stella, M.; Martínez-Ferrero, E.; Campoy-Quiles, M., Blade coated P3HT:non-fullerene acceptor solar cells: a high-throughput parameter study with a focus on up-scalability. Journal of Materials Chemistry A 2019, 7 (35), 20369-20382.
3. Tang, C. W., Two-layer organic photovoltaic cell. Applied Physics Letters 1986, 48 (2), 183-185.
4. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 1992, 258 (5087), 1474-1476.
5. Lin, Y.; Zhan, X., Non-fullerene acceptors for organic photovoltaics: an emerging horizon. Materials Horizons 2014, 1 (5).
6. Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X., Non-fullerene acceptors for organic solar cells. Nature Reviews Materials 2018, 3 (3).
7. Mohamed El Amine, B.; Zhou, Y.; Li, H.; Wang, Q.; Xi, J.; Zhao, C., Latest Updates of Single-Junction Organic Solar Cells up to 20% Efficiency. Energies 2023, 16 (9).
8. Chen, T.; Li, S.; Li, Y.; Chen, Z.; Wu, H.; Lin, Y.; Gao, Y.; Wang, M.; Ding, G.; Min, J.; Ma, Z.; Zhu, H.; Zuo, L.; Chen, H., Compromising Charge Generation and Recombination of Organic Photovoltaics with Mixed Diluent Strategy for Certified 19.4% Efficiency. Adv Mater 2023, 35 (21), e2300400.
9. He, C.; Pan, Y.; Ouyang, Y.; Shen, Q.; Gao, Y.; Yan, K.; Fang, J.; Chen, Y.; Ma, C.-Q.; Min, J.; Zhang, C.; Zuo, L.; Chen, H., Manipulating the D:A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy & Environmental Science 2022, 15 (6), 2537-2544.
10. Wu, L. N.; Sui, M. Y.; Xiao, S.; Xie, Y. Z.; Sun, G. Y., Design of single-porphyrin donors toward high open-circuit voltage for organic solar cells via an energy level gradient-distribution screening strategy of fragments: a theoretical study. Phys Chem Chem Phys 2020, 22 (7), 4015-4022.
11. Classen, A.; Chochos, C. L.; Lüer, L.; Gregoriou, V. G.; Wortmann, J.; Osvet, A.; Forberich, K.; McCulloch, I.; Heumüller, T.; Brabec, C. J., The role of exciton lifetime for charge generation in organic solar cells at negligible energy-level offsets. Nature Energy 2020, 5 (9), 711-719.
12. Mahmood, A.; Wang, J. L., Machine learning for high performance organic solar cells: current scenario and future prospects. Energy & Environmental Science 2021, 14 (1), 90-105.
13. Liao, J. M.; Tsai, H. H. G., Extrapolative Machine Learning for Accurate Efficiency Prediction in Non‐Fullerene Ternary Organic Solar Cells: Leveraging Computable Molecular Descriptors in High‐Throughput Virtual Screening. Solar RRL 2024.
14. Pyzer-Knapp, E. O.; Simm, G. N.; Aspuru Guzik, A., A Bayesian approach to calibrating high-throughput virtual screening results and application to organic photovoltaic materials. Materials Horizons 2016, 3 (3), 226-233.
15. Raccuglia, P.; Elbert, K. C.; Adler, P. D.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J., Machine-learning-assisted materials discovery using failed experiments. Nature 2016, 533 (7601), 73-6.
16. Sahu, H.; Rao, W.; Troisi, A.; Ma, H., Toward Predicting Efficiency of Organic Solar Cells via Machine Learning and Improved Descriptors. Advanced Energy Materials 2018, 8 (24).
17. Padula, D.; Simpson, J. D.; Troisi, A., Combining electronic and structural features in machine learning models to predict organic solar cells properties. Materials Horizons 2019, 6 (2), 343-349.
18. Sahu, H.; Yang, F.; Ye, X.; Ma, J.; Fang, W.; Ma, H., Designing promising molecules for organic solar cells via machine learning assisted virtual screening. Journal of Materials Chemistry A 2019, 7 (29), 17480-17488.
19. Lee, M. H., Insights from Machine Learning Techniques for Predicting the Efficiency of Fullerene Derivatives-Based Ternary Organic Solar Cells at Ternary Blend Design. Advanced Energy Materials 2019, 9 (26).
20. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M., Uff, a Full Periodic-Table Force-Field for Molecular Mechanics and Molecular-Dynamics Simulations. Journal of the American Chemical Society 1992, 114 (25), 10024-10035.
21. Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys 1988, 38 (6), 3098-3100.
22. Perdew, J. P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B Condens Matter 1986, 33 (12), 8822-8824.
23. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 2005, 7 (18), 3297-305.
24. Pappenfus, T. M.; Schmidt, J. A.; Koehn, R. E.; Alia, J. D., PBC-DFT Applied to Donor-Acceptor Copolymers in Organic Solar Cells: Comparisons between Theoretical Methods and Experimental Data. Macromolecules 2011, 44 (7), 2354-2357.
25. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
26. Liu, T.; Ma, R.; Luo, Z.; Guo, Y.; Zhang, G.; Xiao, Y.; Yang, T.; Chen, Y.; Li, G.; Yi, Y.; Lu, X.; Yan, H.; Tang, B., Concurrent improvement in JSC and VOC in high-efficiency ternary organic solar cells enabled by a red-absorbing small-molecule acceptor with a high LUMO level. Energy & Environmental Science 2020, 13 (7), 2115-2123.
27. Azzouzi, M.; Yan, J.; Kirchartz, T.; Liu, K.; Wang, J.; Wu, H.; Nelson, J., Nonradiative Energy Losses in Bulk-Heterojunction Organic Photovoltaics. Physical Review X 2018, 8 (3).
28. Li, P.; Wang, Z.; Li, W.; Yuan, J.; Chen, R., Design of Thermally Activated Delayed Fluorescence Materials with High Intersystem Crossing Efficiencies by Machine Learning-Assisted Virtual Screening. J Phys Chem Lett 2022, 13 (42), 9910-9918.
29. Kim, G.-H.; Lee, C.; Kim, K.; Ko, D.-H., Novel structural feature-descriptor platform for machine learning to accelerate the development of organic photovoltaics. Nano Energy 2023, 106.
30. Baik, S.; Kim, D. W.; Kang, H.-S.; Hong, S. H.; Park, S.; An, B.-K.; Park, S. Y., ITIC derivative acceptors for ternary organic solar cells: fine-tuning of absorption bands, LUMO energy levels, and cascade charge transfer. Sustainable Energy & Fuels 2022, 6 (1), 110-120.
31. Yu, M.; Zhou, Y.-N.; Wang, Q.; Yan, F., Extrapolation validation (EV): a universal validation method for mitigating machine learning extrapolation risk. Digital Discovery 2024, 3 (5), 1058-1067.
32. Shimakawa, H.; Kumada, A.; Sato, M., Extrapolative prediction of small-data molecular property using quantum mechanics-assisted machine learning. npj Computational Materials 2024, 10 (1).
33. Schrier, J.; Norquist, A. J.; Buonassisi, T.; Brgoch, J., In Pursuit of the Exceptional: Research Directions for Machine Learning in Chemical and Materials Science. J Am Chem Soc 2023, 145 (40), 21699-21716.
34. Kauwe, S. K.; Graser, J.; Murdock, R.; Sparks, T. D., Can machine learning find extraordinary materials? Computational Materials Science 2020, 174.
35. Hachmann, J.; Olivares-Amaya, R.; Jinich, A.; Appleton, A. L.; Blood-Forsythe, M. A.; Seress, L. R.; Román-Salgado, C.; Trepte, K.; Atahan-Evrenk, S.; Er, S.; Shrestha, S.; Mondal, R.; Sokolov, A.; Bao, Z. A.; Aspuru-Guzik, A., Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry - the Harvard Clean Energy Project. Energy & Environmental Science 2014, 7 (2), 698-704.
36. Hachmann, J.; Olivares-Amaya, R.; Atahan-Evrenk, S.; Amador-Bedolla, C.; Sánchez-Carrera, R. S.; Gold-Parker, A.; Vogt, L.; Brockway, A. M.; Aspuru-Guzik, A., The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid. Journal of Physical Chemistry Letters 2011, 2 (17), 2241-2251.
37. Olivares-Amaya, R.; Amador-Bedolla, C.; Hachmann, J.; Atahan-Evrenk, S.; Sánchez-Carrera, R. S.; Vogt, L.; Aspuru-Guzik, A., Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy & Environmental Science 2011, 4 (12), 4849-4861.
38. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 1988, 37 (2), 785-789.
39. Cheng, P.; Zhang, M.; Lau, T. K.; Wu, Y.; Jia, B.; Wang, J.; Yan, C.; Qin, M.; Lu, X.; Zhan, X., Realizing Small Energy Loss of 0.55 eV, High Open-Circuit Voltage >1 V and High Efficiency >10% in Fullerene-Free Polymer Solar Cells via Energy Driver. Adv Mater 2017, 29 (11).
40. Su, W. Y.; Fan, Q. P.; Guo, X.; Meng, X. Y.; Bi, Z. Z.; Ma, W.; Zhang, M. J.; Li, Y. F., Two compatible nonfullerene acceptors with similar structures as alloy for efficient ternary polymer solar cells. Nano Energy 2017, 38, 510-517.
41. Jiang, K.; Zhang, G.; Yang, G.; Zhang, J.; Li, Z.; Ma, T.; Hu, H.; Ma, W.; Ade, H.; Yan, H., Multiple Cases of Efficient Nonfullerene Ternary Organic Solar Cells Enabled by an Effective Morphology Control Method. Advanced Energy Materials 2017, 8 (9).
42. Weng, K. K.; Li, C.; Bi, P. Q.; Ryu, H. S.; Guo, Y. K.; Hao, X. T.; Zhao, D. H.; Li, W. W.; Woo, H. Y.; Sun, Y. M., Ternary organic solar cells based on two compatible PDI-based acceptors with an enhanced power conversion efficiency. Journal of Materials Chemistry A 2019, 7 (8), 3552-3557.
43. Xia, P.; Wu, M. L.; Zhang, S. X.; Hu, J.; Chen, L.; Bu, T. L.; Yi, J. P.; Wu, D.; Xia, J. L., High performance PDI based ternary organic solar cells fabricated with non-halogenated solvent. Organic Electronics 2019, 73, 205-211.
44. Chen, Y. S.; Ye, P.; Jia, X. L.; Gu, W. X.; Xu, X. Z.; Wu, X. X.; Wu, J. F.; Liu, F.; Zhu, Z. G.; Huang, H., Tuning for high performance organic ternary solar cells with non-fullerene acceptor alloys. Journal of Materials Chemistry A 2017, 5 (37), 19697-19702.
45. Liu, T.; Guo, Y.; Yi, Y.; Huo, L.; Xue, X.; Sun, X.; Fu, H.; Xiong, W.; Meng, D.; Wang, Z.; Liu, F.; Russell, T. P.; Sun, Y., Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10. Adv Mater 2016, 28 (45), 10008-10015.
46. Yu, R.; Zhang, S.; Yao, H.; Guo, B.; Li, S.; Zhang, H.; Zhang, M.; Hou, J., Two Well-Miscible Acceptors Work as One for Efficient Fullerene-Free Organic Solar Cells. Adv Mater 2017, 29 (26).
47. Xiao, L. G.; He, B.; Hu, Q.; Maserati, L.; Zhao, Y.; Yang, B.; Kolaczkowski, M. A.; Anderson, C. L.; Borys, N. J.; Klivansky, L. M.; Chen, T. L.; Schwartzberg, A. M.; Russell, T. P.; Cao, Y.; Peng, X. B.; Liu, Y., Multiple Roles of a Non-fullerene Acceptor Contribute Synergistically for High-Efficiency Ternary Organic Photovoltaics. Joule 2018, 2 (10), 2154-2166.
48. Jiang, H.; Li, X.; Wang, J.; Qiao, S.; Zhang, Y.; Zheng, N.; Chen, W.; Li, Y.; Yang, R., Ternary Polymer Solar Cells with High Efficiency of 14.24% by Integrating Two Well‐Complementary Nonfullerene Acceptors. Advanced Functional Materials 2019, 29 (34).
49. Lv, R. Z.; Chen, D.; Liao, X. F.; Chen, L.; Chen, Y. W., A Terminally Tetrafluorinated Nonfullerene Acceptor for Well-Performing Alloy Ternary Solar Cells. Advanced Functional Materials 2019, 29 (12).
50. Yu, B.-h.; Wang, J.; Ma, X.-l.; Zeng, S.-m.; Hu, S.-y.; Zhang, F.-j., Inverted Ternary Organic Photovoltaics with Alloyed Acceptor Exhibiting 12.29% Efficiency. physica status solidi (RRL) – Rapid Research Letters 2019, 13 (9).
51. Yin, H.; Chiu, K. L.; Bi, P. Q.; Li, G.; Yan, C. Q.; Tang, H.; Zhang, C. J.; Xiao, Y. Q.; Zhang, H. K.; Yu, W.; Hu, H. L.; Lu, X. H.; Hao, X. T.; So, S. K., Enhanced Electron Transport and Heat Transfer Boost Light Stability of Ternary Organic Photovoltaic Cells Incorporating Non-Fullerene Small Molecule and Polymer Acceptors. Adv Electron Mater 2019, 5 (10).
52. Pan, F. L.; Zhang, L. J.; Jiang, H. Y.; Yuan, D.; Nian, Y. W.; Cao, Y.; Chen, J. W., As-cast ternary polymer solar cells based on a nonfullerene acceptor and its fluorinated counterpart showing improved efficiency and good thickness tolerance. Journal of Materials Chemistry A 2019, 7 (16), 9798-9806.
53. Wang, J.; Gao, W.; An, Q.; Zhang, M.; Ma, X.; Hu, Z.; Zhang, J.; Yang, C.; Zhang, F., Ternary non-fullerene polymer solar cells with an efficiency of 11.6% by simultaneously optimizing photon harvesting and phase separation. Journal of Materials Chemistry A 2018, 6 (25), 11751-11758.
54. Zhang, M.; Gao, W.; Zhang, F.; Mi, Y.; Wang, W.; An, Q.; Wang, J.; Ma, X.; Miao, J.; Hu, Z.; Liu, X.; Zhang, J.; Yang, C., Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76.5%. Energy & Environmental Science 2018, 11 (4), 841-849.
55. An, Q. S.; Zhang, F. J.; Gao, W.; Sun, Q. Q.; Zhang, M.; Yang, C. L.; Zhang, J., High-efficiency and air stable fullerene-free ternary organic solar cells. Nano Energy 2018, 45, 177-183.
56. Cheng, P.; Wang, J.; Zhang, Q.; Huang, W.; Zhu, J.; Wang, R.; Chang, S. Y.; Sun, P.; Meng, L.; Zhao, H.; Cheng, H. W.; Huang, T.; Liu, Y.; Wang, C.; Zhu, C.; You, W.; Zhan, X.; Yang, Y., Unique Energy Alignments of a Ternary Material System toward High-Performance Organic Photovoltaics. Adv Mater 2018, 30 (28), e1801501.
57. Yin, H.; Zhang, C.; Hu, H.; Karuthedath, S.; Gao, Y.; Tang, H.; Yan, C.; Cui, L.; Fong, P. W. K.; Zhang, Z.; Gao, Y.; Yang, J.; Xiao, Z.; Ding, L.; Laquai, F.; So, S. K.; Li, G., Highly Crystalline Near-Infrared Acceptor Enabling Simultaneous Efficiency and Photostability Boosting in High-Performance Ternary Organic Solar Cells. ACS Appl Mater Interfaces 2019, 11 (51), 48095-48102.
58. Jiang, W.; Yu, R.; Liu, Z.; Peng, R.; Mi, D.; Hong, L.; Wei, Q.; Hou, J.; Kuang, Y.; Ge, Z., Ternary Nonfullerene Polymer Solar Cells with 12.16% Efficiency by Introducing One Acceptor with Cascading Energy Level and Complementary Absorption. Adv Mater 2018, 30 (1).
59. An, Q.; Zhang, J.; Gao, W.; Qi, F.; Zhang, M.; Ma, X.; Yang, C.; Huo, L.; Zhang, F., Efficient Ternary Organic Solar Cells with Two Compatible Non-Fullerene Materials as One Alloyed Acceptor. Small 2018, 14 (45), e1802983.
60. Kan, B.; Yi, Y. Q. Q.; Wan, X.; Feng, H.; Ke, X.; Wang, Y.; Li, C.; Chen, Y., Ternary Organic Solar Cells With 12.8% Efficiency Using Two Nonfullerene Acceptors With Complementary Absorptions. Advanced Energy Materials 2018, 8 (22).
61. Zheng, N. N.; Mahmood, K.; Zhong, W. K.; Liu, F.; Zhu, P.; Wang, Z. F.; Xie, B. M.; Chen, Z. M.; Zhang, K.; Ying, L.; Huang, F.; Cao, Y., Improving the efficiency and stability of non-fullerene polymer solar cells by using N2200 as the Additive. Nano Energy 2019, 58, 724-731.
62. Liu, T.; Luo, Z.; Chen, Y.; Yang, T.; Xiao, Y.; Zhang, G.; Ma, R.; Lu, X.; Zhan, C.; Zhang, M.; Yang, C.; Li, Y.; Yao, J.; Yan, H., A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%. Energy & Environmental Science 2019, 12 (8), 2529-2536.
63. Gao, J.; Ming, R.; An, Q.; Ma, X.; Zhang, M.; Miao, J.; Wang, J.; Yang, C.; Zhang, F., Ternary organic solar cells with J71 as donor and alloyed acceptors exhibiting 13.16% efficiency. Nano Energy 2019, 63.
64. Wang, B.; Fu, Y. Y.; Yang, Q. Q.; Wu, J.; Liu, H.; Tang, H.; Xie, Z. Y., High-efficiency ternary nonfullerene organic solar cells fabricated with a near infrared acceptor enhancing exciton utilization and extending absorption. Journal of Materials Chemistry C 2019, 7 (34), 10498-10506.
65. Chang, Y.; Lau, T.-K.; Pan, M.-A.; Lu, X.; Yan, H.; Zhan, C., The synergy of host–guest nonfullerene acceptors enables 16%-efficiency polymer solar cells with increased open-circuit voltage and fill-factor. Materials Horizons 2019, 6 (10), 2094-2102.
66. Du, B.; Geng, R.; Li, W.; Li, D.; Mao, Y.; Chen, M.; Zhang, X.; Smith, J. A.; Kilbride, R. C.; O’Kane, M. E.; Liu, D.; Lidzey, D. G.; Tang, W.; Wang, T., 13.9% Efficiency Ternary Nonfullerene Organic Solar Cells Featuring Low-Structural Order. ACS Energy Letters 2019, 4 (10), 2378-2385.
67. Zhang, H.; Yao, H.; Hou, J.; Zhu, J.; Zhang, J.; Li, W.; Yu, R.; Gao, B.; Zhang, S.; Hou, J., Over 14% Efficiency in Organic Solar Cells Enabled by Chlorinated Nonfullerene Small-Molecule Acceptors. Adv Mater 2018, 30 (28), e1800613.
68. Li, K.; Wu, Y.; Tang, Y.; Pan, M. A.; Ma, W.; Fu, H.; Zhan, C.; Yao, J., Ternary Blended Fullerene‐Free Polymer Solar Cells with 16.5% Efficiency Enabled with a Higher‐LUMO‐Level Acceptor to Improve Film Morphology. Advanced Energy Materials 2019, 9 (33).
69. Zeng, A.; Pan, M.; Lin, B.; Lau, T.-K.; Qin, M.; Li, K.; Ma, W.; Lu, X.; Zhan, C.; Yan, H., A Nonfullerene Acceptor with Alkylthio‐ and Dimethoxy‐Thiophene‐Groups Yielding High‐Performance Ternary Organic Solar Cells. Solar RRL 2019, 4 (1).
70. Yan, C.; Liu, T.; Chen, Y.; Ma, R.; Tang, H.; Li, G.; Li, T.; Xiao, Y.; Yang, T.; Lu, X.; Zhan, X.; Yan, H.; Li, G.; Tang, B., ITC‐2Cl: A Versatile Middle‐Bandgap Nonfullerene Acceptor for High‐Efficiency Panchromatic Ternary Organic Solar Cells. Solar RRL 2019, 4 (1), 1900377.
71. Cai, Y.; Meng, L.; Gao, H.; Guo, Z.; Zheng, N.; Xie, Z.; Zhang, H.; Li, C.; Wan, X.; Chen, Y., Achieving organic solar cells with efficiency over 14% based on a non-fullerene acceptor incorporating a cyclopentathiophene unit fused backbone. Journal of Materials Chemistry A 2020, 8 (10), 5194-5199.
72. Hu, Z.; Yang, L.; Gao, W.; Gao, J.; Xu, C.; Zhang, X.; Wang, Z.; Tang, W.; Yang, C.; Zhang, F., Over 15.7% Efficiency of Ternary Organic Solar Cells by Employing Two Compatible Acceptors with Similar LUMO Levels. Small 2020, 16 (17), e2000441.
73. Su, D.; Pan, M.-A.; Liu, Z.; Lau, T.-K.; Li, X.; Shen, F.; Huo, S.; Lu, X.; Xu, A.; Yan, H.; Zhan, C., A Trialkylsilylthienyl Chain-Substituted Small-Molecule Acceptor with Higher LUMO Level and Reduced Band Gap for Over 16% Efficiency Fullerene-Free Ternary Solar Cells. Chemistry of Materials 2019, 31 (21), 8908-8917.
74. Ma, R. J.; Chen, Y. Z.; Liu, T.; Xiao, Y. Q.; Luo, Z. H.; Zhang, M. J.; Luo, S. W.; Lu, X. H.; Zhang, G. Y.; Li, Y. F.; Yan, H.; Chen, K., Improving the performance of near infrared binary polymer solar cells by adding a second non-fullerene intermediate band-gap acceptor. Journal of Materials Chemistry C 2020, 8 (3), 909-915.
75. An, Q.; Ma, X.; Gao, J.; Zhang, F., Solvent additive-free ternary polymer solar cells with 16.27% efficiency. Sci Bull (Beijing) 2019, 64 (8), 504-506.
76. Song, J.; Li, C.; Zhu, L.; Guo, J.; Xu, J.; Zhang, X.; Weng, K.; Zhang, K.; Min, J.; Hao, X.; Zhang, Y.; Liu, F.; Sun, Y., Ternary Organic Solar Cells with Efficiency >16.5% Based on Two Compatible Nonfullerene Acceptors. Adv Mater 2019, 31 (52), e1905645.
77. Li, D.; Chen, X.; Cai, J.; Li, W.; Chen, M.; Mao, Y.; Du, B.; Smith, J. A.; Kilbride, R. C.; O’Kane, M. E.; Zhang, X.; Zhuang, Y.; Wang, P.; Wang, H.; Liu, D.; Jones, R. A. L.; Lidzey, D. G.; Wang, T., Non-fullerene acceptor fibrils enable efficient ternary organic solar cells with 16.6% efficiency. Science China Chemistry 2020, 63 (10), 1461-1468.
78. Chen, X.; Kan, B.; Kan, Y.; Zhang, M.; Jo, S. B.; Gao, K.; Lin, F.; Liu, F.; Peng, X.; Cao, Y.; Jen, A. K. Y., As‐Cast Ternary Organic Solar Cells Based on an Asymmetric Side‐Chains Featured Acceptor with Reduced Voltage Loss and 14.0% Efficiency. Advanced Functional Materials 2020, 30 (11).
79. Huang, T.; Zhang, Z.; Wang, D.; Zhang, Y.; Deng, Z.; Huang, Y.; Liao, Q.; Zhang, J., 18.7% Efficiency Ternary Organic Solar Cells Using Two Non-Fullerene Acceptors with Excellent Compatibility. ACS Applied Energy Materials 2023, 6 (5), 3126-3134.
80. Keshtov, M. L.; Khokhlov, A. R.; Shikin, D. Y.; Alekseev, V.; Chayal, G.; Dahiya, H.; Singh, M. K.; Chen, F. C.; Sharma, G. D., Medium Bandgap Nonfullerene Acceptor for Efficient Ternary Polymer Solar Cells with High Open-Circuit Voltage. ACS Omega 2023, 8 (2), 1989-2000.
81. Wang, R.; Zhang, D. Y.; Zhang, X. H.; Yu, J. S., Achieving high-performance ternary organic solar cells by adding a high hole-mobility non-fullerene acceptor. Dyes and Pigments 2022, 199.
82. Su, N.; Chen, J.; Peng, M.; Li, G.; Pankow, R. M.; Zheng, D.; Ding, J.; Facchetti, A.; Marks, T. J., π-Extension and chlorination of non-fullerene acceptors enable more readily processable and sustainable high-performance organic solar cells. Journal of Energy Chemistry 2023, 79, 321-329.
83. Wang, Y.; Huang, T.; Wang, D.; Guan, H.; Geng, S.; Cao, Z.; Ding, Z.; Li, J.; Zhang, J., Third component with a high LUMO energy level enables 17.69% efficiency in ternary organic solar cells. Optical Materials 2023, 135.
84. Luo, D.; Jiang, Z. Y.; Yang, W. L.; Guo, X. G.; Li, X. H.; Zhou, E. J.; Li, G. Q.; Li, L. Q.; Duan, C. H.; Shan, C. W.; Wang, Z. J.; Li, Y. H.; Xu, B. M.; Kyaw, A. K. K., Dual-functional ambipolar non-fused ring electron acceptor as third component and designing similar molecular structure between two acceptors for high-performance ternary organic solar cells. Nano Energy 2022, 98.
85. Jeon, S. J.; Kim, Y. H.; Kim, I. N.; Yang, N. G.; Yun, J. H.; Moon, D. K., Utilizing 3,4-ethylenedioxythiophene (EDOT)-bridged non-fullerene acceptors for efficient organic solar cells. Journal of Energy Chemistry 2022, 65, 194-204.
86. Lee, C.; Lee, J. H.; Lee, H. H.; Nam, M.; Ko, D. H., Over 30% Efficient Indoor Organic Photovoltaics Enabled by Morphological Modification Using Two Compatible Non‐Fullerene Acceptors. Advanced Energy Materials 2022, 12 (22).
87. Wang, X.; Zhai, X.; Kang, X.; Ding, X.; Gao, C.; Jing, X.; Yu, L.; Sun, M., High‐Performance Ternary Semitransparent Polymer Solar Cells with Different Bandgap Third Component as Non‐Fullerene Guest Acceptor. Solar RRL 2022, 6 (7).
88. Tan, H.; Yuan, B.; Shao, Z.; Deng, W.; Yu, J.; Xiao, M.; Wu, H.; Zhu, W., A simple-structure small-molecule acceptor enables over 18% efficiency ternary polymer solar cells with a broad composition tolerance. Chemical Engineering Journal 2022, 445.
89. Deng, M.; Xu, X.; Duan, Y.; Yu, L.; Li, R.; Peng, Q., Y-Type Non-Fullerene Acceptors with Outer Branched Side Chains and Inner Cyclohexane Side Chains for 19.36% Efficiency Polymer Solar Cells. Adv Mater 2023, 35 (10), e2210760.
90. Liu, L. Z.; Chao, P. J.; Mo, D. Z.; He, F., Chlorinated polymer solar cells simultaneously enhanced by fullerene and non-fullerene ternary strategies. Journal of Energy Chemistry 2021, 54, 620-625.
91. Ke, X.; Meng, L.; Wan, X.; Cai, Y.; Gao, H.-H.; Yi, Y.-Q.-Q.; Guo, Z.; Zhang, H.; Li, C.; Chen, Y., A nonfullerene acceptor incorporating a dithienopyran fused backbone for organic solar cells with efficiency over 14%. Nano Energy 2020, 75.
92. Wang, D.; Qin, R.; Zhou, G.; Li, X.; Xia, R.; Li, Y.; Zhan, L.; Zhu, H.; Lu, X.; Yip, H. L.; Chen, H.; Li, C. Z., High-Performance Semitransparent Organic Solar Cells with Excellent Infrared Reflection and See-Through Functions. Adv Mater 2020, 32 (32), e2001621.
93. Liao, X. F.; Cui, Y. J.; Shi, X. L.; Yao, Z. Y.; Zhao, H.; An, Y. K.; Zhu, P. P.; Guo, Y. X.; Fei, X.; Zuo, L. J.; Gao, K.; Ling, R. C.; Xie, Q.; Chen, L.; Ma, W.; Chen, Y. W.; Jen, A. K. Y., The role of dipole moment in two fused-ring electron acceptor and one polymer donor based ternary organic solar cells. Materials Chemistry Frontiers 2020, 4 (5), 1507-1518.
94. Wan, J.; Zhang, L. F.; He, Q. N.; Liu, S. Q.; Huang, B.; Hu, L.; Zhou, W. H.; Chen, Y. W., High-Performance Pseudoplanar Heterojunction Ternary Organic Solar Cells with Nonfullerene Alloyed Acceptor. Advanced Functional Materials 2020, 30 (14).
95. Ren, M.; Zhang, G.; Chen, Z.; Xiao, J.; Jiao, X.; Zou, Y.; Yip, H. L.; Cao, Y., High-Performance Ternary Organic Solar Cells with Controllable Morphology via Sequential Layer-by-Layer Deposition. ACS Appl Mater Interfaces 2020, 12 (11), 13077-13086.
96. Gao, J.; Gao, W.; Ma, X.; Hu, Z.; Xu, C.; Wang, X.; An, Q.; Yang, C.; Zhang, X.; Zhang, F., Over 14.5% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers. Energy & Environmental Science 2020, 13 (3), 958-967.
97. Song, C. E.; Ham, H.; Noh, J.; Lee, S. K.; Kang, I. N., Efficiency enhancement of a fluorinated wide-bandgap polymer for ternary nonfullerene organic solar cells. Polymer 2020, 188.
98. Lee, S. M.; Kumari, T.; Lee, B.; Cho, Y.; Lee, J.; Oh, J.; Jeong, M.; Jung, S.; Yang, C., Horizontal-, Vertical-, and Cross-Conjugated Small Molecules: Conjugated Pathway-Performance Correlations along Operation Mechanisms in Ternary Non-Fullerene Organic Solar Cells. Small 2020, 16 (5), e1905309.
99. Zhan, L.; Li, S.; Lau, T.-K.; Cui, Y.; Lu, X.; Shi, M.; Li, C.-Z.; Li, H.; Hou, J.; Chen, H., Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy & Environmental Science 2020, 13 (2), 635-645.
100. Zhang, J. Y.; Liu, W. R.; Zhou, G. Q.; Yi, Y. P.; Xu, S. J.; Liu, F.; Zhu, H. M.; Zhu, X. Z., Accurate Determination of the Minimum HOMO Offset for Efficient Charge Generation using Organic Semiconducting Alloys. Advanced Energy Materials 2020, 10 (5).
101. Duan, L. P.; Zhang, Y.; Yi, H. M.; Haque, F.; Deng, R.; Guan, H. L.; Zou, Y. P.; Uddin, A., Trade-Off between Exciton Dissociation and Carrier Recombination and Dielectric Properties in Y6-Sensitized Nonfullerene Ternary Organic Solar Cells. Energy Technology 2020, 8 (1).
102. Zhan, L. L.; Li, S. X.; Zhang, S. H.; Lau, T. K.; Andersen, T. R.; Lu, X. H.; Shi, M. M.; Li, C. Z.; Li, G.; Chen, H. Z., Combining Fused-Ring and Unfused-Core Electron Acceptors Enables Efficient Ternary Organic Solar Cells with Enhanced Fill Factor and Broad Compositional Tolerance. Solar Rrl 2019, 3 (12).
103. Liu, Z. Y.; Wang, N., Enhanced Performance and Stability of Ternary Organic Solar Cells Utilizing Two Similar Structure Blend Fullerene-Free Molecules as Electron Acceptor. Advanced Optical Materials 2019, 7 (23).
104. Chang, Y.; Zhang, X.; Tang, Y.; Gupta, M.; Su, D.; Liang, J.; Yan, D.; Li, K.; Guo, X.; Ma, W.; Yan, H.; Zhan, C., 14%-efficiency fullerene-free ternary solar cell enabled by designing a short side-chain substituted small-molecule acceptor. Nano Energy 2019, 64.
105. Zhang, J.; Liu, W.; Zhang, M.; Liu, Y.; Zhou, G.; Xu, S.; Zhang, F.; Zhu, H.; Liu, F.; Zhu, X., Revealing the Critical Role of the HOMO Alignment on Maximizing Current Extraction and Suppressing Energy Loss in Organic Solar Cells. iScience 2019, 19, 883-893.
106. He, L.; Wan, C.; Dong, H. Y.; Zhang, X. H.; Huang, J., Enhancing Open-Circuit Voltage and Charge Transportation for Ternary Organic Solar Cells With Energy Cascade Double Nonfullerene Acceptors. Ieee Journal of Photovoltaics 2019, 9 (5), 1290-1296.
107. Wu, L.; Xie, L.; Tian, H.; Peng, R.; Huang, J.; Fanady, B.; Song, W.; Tan, S.; Bi, W.; Ge, Z., Efficient ternary organic solar cells based on a twin spiro-type non-fullerene acceptor. Sci Bull (Beijing) 2019, 64 (15), 1087-1094.
108. Cheng, H. W.; Zhang, H.; Lin, Y. C.; She, N. Z.; Wang, R.; Chen, C. H.; Yuan, J.; Tsao, C. S.; Yabushita, A.; Zou, Y.; Gao, F.; Cheng, P.; Wei, K. H.; Yang, Y., Realizing Efficient Charge/Energy Transfer and Charge Extraction in Fullerene-Free Organic Photovoltaics via a Versatile Third Component. Nano Lett 2019, 19 (8), 5053-5061.
109. Bi, P. Q.; Hall, C. R.; Yin, H.; So, S. K.; Smith, T. A.; Ghiggino, K. P.; Hao, X. T., Resolving the Mechanisms of Photocurrent Improvement in Ternary Organic Solar Cells. Journal of Physical Chemistry C 2019, 123 (30), 18294-18302.
110. Guo, X. W.; Li, D. Q.; Zhang, Y. X.; Jan, M.; Xu, J. Q.; Wang, Z. Q.; Li, B.; Xiong, S. B.; Li, Y. Q.; Liu, F.; Tang, J. X.; Duan, C. G.; Fahlman, M.; Bao, Q. Y., Understanding the effect of N2200 on performance of J71: ITIC bulk heterojunction in ternary non-fullerene solar cells. Organic Electronics 2019, 71, 65-71.
111. Tamilavan, V.; Liu, Y. L.; Lee, J.; Shin, I.; Jung, Y. K.; Lee, B. R.; Jeong, J. H.; Park, S. H., Efficient Polymeric Donor for Both Visible and Near-Infrared Absorbing Organic Solar Cells. Acs Applied Energy Materials 2019, 2 (6), 4284-4291.
112. Tang, F.; Wu, K. L.; Zhou, Z. J.; Wang, G.; Zhao, B.; Tan, S. T., Alkynyl-Functionalized Pyrene-Cored Perylene Diimide Electron Acceptors for Efficient Nonfullerene Organic Solar Cells. Acs Applied Energy Materials 2019, 2 (5), 3918-3926.
113. Li, X.; Du, X.; Lin, H.; Kong, X.; Li, L.; Zhou, L.; Zheng, C.; Tao, S., Ternary System with Intermolecular Hydrogen Bond: Efficient Strategy to High-Performance Nonfullerene Organic Solar Cells. ACS Appl Mater Interfaces 2019, 11 (17), 15598-15606.
114. Zhang, K.; Liu, Z. Y.; Wang, N., Highly efficient inverted ternary organic solar cells with polymer fullerene-free acceptor as a third component material. Journal of Power Sources 2019, 413, 391-398.
115. Qin, R.; Guo, D.; Li, M.; Li, G.; Bo, Z.; Wu, J., Perylene Monoimide Dimers Enhance Ternary Organic Solar Cells Efficiency by Induced D–A Crystallinity. ACS Applied Energy Materials 2018, 2 (1), 305-311.
116. Jiang, H. X.; Li, X. M.; Liang, Z. Z.; Huang, G. Y.; Chen, W. C.; Zheng, N.; Yang, R. Q., Employing structurally similar acceptors as crystalline modulators to construct high efficiency ternary organic solar cells. Journal of Materials Chemistry A 2019, 7 (13), 7760-7765.
117. Du, X. Y.; Zhao, J. W.; Zhang, H.; Lu, X.; Zhou, L.; Chen, Z. H.; Lin, H.; Zheng, C. J.; Tao, S. L., Modulating the molecular packing and distribution enables fullerene-free ternary organic solar cells with high efficiency and long shelf-life. Journal of Materials Chemistry A 2019, 7 (35), 20139-20150.
118. Liu, Z. Y.; Wang, N., Small energy loss in ternary organic solar cells with a blend of cascade energy levels: two fullerene-free acceptors as the electron acceptor. Journal of Materials Chemistry C 2019, 7 (32), 10039-10048.
119. Huang, H.; Li, X. J.; Chen, S. S.; Qiu, B. B.; Du, J. Q.; Meng, L.; Zhang, Z. J.; Yang, C.; Li, Y. F., Enhanced performance of ternary organic solar cells with a wide bandgap acceptor as the third component. Journal of Materials Chemistry A 2019, 7 (48), 27423-27431.
120. Xu, X. P.; Bi, Z. Z.; Ma, W.; Zhang, G. J.; Yan, H.; Li, Y.; Peng, Q., Stable large area organic solar cells realized by using random terpolymers donors combined with a ternary blend. Journal of Materials Chemistry A 2019, 7 (23), 14199-14208.
121. Oh, S.; Song, C. E.; Lee, T.; Cho, A.; Lee, H. K.; Lee, J. C.; Moon, S. J.; Lim, E.; Lee, S. K.; Shin, W. S., Enhanced efficiency and stability of PTB7-Th-based multi-non-fullerene solar cells enabled by the working mechanism of the coexisting alloy-like structure and energy transfer model. Journal of Materials Chemistry A 2019, 7 (38), 22044-22053.
122. Xue, P. Y.; Zhang, J. X.; Xin, J. M.; Rech, E. O.; Li, T. F.; Meng, K. X.; Wang, J. Y.; Ma, W.; You, W.; Marder, S. R.; Han, R. P. S.; Zhan, X. W., Effects of Terminal Groups in Third Components on Performance of Organic Solar Cells. Acta Physico-Chimica Sinica 2019, 35 (3), 275-283.
123. Gong, Y.; Chang, K.; Chen, C.; Han, M.; Zhan, X.; Min, J.; Jiao, X.; Li, Q.; Li, Z., Pyrene-fused PDI based ternary solar cells: high power conversion efficiency over 10%, and improved device thermal stability. Materials Chemistry Frontiers 2019, 3 (1), 93-102.
124. Liu, T.; Luo, Z. H.; Fan, Q. P.; Zhang, G. Y.; Zhang, L.; Gao, W.; Guo, X.; Ma, W.; Zhang, M. J.; Yang, C. L.; Li, Y. F.; Yan, H., Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors. Energy & Environmental Science 2018, 11 (11), 3275-3282.
125. Tang, D. S.; Wan, J. H.; Xu, X. P.; Lee, Y. W.; Woo, H. Y.; Feng, K.; Peng, Q., Naphthobistriazole-based wide bandgap donor polymers for efficient non-fullerene organic solar cells: Significant fine-tuning absorption and energy level by backbone fluorination. Nano Energy 2018, 53, 258-269.
126. Gao, B. W.; Yao, H. F.; Hou, J. X.; Yu, R. N.; Hong, L.; Xu, Y.; Hou, J. H., Multi-component non-fullerene acceptors with tunable bandgap structures for efficient organic solar cells. Journal of Materials Chemistry A 2018, 6 (46), 23644-23649.
127. Bi, P.; Zhang, S.; Chen, Z.; Xu, Y.; Cui, Y.; Zhang, T.; Ren, J.; Qin, J.; Hong, L.; Hao, X.; Hou, J., Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 2021, 5 (9), 2408-2419.
128. Zhan, L.; Li, S.; Xia, X.; Li, Y.; Lu, X.; Zuo, L.; Shi, M.; Chen, H., Layer-by-Layer Processed Ternary Organic Photovoltaics with Efficiency over 18. Adv Mater 2021, 33 (12), e2007231.
129. Liu, F.; Zhou, L.; Liu, W.; Zhou, Z.; Yue, Q.; Zheng, W.; Sun, R.; Liu, W.; Xu, S.; Fan, H.; Feng, L.; Yi, Y.; Zhang, W.; Zhu, X., Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Two-in-One Strategy. Adv Mater 2021, 33 (27), e2100830.
130. Ma, X.; Zeng, A.; Gao, J.; Hu, Z.; Xu, C.; Son, J. H.; Jeong, S. Y.; Zhang, C.; Li, M.; Wang, K.; Yan, H.; Ma, Z.; Wang, Y.; Woo, H. Y.; Zhang, F., Approaching 18% efficiency of ternary organic photovoltaics with wide bandgap polymer donor and well compatible Y6 : Y6-1O as acceptor. Natl Sci Rev 2021, 8 (8), nwaa305.
131. Wang, X.; Sun, Q.; Gao, J.; Ma, X.; Son, J. H.; Jeong, S. Y.; Hu, Z.; Niu, L.; Woo, H. Y.; Zhang, J.; Zhang, F., Ternary Organic Photovoltaic Cells Exhibiting 17.59% Efficiency with Two Compatible Y6 Derivations as Acceptor. Solar RRL 2021, 5 (3).
132. Ma, Q.; Jia, Z.; Meng, L.; Zhang, J.; Zhang, H.; Huang, W.; Yuan, J.; Gao, F.; Wan, Y.; Zhang, Z.; Li, Y., Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%. Nano Energy 2020, 78.
133. Ma, R. J.; Liu, T.; Luo, Z. H.; Gao, K.; Chen, K.; Zhang, G. Y.; Gao, W.; Xiao, Y. Q.; Lau, T. K.; Fan, Q. P.; Chen, Y. Z.; Ma, L. K.; Sun, H. L.; Cai, G. L.; Yang, T.; Lu, X. H.; Wang, E. G.; Yang, C. L.; Jen, A. K. Y.; Yan, H., Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells. Acs Energy Letters 2020, 5 (8), 2711-2720.
134. An, Q.; Wang, J.; Gao, W.; Ma, X.; Hu, Z.; Gao, J.; Xu, C.; Hao, M.; Zhang, X.; Yang, C.; Zhang, F., Alloy-like ternary polymer solar cells with over 17.2% efficiency. Sci Bull (Beijing) 2020, 65 (7), 538-545.
135. Tan, H.; Fan, W.; Zhu, M.; Zhu, J.; Wang, X.; Xiao, M.; Yang, R.; Zhu, W.; Yu, J., Nonfused Ring Electron Acceptors for Ternary Polymer Solar Cells with Low Energy Loss and Efficiency Over 18. Small 2023, 19 (52), e2304368.
136. Zhan, L.; Li, S.; Li, Y.; Sun, R.; Min, J.; Bi, Z.; Ma, W.; Chen, Z.; Zhou, G.; Zhu, H.; Shi, M.; Zuo, L.; Chen, H., Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics. Joule 2022, 6 (3), 662-675.
137. Chen, Z.; Zhu, J.; Yang, D.; Song, W.; Shi, J.; Ge, J.; Guo, Y.; Tong, X.; Chen, F.; Ge, Z., Isomerization strategy on a non-fullerene guest acceptor for stable organic solar cells with over 19% efficiency. Energy & Environmental Science 2023, 16 (7), 3119-3127.
138. Zhan, L.; Li, S.; Li, Y.; Sun, R.; Min, J.; Chen, Y.; Fang, J.; Ma, C. Q.; Zhou, G.; Zhu, H.; Zuo, L.; Qiu, H.; Yin, S.; Chen, H., Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics. Advanced Energy Materials 2022, 12 (39).
139. Fan, Q.; Ma, R.; Yang, J.; Gao, J.; Bai, H.; Su, W.; Liang, Z.; Wu, Y.; Tang, L.; Li, Y.; Wu, Q.; Wang, K.; Yan, L.; Zhang, R.; Gao, F.; Li, G.; Ma, W., Unidirectional Sidechain Engineering to Construct Dual-Asymmetric Acceptors for 19.23 % Efficiency Organic Solar Cells with Low Energy Loss and Efficient Charge Transfer. Angew Chem Int Ed Engl 2023, 62 (36), e202308307.
140. Liu, K.; Jiang, Y.; Liu, F.; Ran, G.; Huang, F.; Wang, W.; Zhang, W.; Zhang, C.; Hou, J.; Zhu, X., Organic Solar Cells with Over 19% Efficiency Enabled by a 2D-Conjugated Non-Fullerene Acceptor Featuring Favorable Electronic and Aggregation Structures. Adv Mater 2023, 35 (32), e2300363.
141. Chen, H.; Jeong, S. Y.; Tian, J.; Zhang, Y.; Naphade, D. R.; Alsufyani, M.; Zhang, W.; Griggs, S.; Hu, H.; Barlow, S.; Woo, H. Y.; Marder, S. R.; Anthopoulos, T. D.; McCulloch, I.; Lin, Y., A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology. Energy & Environmental Science 2023, 16 (3), 1062-1070.
142. Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J., Single-Junction Organic Photovoltaic Cell with 19% Efficiency. Adv Mater 2021, 33 (41), e2102420.
指導教授 蔡惠旭(Hui-Hsu Gavin Tsai) 審核日期 2024-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明