博碩士論文 111324067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.147.75.217
姓名 陳宜汝(Yi-Ru Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 結合 PC-SAFT 狀態方程式與 COSMO-SAC 模型於雙成份系統之汽液相平衡預測
(Combining PC-SAFT Equation of State with COSMO-SAC Model foCombining PC-SAFT Equation of State with COSMO-SAC Model for Predicting VaporLiquid Equilibrium in Binary Systemsr Predicting VaporLiquid Equilibrium in Binary Systems)
相關論文
★ 預測固體溶質於超臨界二氧化碳添加共溶劑系統之溶解度★ 碳酸二乙酯與低碳醇類於常壓下之汽液相平衡
★ 探討Peng-Robinson+COSMOSAC狀態方程式中分散項與溫度之關係★ 探討分散項之溫度函數與體積參數之修正對PR+COSMOSAC於相平衡預測之影響
★ 預測有機物與二氧化碳雙成份系統之固液氣三相平衡★ 常壓下乙酸酯類之雙成份混合物汽液相平衡
★ 以第一原理計算鋰嵌入與擴散於具氧空缺之二氧化鈦結構★ 探討不同量子化學方法對PR+COSMOSAC狀態方程式應用於預測純物質及混合流體相行為之影響
★ 預測固體溶質於超臨界二氧化碳中的溶解度★ 鋯金屬有機框架材料之碳氫氣體吸附與分離預測
★ 甲基水楊酸異構物於超臨界二氧化碳中之溶解度量測★ 原料藥與水楊酸衍生物於超臨界二氧化碳中之溶解度量測
★ 以第一原理計算探討鋰於鈮摻雜二氧化鈦之嵌入與擴散路徑★ 探討COSMO-SAC-dsp模型中分散項和組合項之效應
★ 第一原理計算探討藍磷烯異質結構用於鋰離子電池負極材料之特性★ 以第一原理計算探討鋰離子於鐵摻雜磷酸鋰鈷之塊材與表面附近之擴散路徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) PC-SAFT狀態方程式被廣泛應用於純物質熱力學性質估算、藥物溶解度以及混合溶液相平衡的預測。在PC-SAFT狀態方程式中會根據物質的類型,需要不同數量的純物質參數來描述這些分子。對於非締合分子,需要三個參數來描述,即球體直徑(σ)、球體數量(m)以及長鏈分子之間的作用力參數(ϵ)。而對於締合分子,則需要增加兩個額外的參數來描述分子間的締合作用力,分別是締合體積(κAB)和締合作用力參數(ϵAB),並且需要指定特定的締合模式來描述分子間的締合作用。在應用PC-SAFT狀態方程式於混合溶液相平衡的過程中,需透過二元交互作用參數k_ij來提高模型的準確度。這些k_ij參數通常是通過回歸混合溶液的相平衡實驗數據獲得的。在本研究中,我們嘗試應用COSMO-SAC模型來估算PC-SAFT狀態方程式所需的k_ij參數。具體而言,我們通過調整k_ij的數值,使得PC-SAFT狀態方程式在給定的系統條件下能夠提供與COSMO-SAC模型相匹配的excess Gibbs free energy (▁Gex),從而求得所需的k_ij參數。我們期望通過這一方法,使得PC-SAFT狀態方程式在已知系統中物質的純物質參數與分子結構的前提下,能夠準確預測其流體相平衡行為,從而避免對混合流體實驗數據的依賴。
本研究共探討了92種物質組成的273個雙成份混合流體系統的汽液相平衡,其中包括179個由非氫鍵締合分子構成的雙成份系統以及94個含有締合分子的雙成份系統。研究結果顯示,本研究所開發的方法在相平衡預測中表現出色,在非締合分子系統,壓力平均相對誤差(AARD-P: average absolute relative deviation in pressure)為4.13%,汽相組成平均絕對誤差(AAD-y: average absolute deviation in vapor phase mole fraction)為1.48%;而在含有締合分子的系統中,AARD-P和AAD-y分別為7.76%和3.44%。相比之下,PC-SAFT狀態方程式在不考慮k_ij參數的情況下進行相平衡預測時,在非締合分子系統的AARD-P為8.92%,AAD-y為3.27%;在含有締合分子的系統中,AARD-P為19.14%,AAD-y為5.03%。上述之結果顯示,在缺少實驗數據來迴歸求得PC-SAFT狀態方程式所需之k_ij參數時,本研究所提出的方法相對於PC-SAFT狀態方程式在沒有k_ij參數的條件下可以提供更準確和可靠的相平衡預測。本研究方法相較於純COSMO-SAC模型的優勢在於其能夠在高壓系統中進行準確預測,並且在混合系統中其中一個組成超過臨界點時,依然能提供相當精確的預測結果,而這正是COSMO-SAC模型的局限所在。另一方面是COSMO-SAC使用蒸氣壓實驗值去計算,但是本研究是透過純物質參數回歸的蒸氣壓去計算,這樣的優勢是能夠在缺乏蒸氣壓實驗數據的情況下,依然可以預測汽液相平衡的表現。此外,本方法能夠在高壓系統中的溫度範圍橫跨100 K的情況下,依然保持良好的預測精度,這在化學工程和工業應用中尤為重要,因為它能夠有效處理從低溫到高溫、從低壓到高壓的各種操作條件。為了驗證本研究方法所求得之k_ij參數的有效性,我們將本研究所得的k_ij參數與透過實驗數據優化的PC-SAFT模型之k_ij隨溫度變化的趨勢進行比較。
摘要(英) The PC-SAFT equation of state (EOS) is widely used for estimating the thermodynamic properties of pure substances, drug solubility, and predicting phase equilibrium in mixed solutions. In the PC-SAFT EOS, the number of pure substance parameters required to describe these molecules varies according to the type of substance. For non-associating molecules, three parameters are needed: the segment diameter (σ), the number of segments (m), and the interaction energy parameter between the chain molecules (ϵ). For associating molecules, two additional parameters are required to describe the intermolecular associating forces: the association volume (κAB) and the association energy parameter (ϵAB). Furthermore, a specific association scheme is necessary to describe the manner of molecular association. When applying the PC-SAFT EOS to phase equilibrium in mixed solutions, binary interaction parameters (k_ij) are used to enhance the model′s accuracy. These k_ij parameters are typically obtained by regressing phase equilibrium experimental data of mixed solutions. In this study, we attempt to estimate the k_ij parameters required for the PC-SAFT EOS using the COSMO-SAC model. Specifically, we adjust the k_ij values so that the PC-SAFT EOS can provide an excess Gibbs free energy (▁Gex) that matches the COSMO-SAC model under given system conditions, thereby obtaining the required k_ij parameters. We hope that this method will enable the PC-SAFT EOS to accurately predict fluid phase behavior in systems where the pure substance parameters and molecular structures are known, thereby avoiding reliance on experimental data for mixed fluids.
In this study, we investigated the vapor-liquid equilibrium (VLE) of 273 binary mixture systems composed of 92 substances, including 179 systems consisting of non-associating molecules and 94 systems containing associating molecules. The results show that the method developed in this study performs excellently in VLE prediction. For non-associating molecule systems, the average absolute relative deviation in pressure (AARD-P) is 4.13%, and the average absolute deviation in vapor phase mole fraction (AAD-y) is 1.48%. For systems containing associating molecules, the AARD-P and AAD-y are 7.76% and 3.44%, respectively. In contrast, when the PC-SAFT EOS predicts phase equilibrium without considering k_ij parameters, the AARD-P and AAD-y are 8.92% and 3.27% for non-associating molecule systems and 19.14% and 5.03% for systems containing associating molecules, respectively. The above results indicate that in the absence of experimental data to regress and obtain the necessary k_ij parameters for the PC-SAFT EOS, the method proposed in this study can provide more accurate and reliable phase equilibrium predictions compared to the PC-SAFT EOS without k_ij parameters. The advantage of the proposed method compared to COSMO-SAC lies in its ability to accurately predict VLE under high-pressure conditions, especially when system conditions exceed the critical point of one component in the mixture. On the other hand, COSMO-SAC model requires experimental vapor pressure values for VLE calculations, whereas the PC-SAFT can estimate vapor pressures of pure substances with known pure substance parameters. This advantage allows for VLE prediction even in the absence of experimental vapor pressure data. Furthermore, the proposed method maintains high predictive accuracy across a temperature range of 100 K in high-pressure systems. This capability is particularly important in chemical engineering and industrial applications, as it effectively handles various operating conditions from low to high temperatures and pressures. To verify the effectiveness of the k_ij parameters obtained by the proposed method, we compared the k_ij parameters obtained from this work with those optimized through experimental VLE data to confirm the consistent temperature-dependence of k_ij parameters from these two methods.
關鍵字(中) ★ PC-SAFT狀態方程式
★ COSMO-SAC模型
★ 雙成份氣液相平衡
★ 二元交互作用參數
關鍵字(英) ★ PC-SAFT equation of state
★ COSMO-SAC model
★ VLE in binary systems
★ binary interaction parameters
論文目次 目錄
中文摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1-1 相平衡數據的重要性 1
1-2 活性係數模型的演進 3
1-3 回顧COSMO-SAC的演進 4
1-4 PC-SAFT的概念 6
1-5 估算k_ij參數的文獻回顧 8
1-6 研究動機 9
第二章 計算原理與細節 10
2-1 COSMO-SAC模型 10
2-2 PC-SAFT狀態方程式 14
2-2-1 剩餘的亥姆霍茲自由能a ̃^res 14
(1) 硬鏈參考貢獻項a ̃^hc 14
(2) 分散項貢獻a ̃^disp 15
(3) 締合項貢獻a ̃^assoc 16
2-2-2 壓縮係數Z 17
(1) 硬鏈參考貢獻項Z^hc 17
(2) 分散項貢獻Z^disp 17
(3) 締合項貢獻Z^assoc 17
2-3 結合PC-SAFT與COSMO-SAC (2010)概念 20
2-4 二元混合系統之汽液相平衡計算 21
第三章 結果與討論 22
3-1 非締合系統的汽液相平衡預測 24
3-2 締合系統的汽液相平衡預測 32
3-3 參考壓力設定 40
3-4 比較本研究與PC-SAFT優化之k_ij參數 49
第四章 結論 52
參考文獻 54
附錄 一 PC-SAFT狀態方程式微分項計算式 60
附錄 二 純物質蒸氣壓計算 61
附錄 三 符號列表 62
附錄 四 汽液相平衡預測總表 63
附錄 五 PC-SAFT之純物質參數 77

圖目錄
圖 一PC-SAFT計算流程圖 19
圖 二VLE計算流程圖 21
圖 三 (A+A) Carbontetrachloride (1) + 1,2-Dichloroethane (2)混合物之汽液相平衡 27
圖 四 (A+A) n-Pentane (1) + Benzene (2)混合物之汽液相平衡圖 27
圖 五 (A+B) Chloroform (1) + Methylethylketone (2)混合物之汽液相平衡圖 28
圖 六 (A+B) Cyclohexane (1) + Methylmethacrylate (2)混合物之汽液相平衡圖 28
圖 七 (B+B) Triethylamine (1) + 1,4-Dioxane (2)混合物之汽液相平衡圖 29
圖 八 (B+B) Chlorodifluoromethane (1) + Dichlorodifluoromethane (2)混合物之汽液相平衡圖 29
圖 九 (B+B) Chlorodifluoromethane (1) + Dichlorodifluoromethane (2)混合物之汽液相平衡圖 30
圖 十 (A+A)高壓系統Ethane (1) + Propane (2)混合物之汽液相平衡圖 30
圖 十一 (A+B)高壓系統Butane (2) + CO2 (1)混合物之汽液相平衡圖 31
圖 十二 (A+C) Styrene (1) + Aniline (2)混合物之汽液相平衡圖 35
圖 十三 (A+C) Cyclohexane (1) + Isopropanol (2)混合物之汽液相平衡圖 35
圖 十四 (B+C) Diisopropylether (1) + Isopropanol (2)混合物之汽液相平衡圖 36
圖 十五 (B+C) 1-Butanol (1) + n-Butylacetate (2)混合物之汽液相平衡圖 36
圖 十六 (C+C) Methanol (1) + Ethanol (2)混合物之汽液相平衡圖 37
圖 十七 (C+C) Methanol (1) + Ethanol (2)混合物之汽液相平衡圖 37
圖 十八 (C+C) Ethanol (1) + Water (2)混合物之汽液相平衡圖 38
圖 十九 (A+C)高壓系統Butane (1) + Propanol (2)混合物之汽液相平衡圖 38
圖 二十 (A+C)高壓系統Pentane (1) + Butanol (2)混合物之汽液相平衡圖 39
圖 二十一 (A+A) Carbontetrachloride (1) + 1,2-Dichloroethane (2)混合物在不同壓力下之汽液相平衡圖 43
圖 二十二 (A+A) Carbontetrachloride (1) + 1,2-Dichloroethane (2)混合物在不同壓力下對excess Gibbs free energy作圖 43
圖 二十三 (A+B) Chloroform (1) + Methylethylketone (2)混合物在不同壓力下之汽液相平衡圖 44
圖 二十四 (A+B) Chloroform (1) + Methylethylketone (2)混合物在不同壓力下對excess Gibbs free energy作圖 44
圖 二十五 (A+C) Cyclohexane (1) + Isopropanol (2)混合物在不同壓力下之汽液相平衡圖 45
圖 二十六 (A+C) Cyclohexane (1) + Isopropanol (2)混合物在不同壓力下對excess Gibbs free energy作圖 45
圖 二十七 (B+B) Chlorodifluoromethane (1) + Dichlorodifluoromethane (2)混合物在不同壓力下之汽液相平衡圖 46
圖 二十八 (B+B) Chlorodifluoromethane (1) + Dichlorodifluoromethane (2)混合物在不同壓力下對excess Gibbs free energy作圖 46
圖 二十九 (B+C) 1-Butanol (1) + n-Butylacetate (2)混合物在不同壓力下之汽液相平衡圖 47
圖 三十 (B+C) 1-Butanol (1) + n-Butylacetate (2)混合物在不同壓力下對excess Gibbs free energy作圖 47
圖 三十一 (C+C) Methanol (1) + Ethanol (2)混合物在不同壓力下之汽液相平衡圖 48
圖 三十二 (C+C) Methanol (1) + Ethanol (2)混合物在不同壓力下對
excess Gibbs free energy作圖 48

表目錄
表 一 COSMO-SAC模型中的參數值 13
表 二 方程27和28的通用模型常數 16
表 三 系統分類的符號定義 23
表 四 將二元混合系統分為六大類 23
表 五 不同計算方法預測非締合系統VLE的誤差 26
表 六 本節各別探討之不同計算方法預測VLE的誤差 26
表 七 不同計算方法預測締合系統VLE的誤差 34
表 八 本節各別探討之不同計算方法預測VLE的誤差 34
表 九 在不同壓力下預測VLE的誤差 42
表 十 針對各別系統在不同溫度下比較本研究方法與PC-SAFT優化kij 參數前後的結果 51
表 十一 非締合分子、締合分子及不列入探討物質之蒸氣壓計算 61
表 十三 A+A系統之汽液相平衡預測結果 63
表 十四 A+B系統之汽液相平衡預測結果 66
表 十五 A+C系統之汽液相平衡預測結果 70
表 十六 B+B系統之汽液相平衡預測結果 73
表 十七 B+C系統之汽液相平衡預測結果 74
表 十八 C+C系統之汽液相平衡預測結果 76
表 十九 非締合分子純物質參數與Compound ID對照表 77
表 二十 締合分子純物質參數與Compound ID對照表 81
參考文獻 參考文獻
[1] P. M. Mathias, "Guidelines for the analysis of vapor–liquid equilibrium data," vol. 62, ed: ACS Publications, 2017, pp. 2231-2233.
[2] A. M. Fulgueras, J. Poudel, D. S. Kim, and J. Cho, "Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water-ethylenediamine," Korean Journal of Chemical Engineering, vol. 33, pp. 46-56, 2016.
[3] K. Kȩdra-Królik, M. Fabrice, and J.-N. l. Jaubert, "Extraction of thiophene or pyridine from n-heptane using ionic liquids. Gasoline and diesel desulfurization," Industrial & engineering chemistry research, vol. 50, no. 4, pp. 2296-2306, 2011.
[4] C. Yi, W. Song, Y. Zhang, and X. Qiu, "Liquid–Liquid Extraction of Biobased Isobutanol from an Aqueous Solution," Journal of Chemical & Engineering Data, vol. 64, no. 6, pp. 2350-2356, 2019.
[5] H. Kaemmerer, M. J. Jones, H. Lorenz, and A. Seidel-Morgenstern, "Selective crystallisation of a chiral compound-forming system—Solvent screening, SLE determination and process design," Fluid Phase Equilibria, vol. 296, no. 2, pp. 192-205, 2010.
[6] Z. Gao, S. Rohani, J. Gong, and J. Wang, "Recent developments in the crystallization process: toward the pharmaceutical industry," Engineering, vol. 3, no. 3, pp. 343-353, 2017.
[7] J. D. Van Der Waals and J. S. Rowlinson, On the continuity of the gaseous and liquid states. Courier Corporation, 2004.
[8] D.-Y. Peng and D. B. Robinson, "A new two-constant equation of state," Industrial & Engineering Chemistry Fundamentals, vol. 15, no. 1, pp. 59-64, 1976.
[9] O. Redlich and J. N. Kwong, "On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions," Chemical reviews, vol. 44, no. 1, pp. 233-244, 1949.
[10] G. Soave, "Equilibrium constants from a modified Redlich-Kwong equation of state," Chemical engineering science, vol. 27, no. 6, pp. 1197-1203, 1972.
[11] M.-J. Huron and J. Vidal, "New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures," Fluid Phase Equilibria, vol. 3, no. 4, pp. 255-271, 1979.
[12] M. L. Michelsen, "A modified Huron-Vidal mixing rule for cubic equations of state," Fluid Phase Equilibria, vol. 60, no. 1-2, pp. 213-219, 1990.
[13] T. Y. Kwak and G. A. Mansoori, "Van der Waals mixing rules for cubic equations of state. Applications for supercritical fluid extraction modelling," Chemical engineering science, vol. 41, no. 5, pp. 1303-1309, 1986.
[14] H. Wong and S. Sandier, "A theoretically correct equations mixing rule for cubic of state," AIChE J, vol. 38, no. 5, pp. 671-680, 1992.
[15] G. M. Wilson, "Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing," Journal of the American Chemical Society, vol. 86, no. 2, pp. 127-130, 1964.
[16] H. Renon and J. M. Prausnitz, "Local compositions in thermodynamic excess functions for liquid mixtures," AIChE journal, vol. 14, no. 1, pp. 135-144, 1968.
[17] D. S. Abrams and J. M. Prausnitz, "Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems," AIChE journal, vol. 21, no. 1, pp. 116-128, 1975.
[18] V. Flemr, "A note on excess Gibbs energy equations based on local composition concept," Collection of Czechoslovak Chemical Communications, vol. 41, no. 11, pp. 3347-3349, 1976.
[19] S.-T. Lin, M.-K. Hsieh, C.-M. Hsieh, and C.-C. Hsu, "Towards the development of theoretically correct liquid activity coefficient models," The Journal of Chemical Thermodynamics, vol. 41, no. 10, pp. 1145-1153, 2009.
[20] A. Fredenslund, R. L. Jones, and J. M. Prausnitz, "Group‐contribution estimation of activity coefficients in nonideal liquid mixtures," AIChE Journal, vol. 21, no. 6, pp. 1086-1099, 1975.
[21] J. Gmehling, J. Li, and M. Schiller, "A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties," Industrial & Engineering Chemistry Research, vol. 32, no. 1, pp. 178-193, 1993.
[22] A. Klamt, "Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena," The Journal of Physical Chemistry, vol. 99, no. 7, pp. 2224-2235, 1995.
[23] A. Klamt, V. Jonas, T. Bürger, and J. C. Lohrenz, "Refinement and parametrization of COSMO-RS," The Journal of Physical Chemistry A, vol. 102, no. 26, pp. 5074-5085, 1998.
[24] S.-T. Lin and S. I. Sandler, "A priori phase equilibrium prediction from a segment contribution solvation model," Industrial & engineering chemistry research, vol. 41, no. 5, pp. 899-913, 2002.
[25] I. H. Bell et al., "A benchmark open-source implementation of COSMO-SAC," Journal of chemical theory and computation, vol. 16, no. 4, pp. 2635-2646, 2020.
[26] A. Klamt and G. Schüürmann, "COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient," Journal of the Chemical Society, Perkin Transactions 2, no. 5, pp. 799-805, 1993.
[27] S. Sinnecker, A. Rajendran, A. Klamt, M. Diedenhofen, and F. Neese, "Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (direct COSMO-RS)," The Journal of Physical Chemistry A, vol. 110, no. 6, pp. 2235-2245, 2006.
[28] S.-T. Lin, J. Chang, S. Wang, W. A. Goddard, and S. I. Sandler, "Prediction of vapor pressures and enthalpies of vaporization using a COSMO solvation model," The Journal of Physical Chemistry A, vol. 108, no. 36, pp. 7429-7439, 2004.
[29] S. Wang, S. I. Sandler, and C.-C. Chen, "Refinement of COSMO− SAC and the Applications," Industrial & Engineering Chemistry Research, vol. 46, no. 22, pp. 7275-7288, 2007.
[30] C.-M. Hsieh, S. I. Sandler, and S.-T. Lin, "Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions," Fluid Phase Equilibria, vol. 297, no. 1, pp. 90-97, 2010.
[31] W.-L. Chen and S.-T. Lin, "Explicit consideration of spatial hydrogen bonding direction for activity coefficient prediction based on implicit solvation calculations," Physical Chemistry Chemical Physics, vol. 19, no. 31, pp. 20367-20376, 2017.
[32] C.-K. Chang, W.-L. Chen, D. T. Wu, and S.-T. Lin, "Improved directional hydrogen bonding interactions for the prediction of activity coefficients with COSMO-SAC," Industrial & Engineering Chemistry Research, vol. 57, no. 32, pp. 11229-11238, 2018.
[33] C.-M. Hsieh, S.-T. Lin, and J. Vrabec, "Considering the dispersive interactions in the COSMO-SAC model for more accurate predictions of fluid phase behavior," Fluid Phase Equilibria, vol. 367, pp. 109-116, 2014.
[34] R. Xiong, S. I. Sandler, and R. I. Burnett, "An improvement to COSMO-SAC for predicting thermodynamic properties," Industrial & Engineering Chemistry Research, vol. 53, no. 19, pp. 8265-8278, 2014.
[35] E. Mullins et al., "Sigma-profile database for using COSMO-based thermodynamic methods," Industrial & engineering chemistry research, vol. 45, no. 12, pp. 4389-4415, 2006.
[36] E. Mullins, Y. Liu, A. Ghaderi, and S. D. Fast, "Sigma profile database for predicting solid solubility in pure and mixed solvent mixtures for organic pharmacological compounds with COSMO-based thermodynamic methods," Industrial & engineering chemistry research, vol. 47, no. 5, pp. 1707-1725, 2008.
[37] R. Fingerhut et al., "Comprehensive assessment of COSMO-SAC models for predictions of fluid-phase equilibria," Industrial & Engineering Chemistry Research, vol. 56, no. 35, pp. 9868-9884, 2017.
[38] W. G. Chapman, G. Jackson, and K. E. Gubbins, "Phase equilibria of associating fluids: chain molecules with multiple bonding sites," Molecular Physics, vol. 65, no. 5, pp. 1057-1079, 1988.
[39] G. Jackson, W. G. Chapman, and K. E. Gubbins, "Phase equilibria of associating fluids: Spherical molecules with multiple bonding sites," Molecular Physics, vol. 65, no. 1, pp. 1-31, 1988.
[40] W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, "New reference equation of state for associating liquids," Industrial & engineering chemistry research, vol. 29, no. 8, pp. 1709-1721, 1990.
[41] T. Kraska and K. E. Gubbins, "Phase equilibria calculations with a modified SAFT equation of state. 2. Binary mixtures of n-alkanes, 1-alkanols, and water," Industrial & engineering chemistry research, vol. 35, no. 12, pp. 4738-4746, 1996.
[42] T. Kraska and K. E. Gubbins, "Phase equilibria calculations with a modified SAFT equation of state. 1. Pure alkanes, alkanols, and water," Industrial & engineering chemistry research, vol. 35, no. 12, pp. 4727-4737, 1996.
[43] S. H. Huang and M. Radosz, "Equation of state for small, large, polydisperse, and associating molecules," Industrial & Engineering Chemistry Research, vol. 29, no. 11, pp. 2284-2294, 1990.
[44] S. H. Huang and M. Radosz, "Equation of state for small, large, polydisperse, and associating molecules: extension to fluid mixtures," Industrial & Engineering Chemistry Research, vol. 30, no. 8, pp. 1994-2005, 1991.
[45] A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, and A. N. Burgess, "Statistical associating fluid theory for chain molecules with attractive potentials of variable range," The Journal of chemical physics, vol. 106, no. 10, pp. 4168-4186, 1997.
[46] J. Gross and G. Sadowski, "Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules," Industrial & engineering chemistry research, vol. 40, no. 4, pp. 1244-1260, 2001.
[47] J. Gross and G. Sadowski, "Application of the perturbed-chain SAFT equation of state to associating systems," Industrial & engineering chemistry research, vol. 41, no. 22, pp. 5510-5515, 2002.
[48] I. Senol, "Ilke Senol Perturbed-Chain Statistical Association Fluid Theory ( PC-SAFT ) Parameters for Propane , Ethylene , and Hydrogen under Supercritical Conditions," 2011.
[49] D. Nguyen-Huynh, J.-P. Passarello, P. Tobaly, and J.-C. de Hemptinne, "Modeling phase equilibria of asymmetric mixtures using a group-contribution SAFT (GC-SAFT) with ak ij correlation method based on London’s theory. 1. Application to CO2+ n-alkane, methane+ n-alkane, and ethane+ n-alkane systems," Industrial & engineering chemistry research, vol. 47, no. 22, pp. 8847-8858, 2008.
[50] D. Nguyen-Huynh, T. Tran, S. Tamouza, J.-P. Passarello, P. Tobaly, and J.-C. De Hemptinne, "Modeling Phase Equilibria of Asymmetric Mixtures Using a Group-Contribution SAFT (GC-SAFT) with ak ij Correlation Method Based on Londonʼs Theory. 2. Application to Binary Mixtures Containing Aromatic Hydrocarbons, n-Alkanes, CO2, N2, and H2S," Industrial & engineering chemistry research, vol. 47, no. 22, pp. 8859-8868, 2008.
[51] T. Tran, D. NguyenHuynh, N. Ferrando, J.-P. Passarello, J.-C. de Hemptinne, and P. Tobaly, "Modeling VLE of H2+ Hydrocarbon Mixtures Using a Group Contribution SAFT with ak ij Correlation Method Based on London’s Theory," Energy & fuels, vol. 23, no. 5, pp. 2658-2665, 2009.
[52] F. T. Peters, F. S. Laube, and G. Sadowski, "PC-SAFT based group contribution method for binary interaction parameters of polymer/solvent systems," Fluid Phase Equilibria, vol. 358, pp. 137-150, 2013.
[53] M. Stavrou, A. Bardow, and J. Gross, "Estimation of the binary interaction parameter kij of the PC-SAFT Equation of State based on pure component parameters using a QSPR method," Fluid Phase Equilibria, vol. 416, pp. 138-149, 2016.
[54] A. M. Abudour, S. A. Mohammad, R. L. Robinson Jr, and K. A. Gasem, "Generalized binary interaction parameters for the Peng–Robinson equation of state," Fluid Phase Equilibria, vol. 383, pp. 156-173, 2014.
[55] A. M. Abudour, S. A. Mohammad, R. L. Robinson Jr, and K. A. Gasem, "Predicting PR EOS binary interaction parameter using readily available molecular properties," Fluid Phase Equilibria, vol. 434, pp. 130-140, 2017.
[56] R. M. Swanepoel and C. E. Schwarz, "Evaluation and improvement of the predictive capabilities of PC-SAFT for the liquid–liquid phase boundaries in the solution polymerisation process," Fluid Phase Equilibria, vol. 526, p. 112649, 2020.
[57] A. Dominik and W. G. Chapman, "Thermodynamic model for branched polyolefins using the PC-SAFT equation of state," Macromolecules, vol. 38, no. 26, pp. 10836-10843, 2005.
[58] J. Gross, O. Spuhl, F. Tumakaka, and G. Sadowski, "Modeling copolymer systems using the perturbed-chain SAFT equation of state," Industrial & engineering chemistry research, vol. 42, no. 6, pp. 1266-1274, 2003.
[59] C. M. Hsieh and S. T. Lin, "Determination of cubic equation of state parameters for pure fluids from first principle solvation calculations," AIChE journal, vol. 54, no. 8, pp. 2174-2181, 2008.
[60] C.-M. Hsieh and S.-T. Lin, "First-principles predictions of vapor− liquid equilibria for pure and mixture fluids from the combined use of cubic equations of state and solvation calculations," Industrial & engineering chemistry research, vol. 48, no. 6, pp. 3197-3205, 2009.
[61] C.-M. Hsieh and S.-T. Lin, "Prediction of liquid–liquid equilibrium from the Peng–Robinson+ COSMOSAC equation of state," Chemical Engineering Science, vol. 65, no. 6, pp. 1955-1963, 2010.
[62] S.-T. Lin and S. I. Sandler, "Prediction of octanol− water partition coefficients using a group contribution solvation model," Industrial & engineering chemistry research, vol. 38, no. 10, pp. 4081-4091, 1999.
[63] S. T. Lin and S. I. Sandler, "Infinite dilution activity coefficients from ab initio solvation calculations," AIChE journal, vol. 45, no. 12, pp. 2606-2618, 1999.
[64] 伊藤礼吉, "GC Pimentel, AL McClellan: The Hydrogen Bond., WH Freeman and Company 1960, 475 頁, 16× 24cm, 4560 円," 日本物理学会誌, vol. 15, no. 7, p. 403, 1960.
[65] H. Liu and Y. Hu, "Molecular thermodynamic theory for polymer systems part II. equation of state for chain fluids," Fluid Phase Equilibria, vol. 122, no. 1-2, pp. 75-97, 1996.
[66] J. Gross and G. Sadowski, "Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules," Ind. Eng. Chem. Res., vol. 40, p. 1244, 2001.
[67] N. Ramírez-Vélez, A. Piña-Martinez, J.-N. Jaubert, and R. Privat, "Parameterization of SAFT models: analysis of different parameter estimation strategies and application to the development of a comprehensive database of PC-SAFT molecular parameters," Journal of Chemical & Engineering Data, vol. 65, no. 12, pp. 5920-5932, 2020.
[68] J. Gmehling and U. Onken, "Vapour-Liquid Equilibrium Data Collection (Dechema, Frankfurt, Germany)," 1977.
[69] W.-L. Chen and S.-T. Lin, "A Priori Prediction of the Vapor–Liquid Equilibria of Mixtures of Acetic Acid and Water or Alcohols by Explicit Consideration of Hydrogen-Bonded Dimers," Industrial & Engineering Chemistry Research, vol. 53, no. 39, pp. 15261-15269, 2014.
[70] D. Matschke and G. Thodos, "Vapor-Liquid Equilibria for the Ethane-Propane System," Journal of Chemical and Engineering Data, vol. 7, no. 2, pp. 232-234, 1962.
[71] S. K. Shibata and S. I. Sandler, "High-pressure vapor-liquid equilibria involving mixtures of nitrogen, carbon dioxide, and n-butane," Journal of Chemical and Engineering Data, vol. 34, no. 3, pp. 291-298, 1989.
[72] X. Liang, I. Tsivintzelis, and G. M. Kontogeorgis, "Modeling water containing systems with the simplified PC-SAFT and CPA equations of state," Industrial & Engineering Chemistry Research, vol. 53, no. 37, pp. 14493-14507, 2014.
[73] P. J. Walker, "Toward advanced, predictive mixing rules in SAFT equations of state," Industrial & Engineering Chemistry Research, vol. 61, no. 49, pp. 18165-18175, 2022.
[74] A. Deák, A. Victorov, and T. W. De Loos, "High pressure VLE in alkanol+ alkane mixtures. Experimental results for n-butane+ ethanol,+ 1-propanol,+ 1-butanol systems and calculations with three EOS methods," Fluid Phase Equilibria, vol. 107, no. 2, pp. 277-301, 1995.
[75] Y. Kim, W. Bae, and H. Kim, "Isothermal vapor− liquid equilibria for the n-pentane+ 1-butanol and n-pentane+ 2-butanol systems near the critical region of the mixtures," Journal of Chemical & Engineering Data, vol. 50, no. 5, pp. 1520-1524, 2005.
指導教授 謝介銘(Chieh-Ming Hsieh) 審核日期 2024-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明