博碩士論文 111223045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:126 、訪客IP:18.216.214.63
姓名 黃義生(YI-Sheng Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 先進的機器學習驅動的高通量方法,用於合理設計多共振熱激活延遲螢光材料
(Advanced Machine Learning-Driven High-Throughput Approach for the Rational Design of Multi-Resonance Thermally Activated Delayed Fluorescence Materials)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ 染料敏化太陽能電池吸光性質的計算研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-26以後開放)
摘要(中) 熱活化延遲熒光 (TADF) 技術通過提高效率、色純度和成本效益,特別在智慧型手機和液晶顯示器 (LCD) 中,增強了有機發光二極體 (OLEDs)。含有硼的多共振 (MR) TADF 材料具有色純度高和窄的發射光譜。有效的反系統間跨越 (RISC) 過程對實現 100% 的內部量子效率至關重要。然而,設計潛在的 MR-TADF 材料仍具挑戰,因其靈活的分子設計以及準確預測 RISC 速率的困難性。在此,我們提出了一種先進的機器學習 (ML) 驅動的高通量虛擬篩選 (HTVS) 方法,用於合理設計 MR-TADF 材料。通過利用 156 個同行評審的 MR-TADF 材料數據庫,我們開發了基於 XGBoost、ANN 和 CNN 學習器的 ML 預測模型,使用從密度泛函理論 (DFT) 計算得出的分子描述符集合 (MDS)。我們的模型在kRISC的預測精度上達到了很高的水平,其中考慮了激發態特性的 ANN/MDS-B* 模型表現最為優越。我們使用這些模型篩選了基於 11 個 MR-TADF 核心設計的 2,288 個新 MR-TADF 候選物,識別出具有高 kRISC 值的有希望分子,並推導出進一步的化學設計規則。本研究強調了基於 ML 的 HTVS 在加速發現高性能 MR-TADF 材料方面的有效性,闡明了設計實驗性 OLEDs 所需的重要供體 MR-TADF 核心架構。
摘要(英) Thermally activated delayed fluorescence (TADF) technology enhances OLEDs with efficiency, color purity, and cost-effectiveness, especially in smartphones and LCDs. Multi-Resonance (MR) TADF materials with boron offer high color purity and narrow emission spectra. Efficient reverse intersystem crossing (RISC) processes are crucial for achieving 100% internal quantum efficiency. However, designing potential MR-TADF materials remains challenging due to their flexible molecular design and the difficulty in accurately predicting RISC rates. Here, we present an advanced machine learning (ML) driven high-throughput virtual screening (HTVS) approach for the rational design of MR-TADF materials. By utilizing a database of 156 peer-reviewed MR-TADF materials, we developed ML predictive models based on XGBoost, ANN, and CNN learners, employing molecular descriptor sets (MDS) derived from density functional theory (DFT) calculations. Our models achieved high predictive accuracy for kRISC, with the ANN/MDS-B* model, which considers the excited-state properties, demonstrating superior performance. We utilized these models to screen 2,288 newly designed MR-TADF candidates based on 11 MR-TADF cores, identifying promising molecules with high kRISC, values and deriving further chemical design rules. The study underscores the effectiveness of ML-based HTVS in expediting the discovery of high-performance MR-TADF materials, elucidating important donor MR-TADF core architectures for designing advanced organic light-emitting diodes (OLEDs) for experimental discovery.
關鍵字(中) ★ 機器學習
★ 熱活化延遲螢光
★ 有機發光二極體
關鍵字(英) ★ Machine Learning
★ Thermally Activated Delayed Fluorescence
★ Organic Light Emitting Diodes
論文目次 Contents
摘要 I
Abstract II
Contents III
List of Figures IV
List of Scheme VI
List of Tables VII
Chapter 1-Introduction 1
Chapter 2-Methods 6
2.1 Database Construction 6
2.2 Computational Details 6
2.3 Molecular Descriptors and Molecular Descriptor Sets 7
2.4 ML Model Optimization and Model Performance Evaluation 9
Chapter 3-Results and Discussion 10
3.1 MD Extraction 10
3.2 Performance Evaluation on ML Models for Predicting RISC Rate Constant 12
3.3 Global Explanations for MDS Affecting kRISC of MR-TADF by SHAP Theory 14
3.4 Model Validation by Predicting kRISC of Uncharted MR-TADF Molecules 17
3.5 Virtual Screening of Potential High-Performance MR-TADF Candidates 21
Chapter 4-Conclusion 35
Supporting Information 37
1. Calculations of Significant Molecular Descriptors 77
1-1 Reorganization Energy (λ) 77
1-2 Spin-Orbit Coupling (SOC) 78
2. Machine Learning Algorithms 79
2-1 XGBoost 79
2-2 ANN 80
2-3 CNN 81
References 83


List of Figures
Figure 1. Pearson Correlation matrix of correlation coefficients (r) for each possible combination of two MDs. (a).MDS-A set and (b). MDS-B set. 11
Figure 2. Predicted lg10(kRISC) trained by (a) XGBoost, (b) ANN, and (c) CNN algorithms against experimental lg10(kRISC) for the training and test set in terms of MDS-A* set. The blue dashed lines guide that the error is within ±0.5, while the yellow dashed lines denotes an error range of ±1.0. 13
Figure 3. Predicted lg10(kRISC) trained by (a) XGBoost, (b) ANN, and (c) CNN algorithms against experimental lg10(kRISC) for the training and test set in terms of MDS-B* set. The blue dashed lines guide that the error is within ±0.5, while the yellow dashed lines denotes an error range of ±1.0. 14
Figure 4. MD importance ranking plot based on SHAP values. Panels show results for (a) XGBoost/MDS-A*, (b) ANN/MDS-A*, and (c) CNN/MDS-A* models. Top: bar chart displaying the average absolute SHAP value magnitudes. Bottom: each point represents a sample, with each row corresponding to an MD. MDs are ordered in descending order based on the average absolute SHAP value. Dense areas indicate a high accumulation of samples. Colors represent the magnitude of MD values, with red indicating high feature values and blue indicating low MD values. The horizontal axis displays positive and negative SHAP values. 15
Figure 5. MD importance ranking plot based on SHAP values. Panels show results for (a) XGBoost/MDS-A*, (b) ANN/MDS-A*, and (c) CNN/MDS-A* models. Top: bar chart displaying the average absolute SHAP value magnitudes. Bottom: each point represents a sample, with each row corresponding to an MD. MDs are ordered in descending order based on the average absolute SHAP value. Dense areas indicate a high accumulation of samples. Colors represent the magnitude of MD values, with red indicating high feature values and blue indicating low MD values. The horizontal axis displays positive and negative SHAP values. 16
Figure 6. Joint distributions using kernel density estimation for important descriptors and the lg10(kRISC) by ANN/MDS-B* model. (a). △E-ST, (b). HDI-T1, and (c). SOC. 17
Figure 7. Performance assessment and predicted kRISC of 16 newly published MR-TADF compared to their experimentally measured values using various ML Models, including (a). XGBoost/MDSA*, (b). ANN/MDSA*, (c). CNN//MDSA*, (d). XGBoost/MDSB*, (e). ANN/MDSB*, and (f). CNN//MDSB* models. The inset figure displays the distribution of prediction errors (Δlg10(kRISC)) calculated as the predicted lg10(kRISC) minus the experimental lg10(kRISC). 21
Figure 8. The MR cores and donors used to construct new MR-TADF molecules for virtual screening include (a) 11 MR-TADF cores, (b) 26 donor groups, and (c) an illustrative example of how new MR-TADF molecules are assembled using a BBP core. 23
Figure 9. Z-scores of (a). 11 MR-TADF cores and (b). 26 donors for 97 top candidates. The inset of Figure 9(a) shows the Z-scores of 10 MR-TADF cores, excluding the BN2Se2 core. The inset of Figure 9(b) shows the Z-scores of 25 donors, excluding the D24. 25
Figure 10. Z-scores of (a). Boron/Oxygensystem, (b). Boron/Nitrogensystems, (c). Boron/Heteroatomsystems, and (d). Carbonyl/Nitrogensystems 27
Figure S11. Reorganization Energy calculation method 77
Figure S12. XGBoost model structure 79
Figure S13. (a) ANN model structure; (b) The learning process of nodes. 81
Figure S14. CNN model structure. 82


List of Scheme
Scheme 1. The workflow employed in this study. 5


List of Tables
Table 1. The predicted lg10(kRISC) values for 16 newly reported MR-TADF molecules by 6 ML models developed in this study. 19
Table 2. The top 10 MR-TADF molecules predicted by the ANN/MDS-B* model with lg10(kRISC) values greater than 6.60. Molecular structures are included in the table. 29
Table 3. The top 15 MR-TADF molecules without containing Se atom predicted by the ANN/MDS-B* model with lg10(kRISC) values greater than 5.50. Molecular structures are included in the table. 31
Table S4. Chemical structures and their Rate Constants of Intersystem Crossing (kISC) and Reverse Intersystem Crossing (kRISC) for 156 Organic Compounds 37
Table S5. Symbols and physical meanings of 24 molecular descriptors (MD) assembled in the MDS-A. 72
Table S6. Symbols and physical meanings of 16 molecular descriptors (MD) assembled in the MDS-B. 74
Table S7. The hyperparameter values for the ML models using MDS-A*. 75
Table S8. The hyperparameter values for the ML models using MDS-B*. 76
參考文獻 [1] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.
[2] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
[3] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, W. R. Salaneck, Nature 1999, 397, 121.
[4] B. W. D′Andrade, S. R. Forrest, Adv. Mater 2004, 16, 1585.
[5] P. L. Burn, S. C. Lo, I. D. W. Samuel, Adv. Mater 2007, 19, 1675.
[6] M. A. Baldo, D. F. O′Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151.
[7] L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, J. Kido, Adv Mater 2011, 23, 926.
[8] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
[9] M. A. Baldo, D. F. O′Brien, M. E. Thompson, S. R. Forrest, Physical Review B 1999, 60, 14422.
[10] Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv Mater 2014, 26, 7931.
[11] M. Y. Wong, E. Zysman-Colman, Adv Mater 2017, 29, 1605444.
[12] X. Y. Cai, S. J. Su, Adv. Funct. Mater. 2018, 28, 1802558.
[13] Y. C. Liu, C. S. Li, Z. J. Ren, S. K. Yan, M. R. Bryce, Nat. Rev. Mater. 2018, 3, 18020.
[14] Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem Soc Rev 2017, 46, 915.
[15] Y. Im, M. Kim, Y. J. Cho, J. A. Seo, K. S. Yook, J. Y. Lee, Chem. Mater. 2017, 29, 1946.
[16] H. Nakanotani, Y. Tsuchiya, C. Adachi, Chem. Lett. 2021, 50, 938.
[17] H. J. Kim, T. Yasuda, Adv. Opt. Mater. 2022, 10, 2201714.
[18] M. Monka, D. Grzywacz, E. Hoffman, V. Ievtukhov, K. Kozakiewicz, R. Rogowski, A. Kubicki, B. Liberek, P. Bojarski, I. E. Serdiuk, J. Mater. Chem. C 2022, 10, 11719.
[19] M. Mońka, I. E. Serdiuk, K. Kozakiewicz, E. Hoffman, J. Szumilas, A. Kubicki, S. Y. Park, P. Bojarski, J. Mater. Chem. C 2022, 10, 7925.
[20] H. Miranda-Salinas, J. Wang, A. Danos, T. Matulaitis, K. Stavrou, A. P. Monkman, E. Zysman-Colman, J. Mater. Chem. C 2024, 12, 1996.
[21] T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv Mater 2016, 28, 2777.
[22] S. S. Kothavale, J. Y. Lee, Adv. Opt. Mater. 2020, 8, 2000922.
[23] J. M. Teng, Y. F. Wang, C. F. Chen, J. Mater. Chem. C 2020, 8, 11340.
[24] S. Madayanad Suresh, D. Hall, D. Beljonne, Y. Olivier, E. Zysman‐Colman, Adv. Funct. Mater. 2020, 30, 1908677.
[25] J. M. Ha, S. H. Hur, A. Pathak, J. E. Jeong, H. Y. Woo, NPG Asia Mater. 2021, 13, 53.
[26] J. Han, Y. Chen, N. Li, Z. Huang, C. Yang, Aggregate 2022, 3, e182.
[27] R. Barbosa-da-Silva, R. Stefani, Mol. Simul. 2013, 39, 234.
[28] S. Yin, Z. Shuai, Y. Wang, J Chem Inf Comput Sci 2003, 43, 970.
[29] Y. Zhao, C. Fu, L. Fu, Z. Lu, X. Pu, Mater. Chem., 2021.
[30] J. Xu, B. Chen, J. Mol. Model. 2005, 12, 24.
[31] R. Chaudret, C. F. Kiss, L. Subramanian, J. Photochem. Photobiol. A 2015, 299, 183.
[32] H. S. Kwak, Y. An, D. J. Giesen, T. F. Hughes, C. T. Brown, K. Leswing, H. Abroshan, M. D. Halls, Front. Med. 2021, 9, 800370.
[33] L. H. Nguyen, T. H. Nguyen, T. N. Truong, ACS Omega 2019, 4, 7516.
[34] P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier, A. J. Norquist, Nature 2016, 533, 73.
[35] J. Schmidt, J. M. Shi, P. Borlido, L. M. Chen, S. Botti, M. A. L. Marques, Chem. Mater. 2017, 29, 5090.
[36] L. Ward, R. Q. Liu, A. Krishna, V. I. Hegde, A. Agrawal, A. Choudhary, C. Wolverton, Physical Review B 2017, 96, 024104.
[37] J. M. Liao, H. H. G. Tsai, Sol. RRL 2024, Accepted.
[38] P. Li, Z. Wang, W. Li, J. Yuan, R. Chen, J Phys Chem Lett 2022, 13, 9910.
[39] M. H. Lee, Sol. RRL 2023, 7.
[40] T. Hao, S. Leng, Y. Yang, W. Zhong, M. Zhang, L. Zhu, J. Song, J. Xu, G. Zhou, Y. Zou, Y. Zhang, F. Liu, Patterns (N Y) 2021, 2, 100333.
[41] Y. Wen, L. Fu, G. Li, J. Ma, H. Ma, Sol. RRL 2020, 4, 2000110.
[42] P. H. Lee, T. T. Wu, C. F. Li, D. Glowienka, Y. X. Huang, S. H. Huang, Y. C. Huang, W. F. Su, Sol. RRL 2022, 6, 2100891.
[43] J. Li, Y. Peng, L. Zhao, G. Chen, L. Zeng, G. Wei, Y. Xu, Mater. Adv. 2022, 3, 8639.
[44] X. Cai, F. Liu, A. Yu, J. Qin, M. Hatamvand, I. Ahmed, J. Luo, Y. Zhang, H. Zhang, Y. Zhan, Light Sci. Appl. 2022, 11, 234.
[45] Q. L. Tao, P. C. Xu, M. J. Li, W. C. Lu, Npj Comput. Mater. 2021, 7.
[46] C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171.
[47] K. Zhao, Ö. H. Omar, T. Nematiaram, D. Padula, A. Troisi, J. Mater. Chem. C 2021, 9, 3324.
[48] C. Tu, W. Huang, S. Liang, K. Wang, Q. Tian, W. Yan, RSC Adv. 2022, 12, 30962.
[49] Z. Tan, Y. Li, Z. Zhang, X. Wu, T. Penfold, W. Shi, S. Yang, ACS Omega 2022, 7, 18179.
[50] S. M. Lundberg, B. Nair, M. S. Vavilala, M. Horibe, M. J. Eisses, T. Adams, D. E. Liston, D. K. Low, S. F. Newman, J. Kim, S. I. Lee, Nat. Biomed. Eng. 2018, 2, 749.
[51] S. Lundberg, S.-I. Lee, A Unified Approach to Interpreting Model Predictions, 2017.
[52] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Rev. C.01. Wallingford, CT, 2016.
[53] T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
[54] X. Gao, S. Bai, D. Fazzi, T. Niehaus, M. Barbatti, W. Thiel, J. Comput. Chem. 2017, 13, 515.
[55] P. K. Samanta, D. Kim, V. Coropceanu, J. L. Bredas, J. Am. Chem. Soc. 2017, 139, 4042.
[56] S. M. Lundberg, B. Nair, M. S. Vavilala, M. Horibe, M. J. Eisses, T. Adams, D. E. Liston, D. K.-W. Low, S.-F. Newman, J. Kim, S.-I. Lee, Nat. Biomed. Eng. 2018, 2, 749.
[57] Lundberg, Scott, S.-I. Lee, Adv Neural Inf Process Syst 2017, 4765.
[58] D. Padula, A. Troisi, Adv. Energy Mater. 2019, 9, 1902463.
[59] J.-R. Yu, H.-J. Tan, X.-Q. Gao, B. Wang, Z.-Q. Long, J.-L. Liu, Z.-Z. Lin, X.-Y. Li, Z.-L. Zhu, J.-X. Jian, Q.-X. Tong, C.-S. Lee, Adv. Sci. 2024, 11, 2401664.
[60] S.-Q. Song, C.-F. Yip, Q.-M. Liu, X.-S. Zhong, Y. Wang, Y.-X. Zheng, Adv. Optical Mater. 2024, 12, 2400200.
[61] R. W. Weerasinghe, S. Madayanad Suresh, D. Hall, T. Matulaitis, A. M. Z. Slawin, S. Warriner, Y.-T. Lee, C.-Y. Chan, Y. Tsuchiya, E. Zysman-Colman, C. Adachi, Adv. Mater. 2024, 2402289.
[62] F.-M. Liu, Z.-H. Qu, P. Zuo, Y.-J. Yu, M.-T. Li, L.-S. Liao, D.-Y. Zhou, Z.-Q. Jiang, ACS mater. lett. 2024, 6, 1380.
[63] J. Jin, S. Wang, H. Jiang, L. Wang, W.-Y. Wong, Adv. Opt. Mater. 2024, 12, 2302354.
[64] W. Sen, Y.-N. Hu, J. Wang, D. Sun, K. Wang, X.-H. Zhang, E. Zysman-Colman, J. Mater. Chem. C 2024, 12, 6177.
[65] Z. Chen, D. Liu, M. Li, Y. Jiao, Z. Yang, K. Liu, S.-J. Su, Adv. Funct. Mater. 2024, 2404278.
[66] X. Huang, J. Liu, Y. Xu, G. Chen, M. Huang, M. Yu, X. Lv, X. Yin, Y. Zou, J. Miao, X. Cao, C. Yang, Natl. Sci. Rev. 2024, 11.
[67] Y. Shi, H. Gou, H. Wu, S. Wan, K. Wang, J. Yu, X. Zhang, C. Ye, J. Phys. Chem. Lett. 2024, 15, 4647.
[68] Y. P. Wen, L. L. Fu, G. Q. Li, J. Ma, H. B. Ma, Sol. RRL 2020, 4, 2000110.
[69] A. Hussain, F. Kanwal, A. Irfan, M. Hassan, J. Zhang, ACS Omega 2023, 8, 15638.
[70] N. Ikeda, S. Oda, R. Matsumoto, M. Yoshioka, D. Fukushima, K. Yoshiura, N. Yasuda, T. Hatakeyama, Adv. Mater. 2020, 32, 2004072.
[71] I. S. Park, M. Yang, H. Shibata, N. Amanokura, T. Yasuda, Adv. Mater. 2022, 34, e2107951.
[72] X. F. Luo, H. X. Ni, H. L. Ma, Z. Z. Qu, J. Wang, Y. X. Zheng, J. L. Zuo, Adv. Opt. Mater. 2022, 10.
[73] X. F. Luo, S. Q. Song, H. X. Ni, H. Ma, D. Yang, D. Ma, Y. X. Zheng, J. L. Zuo, Angew. Chem., Int. Ed. 2022, 61, e202209984.
[74] X. Lv, J. Miao, M. Liu, Q. Peng, C. Zhong, Y. Hu, X. Cao, H. Wu, Y. Yang, C. Zhou, J. Ma, Y. Zou, C. Yang, Angew. Chem., Int. Ed. 2022, 61, e202201588.
[75] Y. Zhang, D. Zhang, J. Wei, X. Hong, Y. Lu, D. Hu, G. Li, Z. Liu, Y. Chen, L. Duan, Angew. Chem., Int. Ed. 2020, 59, 17499.
[76] M. Nagata, H. Min, E. Watanabe, H. Fukumoto, Y. Mizuhata, N. Tokitoh, T. Agou, T. Yasuda, Angew. Chem., Int. Ed. 2021, 60, 20280.
[77] Y. X. Hu, J. S. Miao, T. Hua, Z. Y. Huang, Y. Y. Qi, Y. Zou, Y. T. Qiu, H. Xia, H. Liu, X. S. Cao, C. L. Yang, Nat. Photonics 2022, 16, 803.
[78] T. Hua, J. Miao, H. Xia, Z. Huang, X. Cao, N. Li, C. Yang, Adv. Funct. Mater. 2022, 32, 2201032.
[79] X. F. Luo, H. X. Ni, A. Q. Lv, X. K. Yao, H. L. Ma, Y. X. Zheng, Adv. Opt. Mater. 2022, 10.
[80] I. S. Park, H. Min, T. Yasuda, Angew. Chem., Int. Ed. 2022, 61, e202205684.
[81] Q. Li, Y. Wu, Q. Yang, S. Wang, S. Shao, L. Wang, ACS Appl. Mater. Interfaces 2022, 14, 49995.
[82] Y. Xu, C. Li, Z. Li, Q. Wang, X. Cai, J. Wei, Y. Wang, Angew. Chem., Int. Ed. 2020, 59, 17442.
[83] Y. Y. Qi, W. M. Ning, Y. Zou, X. S. Cao, S. L. Gong, C. L. Yang, Adv. Funct. Mater. 2021, 31, 2102017.
[84] Y. Liu, X. Xiao, Z. Huang, D. Yang, D. Ma, J. Liu, B. Lei, Z. Bin, J. You, Angew. Chem., Int. Ed. 2022, 61, e202210210.
[85] J. Park, K. J. Kim, J. Lim, T. Kim, J. Y. Lee, Adv. Mater. 2022, 34, e2108581.
[86] Y. Zhang, D. Zhang, J. Wei, Z. Liu, Y. Lu, L. Duan, Angew. Chem., Int. Ed. 2019, 58, 16912.
[87] S. Oda, B. Kawakami, R. Kawasumi, R. Okita, T. Hatakeyama, Org. Lett. 2019, 21, 9311.
[88] D. H. Ahn, S. W. Kim, H. Lee, I. J. Ko, D. Karthik, J. Y. Lee, J. H. Kwon, Nat. Photonics 2019, 13, 540.
[89] D. D. Song, Y. Yu, L. Yue, D. K. Zhong, Y. D. Zhang, X. L. Yang, Y. H. Sun, G. J. Zhou, Z. X. Wu, J. Mater. Chem. C 2019, 7, 11953.
[90] D. Karthik, D. H. Ahn, J. H. Ryu, H. Lee, J. H. Maeng, J. Y. Lee, J. H. Kwon, J. Mater. Chem. C 2020, 8, 2272.
[91] X. Li, Y. Z. Shi, K. Wang, M. Zhang, C. J. Zheng, D. M. Sun, G. L. Dai, X. C. Fan, D. Q. Wang, W. Liu, Y. Q. Li, J. Yu, X. M. Ou, C. Adachi, X. H. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 13472.
[92] D. Hall, S. M. Suresh, P. L. dos Santos, E. Duda, S. Bagnich, A. Pershin, P. Rajamalli, D. B. Cordes, A. M. Z. Slawin, D. Beljonne, A. Köhler, I. D. W. Samuel, Y. Olivier, E. Zysman‐Colman, Adv. Opt. Mater. 2019, 8, 1901627.
[93] S. Oda, W. Kumano, T. Hama, R. Kawasumi, K. Yoshiura, T. Hatakeyama, Angew. Chem., Int. Ed. 2021, 60, 2882.
[94] Y. Liu, X. Xiao, Y. Ran, Z. Bin, J. You, Chem. Sci. 2021, 12, 9408.
[95] M. Yang, S. Shikita, H. Min, I. S. Park, H. Shibata, N. Amanokura, T. Yasuda, Angew. Chem., Int. Ed. 2021, 60, 23142.
[96] Y. Xu, Q. Wang, J. Wei, X. Peng, J. Xue, Z. Wang, S. J. Su, Y. Wang, Angew. Chem., Int. Ed. 2022, 61, e202204652.
[97] S. Oda, T. Sugitani, H. Tanaka, K. Tabata, R. Kawasumi, T. Hatakeyama, Adv. Mater. 2022, 34, e2201778.
[98] M. Yang, I. S. Park, T. Yasuda, J. Am. Chem. Soc. 2020, 142, 19468.
[99] Y. Zhang, D. Zhang, T. Huang, A. J. Gillett, Y. Liu, D. Hu, L. Cui, Z. Bin, G. Li, J. Wei, L. Duan, Angew. Chem., Int. Ed. 2021, 60, 20498.
[100] Y. Xu, C. Li, Z. Li, J. Wang, J. Xue, Q. Wang, X. Cai, Y. Wang, CCS Chem. 2022, 4, 2065.
[101] P. Jiang, J. Miao, X. Cao, H. Xia, K. Pan, T. Hua, X. Lv, Z. Huang, Y. Zou, C. Yang, Adv. Mater. 2022, 34, e2106954.
[102] F. Liu, Z. Cheng, L. Wan, Z. Feng, H. Liu, H. Jin, L. Gao, P. Lu, W. Yang, Small 2022, 18, 2106462.
[103] J.-J. Hu, X.-F. Luo, Y.-P. Zhang, M.-X. Mao, H.-X. Ni, X. Liang, Y.-X. Zheng, J. Mater. Chem. C 2022, 10, 768.
[104] H. Tanaka, S. Oda, G. Ricci, H. Gotoh, K. Tabata, R. Kawasumi, D. Beljonne, Y. Olivier, T. Hatakeyama, Angew. Chem. Int. Ed. 2021, 60, 17910.
[105] G. Liu, H. Sasabe, K. Kumada, A. Matsunaga, H. Katagiri, J. Kido, J. Mater. Chem. C 2021, 9, 8308.
[106] J. H. Kim, W. J. Chung, J. Kim, J. Y. Lee, Mater. Today Energy 2021, 21, 100792.
[107] Y. C. Cheng, X. C. Fan, F. Huang, X. Xiong, J. Yu, K. Wang, C. S. Lee, X. H. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202212575.
[108] J. Bian, S. Chen, L. Qiu, R. Tian, Y. Man, Y. Wang, S. Chen, J. Zhang, C. Duan, C. Han, H. Xu, Adv. Mater. 2022, 34, e2110547.
[109] Y. Xu, Q. Wang, X. Cai, C. Li, Y. Wang, Adv. Mater. 2021, 33, 2100652.
[110] K. Matsui, S. Oda, K. Yoshiura, K. Nakajima, N. Yasuda, T. Hatakeyama, J. Am. Chem. Soc. 2018, 140, 1195.
[111] X. Y. Meng, Z. Q. Feng, Y. J. Yu, L. S. Liao, Z. Q. Jiang, Molecules 2022, 27.
[112] W. Yang, N. Li, J. Miao, L. Zhan, S. Gong, Z. Huang, C. Yang, CCS Chem. 2022, 4, 3463.
[113] X. Cai, J. Xue, C. Li, B. Liang, A. Ying, Y. Tan, S. Gong, Y. Wang, Angew. Chem., Int. Ed. 2022, 61, e202200337.
[114] G. Liu, H. Sasabe, K. Kumada, H. Arai, J. Kido, Chem. Eur. J. 2022, 28, e202201605.
[115] J. Jin, C. Duan, H. Jiang, P. Tao, H. Xu, W. Y. Wong, Angew. Chem., Int. Ed. 2023, 62, e202218947.
[116] S. Madayanad Suresh, L. Zhang, D. Hall, C. Si, G. Ricci, T. Matulaitis, A. M. Z. Slawin, S. Warriner, Y. Olivier, I. D. W. Samuel, E. Zysman-Colman, Angew. Chem., Int. Ed. 2023, 62, e202215522.
[117] M. Yang, R. K. Konidena, S. Shikita, T. Yasuda, J. Mater. Chem. C 2023, 11, 917.
[118] C.-Y. Chan, S. Madayanad Suresh, Y.-T. Lee, Y. Tsuchiya, T. Matulaitis, D. Hall, A. M. Z. Slawin, S. Warriner, D. Beljonne, Y. Olivier, C. Adachi, E. Zysman-Colman, Chem. Commun. 2022, 58, 9377.
[119] X. Cao, K. Pan, J. Miao, X. Lv, Z. Huang, F. Ni, X. Yin, Y. Wei, C. Yang, J. Am. Chem. Soc. 2022, 144, 22976.
[120] P. Jiang, L. Zhan, X. Cao, X. Lv, S. Gong, Z. Chen, C. Zhou, Z. Huang, F. Ni, Y. Zou, C. Yang, Adv. Opt. Mater. 2021, 9, 2100825.
[121] Y. Zhang, J. Wei, D. Zhang, C. Yin, G. Li, Z. Liu, X. Jia, J. Qiao, L. Duan, Angew. Chem., Int. Ed. 2022, 61, e202113206.
[122] K. R. Naveen, H. Lee, L. H. Seung, Y. H. Jung, C. P. Keshavananda Prabhu, S. Muruganantham, J. H. Kwon, J. Chem. Eng. 2023, 451, 138498.
[123] Y. Wang, K. Zhang, F. Chen, X. Wang, Q. Yang, S. Wang, S. Shao, L. Wang, Chin. J. Chem. 2022, 40, 2671.
[124] X. Xiong, Y.-C. Cheng, K. Wang, J. Yu, X.-H. Zhang, Mater. Chem. Front. 2023, 7, 929.
[125] H. J. Cheon, S. J. Woo, S. H. Baek, J. H. Lee, Y. H. Kim, Adv. Mater. 2022, 34, e2207416.
[126] Y. Zhang, G. Li, L. Wang, T. Huang, J. Wei, G. Meng, X. Wang, X. Zeng, D. Zhang, L. Duan, Angew. Chem., Int. Ed. 2022, 61, e202202380.
[127] D. Sun, S. M. Suresh, D. Hall, M. Zhang, C. Si, D. B. Cordes, A. M. Z. Slawin, Y. Olivier, X. Zhang, E. Zysman-Colman, Mater. Chem. Front. 2020, 4, 2018.
[128] X. Qiu, G. Tian, C. Lin, Y. Pan, X. Ye, B. Wang, D. Ma, D. Hu, Y. Luo, Y. Ma, Adv. Opt. Mater. 2021, 9, 2001845.
[129] F. Huang, K. Wang, Y.-Z. Shi, X.-C. Fan, X. Zhang, J. Yu, C.-S. Lee, X.-H. Zhang, ACS Appl. Mater. Interfaces. 2021, 13, 36089.
[130] S. Wu, A. Kumar Gupta, K. Yoshida, J. Gong, D. Hall, D. B. Cordes, A. M. Z. Slawin, I. D. W. Samuel, E. Zysman-Colman, Angew. Chem., Int. Ed. 2022, 61, e202213697.
[131] X.-C. Fan, K. Wang, Y.-Z. Shi, J.-X. Chen, F. Huang, H. Wang, Y.-N. Hu, Y. Tsuchiya, X.-M. Ou, J. Yu, C. Adachi, X.-H. Zhang, Adv. Opt. Mater. 2022, 10, 2101789.
[132] H. Min, I. S. Park, T. Yasuda, Angew. Chem., Int. Ed. 2021, 60, 7643.
[133] J. M. dos Santos, D. Sun, J. M. Moreno-Naranjo, D. Hall, F. Zinna, S. T. J. Ryan, W. Shi, T. Matulaitis, D. B. Cordes, A. M. Z. Slawin, D. Beljonne, S. L. Warriner, Y. Olivier, M. J. Fuchter, E. Zysman-Colman, J. Mater. Chem. C 2022, 10, 4861.
[134] L. Sun, K. Di, R. Guo, Y. Wang, H. Su, Y. Tian, S. Huang, L. Wang, Dyes Pigm. 2024, 222, 111858.
[135] T. H. Ha, J. Y. Yoo, S. W. Kang, C. W. Lee, J. Mater. Chem. C 2024, 12, 2868.
[136] J.-M. Jin, D. Liu, W.-C. Chen, C. Shi, G. Chen, X. Wang, L. Xing, W. Ying, S. Ji, Y. Huo, S.-J. Su, Angew. Chem., Int. Ed. 2024, 63, e202401120.
[137] X. Song, S. Shen, S. Zou, Y. Wang, F. Guo, S. Gao, Y. Zhang, J. Chem. Eng. 2024, 481.
[138] Z. Huang, H. Xie, J. Miao, Y. Wei, Y. Zou, T. Hua, X. Cao, C. Yang, J. Am. Chem. Soc. 2023, 145, 12550.
[139] Q. Wu, J. Li, D. Liu, Y. Mei, B. Liu, J. Wang, M. Xu, Y. Li, Dyes Pigm. 2023, 217.
[140] C. M. Marian, Wiley Interdisciplinary Reviews-Comput. Mol. Sci. 2012, 2, 187.
[141] T. Chen, C. Guestrin, presented at Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.
[142] A. Dongare, R. Kharde, A. D. J. I. J. o. E. Kachare, I. Technology, 2012, 2, 189.
[143] S. Albawi, T. A. Mohammed, S. Al-Zawi, in 2017 international conference on engineering and technology (ICET) Ieee, 2017, 1-6.
指導教授 蔡惠旭(Hui-Hsu Gavin Tsai) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明