博碩士論文 111324029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.143.218.78
姓名 陳昀鎧(Yun-Kai Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討以Lactobacillus buchneri發酵菠菜液對提升α-澱粉酶抑制活性之研究
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-10以後開放)
摘要(中) 因應全球化的發展趨勢,都市人口的生活愈加忙碌,讓人們更沒有閒暇時間可以運動放鬆,也因為生活壓力大,很多人會用吃美食當作舒壓的手段,現代飲食逐漸精緻快餐化,高糖高油的美食往往是大眾所喜愛的,但攝取過量的糖分和油脂配上不正常的生活作息就會誘發各種文明病,其中糖尿病就是一項常見的疾病。
糖尿病(diabetes)是一種代謝性疾病,常見分類為第一型糖尿病和第二型糖尿病,前者屬於自體免疫性疾病,後者則是體內細胞對胰島素的阻抗,導致細胞無法正常利用胰島素所造成的,而約九成的糖尿病患者都屬於第二型。糖尿病無法痊癒,只能靠藥物和飲食控制,常見控制血糖的藥物(如:acarbose、miglitol)會隨使用量增加造成一定的副作用(如:腸胃問題),所以如果能從日常飲食中減少對食物糖分的吸收,就可作為一種取代藥物的可行方法。
在好多年以來已有越來越多項研究證明植物能作為藥用材料以達到替代藥物的天然成分,而在治療多種疾病(例如:糖尿病、高血壓、高血脂、抗癌⋯⋯)方面都均有文獻證明其功效。第二型糖尿病是身體對於胰島素有阻抗,控制餐後高血糖會是一大問題,所以可以藉由通過抑制α-澱粉酶活性,有效抑制澱粉和雙醣被分解成身體易吸收的單醣,從而降低身體對糖分吸收,而菠菜對於提升抑制α-澱粉酶活性有明顯的功效。本研究將探討菠菜混合液在不同發酵條件-菠菜粉末添加量、發酵溫度、不同碳源、不同氮源和培養基起始pH值,並依菌種生長狀況、抗氧化活性和α-澱粉酶抑制活性能力等參數進行最適化培養基討論。本研究成功以最適化發酵條件-添加2%菠菜粉末、37℃、4%蔗糖、3% MRSN medium、起始pH值6.0 在發酵後能達到α-澱粉酶抑制活性能力93.1%、總多酚含量mg GA/L,DPPH自在基清除能力。綜合上述結果,L. buchneri BCE119151 菌種結合菠菜粉末進行發酵,可發展出具有高生物活性的發酵飲品,未來可將其應用日常保健食品和飲品的開發。
摘要(英) Globalization and urbanization have led to busier lifestyles, leaving less time for exercise and relaxation. As a result, many turn to indulgent foods for stress relief. However, diets rich in sugar and fat, combined with irregular lifestyles, increase the risk of lifestyle diseases like diabetes.
Diabetes, a metabolic disorder, is commonly categorized into Type 1 and Type 2. The former is an autoimmune disease, while the latter involves cellular resistance to insulin, resulting in impaired insulin utilization by cells. Approximately ninety percent of diabetes cases are classified as Type 2. Diabetes is incurable and can only be managed through medication and dietary control. Common blood sugar-controlling medications, such as acarbose and miglitol, may induce certain side effects, such as gastrointestinal issues, with increased usage. Hence, reducing the absorption of dietary sugars can serve as a viable alternative to medication.
In recent years, there has been a growing body of research demonstrating the potential of plants as medicinal materials to substitute for conventional medications. Plant-based remedies have been documented to be effective in treating various diseases, including diabetes, hypertension, hyperlipidemia, and cancer. Type 2 diabetes, characterized by insulin resistance, presents challenges in controlling postprandial hyperglycemia. By inhibiting α-amylase activity, spinach has shown significant effectiveness in reducing sugar absorption.
This study aims to investigate the optimal fermentation conditions for a spinach blend, including spinach powder addition, fermentation temperature, different carbon and nitrogen sources, and initial pH of the culture medium. Parameters such as microbial growth status, antioxidant activity, and α-amylase inhibition capability will be evaluated for the optimization of culture media. Under the optimized fermentation conditions—2% spinach powder addition, 37°C fermentation temperature, 4% sucrose, 3% MRSN medium, and initial pH of 6.0—the fermentation process achieved an α-amylase inhibition capability of 93.1%, a total polyphenol content of mg GA/L, and DPPH free radical scavenging activity.
In conclusion, the combination of L. buchneri BCE119151 strain with spinach powder for fermentation yields a fermented beverage with high biological activity. This holds promise for its potential application in the development of everyday health foods and beverages.
關鍵字(中) ★ 菠菜
★ 發酵
★ 澱粉酶抑制活性
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章、序論 1
1-1研究動機 1
1-2研究目的 2
第二章、文獻回顧 3
2-1菠菜 3
2-1-1菠菜的基本介紹 3
2-1-2菠菜的成份 4
2-1-3菠菜的生物活性及功效 4
2-1-4乳酸菌發酵菠菜 8
2-2乳酸菌 9
2-2-1乳酸菌的基本介紹 9
2-2-2 Lactobacillus buchneri的基本介紹 13
2-2-3 Lactobacillus plantarum的基本介紹 14
2-3糖尿病 15
2-3-1糖尿病的基本介紹 15
2-3-2糖尿病的分類與成因 15
2-3-3胰島素的作用與阻抗 16
2-3-4第二型糖尿病的治療方法 17
第三章、實驗方法 19
3-1 實驗規劃 19
3-2 實驗材料 20
3-2-1 實驗菌株 20
3-2-2 實驗原料 21
3-2-3 實驗藥品 22
3-2-4 實驗儀器與設備 25
3-3 實驗方法 27
3-3-1 菌種保存與培養方式 27
3-3-2 液態發酵實驗 31
3-3-3乳酸菌發酵動力生長曲線測試 32
3-3-4菠菜液態發酵最適化發酵條件探討 32
3-4 分析方法 36
3-4-1菌種生長曲線 36
3-4-2菌落數分析 37
3-4-3 pH值分析 37
3-4-4還原糖濃度分析 38
3-4-5總多酚含量分析 40
3-4-6 DPPH自由基清除能力分析 41
3-4-7 α-澱粉酶抑制活性能力分析 42
第四章、 結果與討論 44
4-1菌種生長曲線 44
4-1-1 Lactobacillus plantarum BCR15478之生長曲線 44
4-1-2 Lactobacillus buchneri BCE119151之生長曲線 45
4-2菌種篩選 46
4-2-1 Lactobacillus plantarum BCR15478以菠菜為底物之發酵結果 46
4-2-2 Lactobacillus buchneri BCE119151以菠菜為底物之發酵結果 47
4-3菠菜粉末添加量對發酵之影響 48
4-3-1菠菜粉末添加量對Lactobacillus buchneri BCE119151之生長狀況 48
4-3-2菠菜粉末添加量對α-澱粉酶抑制活性能力之影響 51
4-3-3菠菜粉末添加量對抗氧化物質與活性之影響 52
4-3-4菠菜粉末添加量對發酵菠菜影響之結論 55
4-4發酵溫度對發酵之影響 56
4-4-1發酵溫度對Lactobacillus buchneri BCE119151生長之影響 56
4-4-2發酵溫度對α-澱粉酶抑制活性能力之影響 58
4-4-3發酵溫度對抗氧化物質與活性之影響 59
4-4-4發酵溫度對發酵菠菜影響之結論 61
4-5碳源對發酵之影響 62
4-5-1碳源對α-澱粉酶抑制活性能力之影響 62
4-5-2碳源對抗氧化物質與活性之影響 65
4-5-3 Sucrose添加量對α-澱粉酶抑制活性能力之影響 67
4-5-4碳源對發酵菠菜影響之結論 68
4-6氮源對發酵之影響 69
4-6-1氮源對α-澱粉酶抑制活性能力之影響 69
4-6-2氮源對抗氧化物質與活性之影響 72
4-6-3 MRSN medium添加量對α-澱粉酶抑制活性能力之影響 74
4-6-4氮源對發酵菠菜影響之結論 75
4-7起始pH值對發酵之影響 76
4-7-1起始pH值對Lactobacillus buchneri BCE119151生長之影響 76
4-7-2起始pH值對α-澱粉酶抑制活性能力之影響 79
4-7-3起始pH值對抗氧化物質與活性之影響 80
4-7-4起始pH值對發酵菠菜影響之結論 82
第五章、 結論 83
參考文獻 84
參考文獻 [1] J. C. d. S. Dias, “Vegetables Consumption and its Benefits on Diabetes,” Journal of Nutritional Therapeutics, Jun 2017.
[2] O. Islam, “Phytochemical profiling and evaluation of antioxidant and antidiabetic activity of methanol extract of spinach (spinacia oleracea l.) Leaves,” International Journal of Pharma Sciences and Scientific Research, Feb 2018.
[3] M. A. Murcia, “Spinach,” Nutritional Composition and Antioxidant Properties of Fruits and Vegetables, 2020.
[4] K. Vaijayanthi, “BIOACTIVE COMPONENTS OF SPINACH AND THEIR EFFECT ON SOME PATHO PHYSIOLOGICAL CONDITIONS: A REVIEW,” IJCRR, 29 Apr 2014.
[5] G. Tang, “Spinach and Carrots: Vitamin A and Health,” 2010, pp. 381-392.
[6] N. H. A. P. BROWN, “Nutrition supplements and the eye,” Nature, 1 Jan 1998.
[7] T. Li, “Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption,” Food & Nutrition Research, 9 Aug 2016.
[8] C. P. Bondonno, “Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial,” Free Radical Biology & Medicine, 23 Sep 2011.
[9] P. Carter, “Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis,” BMJ, 19 Aug 2010.
[10] S.-H. Ko, “Antioxidant Effects of Spinach (Spinacia oleracea L.) Supplementation in Hyperlipidemic Rats,” Prev Nutr Food Sci., Mar 2014.
[11] V. Sharma, “Fermentation of vegetable juice mixture by probiotic lactic acid bacteria,” Nutrafoods, 3 Mar 2013.
[12] A. Naseem, “Effect of Growth Stages and Lactic Acid Fermentation on Anti-Nutrients and Nutritional Attributes of Spinach (Spinacia oleracea),” microorganisms, 16 Sep 2023.
[13] Fre´de´ric Leroy, Luc De Vuyst, “Lactic acid bacteria as functional starter cultures for the food fermentation industry,” Trends in Food Science & Technology, Sep 2003.
[14] F.J.Carr, “The Lactic Acid Bacteria: A Literature Survey,” Critical Reviews in Microbiology, Sep 2008.
[15] H. König, Biology of Microorganisms on Grapes, in Must and in Wine, 2017.
[16] Fabio Andres Castillo Martinez, Eduardo Marcos Balciunas, Jos!e Manuel Salgado, Jos!e Manuel Dom!ınguez Gonz!alez , Attilio Converti and Ricardo Pinheiro de Souza Oliveiraa, “Lactic acid properties, applications and production: A review,” Trends in Food Science & Technology, 2013.
[17] Stefan Heinl, Reingard Grabherr, “Systems biology of robustness and flexibility: Lactobacillus buchneri—A show case,” Journal of Biotechnology, 10 Sep 2017.
[18] ZELİHA YILDIRIM, METİN YILDIRIM, “Characterization of Buchnericin LB Produced by Lactobacillus buchneri LB Authors,” Turkish Journal of Biology, 8 Feb 1999.
[19] Michaela Holzer, Elisabeth Mayrhuber, Herbert Danner and Rudolf Braun, “The role of Lactobacillus buchneri in forage preservation,” TRENDS in Biotechnology, Jun 2003.
[20] Svetoslav Dimitrov Todorov, Bernadette Dora Gombossy De Melo Franco, “Lactobacillus Plantarum: Characterization of the Species and Application in Food Production,” Food Reviews International, 19 Apr 2010.
[21] Sudhanshu S. Behera, Ramesh C. Ray, Nevijo Zdolec, “Lactobacillus plantarum with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods,” BioMed Research International, 28 May 2018.
[22] 中華民國糖尿病協會.
[23] M.o.H.a.W. Heaith Promotion Administration, 2018.
[24] E. G. Wilmot, “Type 2 diabetes in younger adults: the emerging UK epidemic,” Postgraduate Medical Journal, Dec 2010.
[25] A.D.Association, “Classification and Diagnosis of 2,” Diabetes Care, Jan 2015.
[26] W.H.Organization, “Diabetes,” 2018.
[27] M.A.Atkinson, “Type 1 diabetes,” 於 The Lancet, 2014, pp. 69-82.
[28] M. S. MD, “Type 2 diabetes,” 於 The Lancet, 2005.
[29] A. Sędzikowska, “Insulin and Insulin Resistance in Alzheimer’s Disease,” International Journal of Molecular Sciences, 14 Sep 2021.
[30] G.Boden, “Role of fatty acids in the pathogenesis of insulin resistance and NIDDM,” Diabetes, Jan 1997.
[31] B.B.Lowell, “Mitochondrial dysfunction and type 2 diabetes,” 於 Science, 2005.
[32] C.Kim, “Gestational diabetes and the incidence of type 2 diabetes:a systematic review,” Diabetes care, 2002.
[33] C. J. R. a. M. F. White, “Molecular insights into insulin action and secretion,” European Journal of Clinical Investigation, 2002.
[34] M. Roden, “Insulin Resistance in Type 2 Diabetes,” 於 Textbook of Diabetes, 2024.
[35] S.-H. Lee, “Insulin Resistance: From Mechanisms to Therapeutic Strategies,” Diabetes Metab J., 30 Dec 2021.
[36] D. E. James, “The aetiology and molecular landscape of insulin resistance,” Nature, 20 Jul 2021.
[37] G. Wilcox, “Insulin and Insulin Resistance,” Clin Biochem Rev., May 2005.
[38] X. Zhang, “Amino acids at the intersection of nutrition and insulin sensitivity,” Drug Discovery Today, Feb 2019.
[39] L. Mastrototaro, “Insulin resistance and insulin sensitizing agents,” Metabolism, Dec 2021.
[40] J.K.DiStefano, “pharmacogenetics of antidiabetic drugs,” 於 Pharmaceuticals, 2010, pp. 2610-2646.
[41] C. J. Bailey, “Metformin: historical overview,” Diabetologia, 13 Aug 2017.
[42] S. Srinivasan, “Pharmacogenetics of Antidiabetic Drugs,” Advances in Pharmacology, 2018.
[43] C. J. Bailey, “Metformin,” The New England Journal of Medicine homepage, 29 Feb 1996.
[44] B. J, “Insulin Secretagogues, Sulfonylurea Receptors and KATP Channels,” Current Pharmaceutical Design, 21 Nov 2005.
[45] N. Sturgess, “THE SULPHONYLUREA RECEPTOR MAY BE AN ATP-SENSITIVE POTASSIUM CHANNEL,” The Lancet, 31 Aug 1985.
[46] S. E. Inzucchi, “Management of Hyperglycemia in Type 2 Diabetes, 2015: A Patient-Centered Approach: Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes,” Diabetes Care, 13 Dec 2014.
[47] S. E. Inzucchi, “Management of Hyperglycemia in Type 2 Diabetes: A Patient-Centered Approach: Position Statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD),” Diabetes Spectrum, 1 Aug 2012.
[48] J. GERICH, Diabetes Care, 1 Sep 2005.
[49] J.-L. Chiasson, “Acarbose for prevention of type 2 diabetes mellitus: the STOPNIDDM randomised tria,” THE LANCET, 2002.
[50] S. P. Clissold, “Acarbose,” Drugs, 1988.
[51] B. McIntosh, “Second-line therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy: a systematic review and mixed-treatment comparison meta-analysis,” Open Med., Mar 2011.
[52] C.-C. Kao, “Risk of liver injury after α-glucosidase inhibitor therapy in advanced chronic kidney disease patients,” Scientific Reports, 2016.
[53] P. Hollander, “Safety Profile of Acarbose, an α-Glucosidase Inhibitor,” Drugs, 1992.
[54] E. C. Chao, “SGLT2 inhibition — a novel strategy for diabetes treatment,” Nature Reviews Drug Discovery, 28 May 2010.
[55] S. Verma, “SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review,” Diabetologia, 28 Aug 2018.
[56] G. L. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar,” Analytical chemistry, 1959.
[57] R. O. R. L.-R. VL Singleton, “Analysis of Total Phenols and Other Oxidation,” METHODS IN ENZYMOLOGY, VOL. 299, pp. 152-178, 1999.
[58] G. M. a. V. BATCHVAROV, “EVALUATION OF THE METHODS FOR DETERMINATION,” Bulgarian Journal of Agricultural Science, 17 (No 1), pp. 11-24, 2011.
[59] M. Massaro, “A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin,” Journal of Materials Chemistry, 2016.
[60] M. K. Roy, “ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: Relationship between total polyphenol and individual catechin content,” International Journal of Food Sciences and Nutrition, 2010.
[61] C. GROUSSARD, “Free radical scavenging and antioxidant effects of lactate ion: an in vitro study,” Journal of Applied Physiology, 2000.
[62] Z. G. J. Teng, “Purification, characterization and enzymatic synthesis of theaflavins of polyphenol oxidase isozymes from tea leaf (Camellia sinensis),” Food Science and Technology, 2017.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明