博碩士論文 111223080 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:127 、訪客IP:18.116.88.118
姓名 萬璟宜(Ching-Yi Wan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 臨床實驗室中的甲狀腺球蛋白免疫多重反應監測質譜檢測:克服一致性與再現性的挑戰
(Thyroglobulin iMRM MS Assay in a Clinical Laboratory: Overcoming Challenges in Consistency and Reproducibility)
相關論文
★ 以蛋白質體學探討在大腸桿菌中甲醇利用代謝途徑★ Data-independent acquisition mass spectrometry analysis for identification of cerebrospinal fluid biomarker of reversible cerebral vasoconstriction syndrome
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 儘管質譜(MS)技術已經有所進步,但其轉化為臨床實驗室仍面臨著維持穩定性和一 致性的重大挑戰,尤其是當技術人員和儀器設備出現變更時。我們先前以甲狀腺球蛋白 (Tg)作為甲狀腺癌的生物標記,並採用免疫多重反應監測質譜(iMRM MS)檢測作為 模型,建立符合臨床實驗室改進修正案(CLIA)的實驗室。建立在前期工作的基礎上, 本研究旨在評估此臨床實驗室的操作過程,以確保在不同條件下的高度重複性和再現性。
作為新進的實驗人員,我接受了 Tg-iMRM MS 檢測的操作培訓,該檢測最初由華盛頓 大學的 Andrew Hoofnagle 醫師開發,使用基於胜肽的免疫沉澱與 MRM MS 定量檢測甲狀 腺癌患者的 Tg 濃度。初步測試發現不同實驗人員和質譜儀的之間有低再現性。我發現合 成內部標準品(SIS)的分批均一性對檢測表現有顯著影響。通過評估通過品質管理(QC) 的批次數據,發現在每次實驗先監控 SIS 胜肽強度是否落於約 148,500 至 222,800 的區間, 不同批次間 SIS 表現可保持一致性,三個品質管理(QC)樣本顯示了良好的定量結果: 精準度分別為 QC-Low(0.92 ng/mL,CV 10.29%)、QC-Mid(3.12 ng/mL,CV 10.63%) 和 QC-High(9.78 ng/mL,CV 5.35%),從而減少變異性並增加檢測的可靠性。此外,將 2% DMSO 加入移動相使信號強度增加了 2.43 倍,顯著提升檢測的靈敏度和一致性。
將 Tg-iMRM MS 檢測應用於擁有不同甲狀腺球蛋白自身抗體(TgAb)水平的患者血清 樣本中:包括 69 名低 TgAb 水平(<3 IU/mL)的患者和 8 名中等 TgAb 水平(3 至 16 IU/mL)的患者,這些水平是通過傳統 ECLIA 方法測量而得。對於不含 TgAb 的樣本, ECLIA 和 iMRM-MS 在 Tg 定量結果上達到良好的一致性。而 iMRM-MS 在含有 TgAb 的 樣本中則有著更佳的表現,尤其是能夠在含有顯著 TgAb 水平的樣本中定量低濃度的 Tg。 我們仍需要進一步的實驗來全面評估檢測在不同操作者和儀器設置中的表現。這項持續的 工作將有助於確立 Tg-iMRM MS 檢測在更廣泛應用的潛力,特別是減少存在 TgAb 樣本中 常見的假陰性結果。
摘要(英) Despite advancements in mass spectrometry technology, its translation into clinical laboratories face significant challenges in maintaining robustness and consistency, especially variations in operators and instrumentation. We previously utilized thyroglobulin (Tg) as a biomarker for thyroid cancer and employed an immuno-MRM (iMRM) MS-based assay as a model to establish a Clinical Laboratory Improvement Amendments (CLIA) compliant laboratory. Building on the previous work, this study aims to evaluate the repeatability and reproducibility under varying conditions within this clinical laboratory.
As a new operator, I have gone through the operation training on the Tg-iMRM MS assay, initially developed by Dr. Andrew Hoofnagle’s group at University of Washington that employs peptide-based immunoprecipitation coupled with MRM MS for quantitation of Tg. The initial testing encountered poor reproducibility by different operators and mass spectrometers. I found that the homogeneous aliquots of the synthetic internal standard (SIS) significantly affect the assay performance. Through examining the SIS peptide intensities for the data batch that passed the quality control (QC), systematic monitoring of SIS intensity within the range of around 148,600 to 222,800 at the beginning of each experiment can ensure the signal stability of SIS. With consistent SIS performance across different batches, the three quality control (QC) samples show satisfactory quantification results with accuracy of QC-Low (0.92 ng/mL, CV 10.29%), QC-Mid (3.12 ng/mL, CV 10.63%), and QC-High (9.78 ng/mL, CV 5.35%), thereby minimizing variability to maintain assay reliability. Additionally, incorporating 2% DMSO in the mobile phase resulted in a 2.43-fold increase in signal intensity that improves both the sensitivity and consistency of the assay.
The Tg-iMRM MS assay was applied to the serum samples from patients with different thyroglobulin autoantibody (TgAb) levels measured by traditional ECLIA method: 69 patients with low levels (<3 IU/mL) and 8 patients with mid-levels (3 to 16 IU/mL). Good agreement in ECLIA and iMRM-MS was observed for samples without TgAb. The iMRM-MS shows superior performance in samples in the presence of TgAb, especially in samples with significant levels of TgAb. Further experiments are required to fully assess the assay′s performance across different operators and instrumental setups. This ongoing work will help establish the assay′s potential for broader clinical application, particularly in reducing false-negative results in TgAb prevalent samples.
關鍵字(中) ★ 質譜
★ 多重反應監測
★ 甲狀腺球蛋白
★ 定量蛋白質體學
關鍵字(英) ★ Mass Spectrometry
★ Multiple Reaction Monitoring
★ Thyroglobulin
★ Quantitative Proteomics
論文目次 中文摘要.......................................................................................................................................... i Abstract ........................................................................................................................................... ii
Table of Contents...........................................................................................................................iii List of Figures ................................................................................................................................ vi List of Tables ............................................................................................................................... viii Chapter I Introduction..................................................................................................................... 1
1-1 Thyroid Cancer and the Significance of Thyroglobulin (Tg).............................................. 1
1-2 Methods for Thyroglobulin (Tg) Detection......................................................................... 2
1-3 Global and Targeted Mass Spectrometry-based Proteomics ............................................... 3
1-4 Targeted Mass Spectrometry for Quantitative Proteomic in Clinical Applications ............ 4
1-5 iMRM Mass Spectrometry Assay for Tg Protein................................................................ 5
1-6 Regulatory Landscape of Laboratory Developed Tests (LDTs) ......................................... 6
1-7 Objectives............................................................................................................................8
Chapter II Materials and Methods .................................................................................................. 9 2-1 Chemicals and Materials ..................................................................................................... 9 2-2 Sample Preparation for Thyroglobulin Immuno-MRM (Tg-iMRM) Assay ..................... 10
2-2-1 Clinical Specimens and IRB ....................................................................................... 10 2-2-2 Preparation of Human and Rabbit Serum for Calibrators and Quality Controls ........ 10 2-2-3 Beads Preparation for Immunoaffinity Purification.................................................... 10 2-2-4 Preparation of Calibrators and QC Samples Protein Digestion .................................. 11 2-2-5 Immunoprecipitation for Tg Peptide from Serum Samples ........................................ 12
2-3 Preparation of Surrogate Matrix for Intensity Enhancement............................................. 12 2-3-1 Cell Line and Cell Culture .......................................................................................... 12 2-3-2 Surrogate Matrix Obtained from PC9 Cell Line ......................................................... 13
2-4 Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) Analysis.................. 13
2-5 Data Processing and Analysis............................................................................................ 15
2-5-1 MRM Raw Data Processing........................................................................................ 15
2-5-2 Statistics Analysis ....................................................................................................... 15
2-5-3 Savitzky-Golay Filter Data Processing ....................................................................... 16
Chapter III Results and Discussions ............................................................................................. 17
3-1 Experimental Design of Targeted Thyroglobulin Immuno-MRM (Tg-iMRM) Mass Spectrometry Assay .................................................................................................................. 17
3-1-1 Selection of Tg peptide and Workflow for iMRM Mass Spectrometry Assay ........... 17 3-1-2 Quality Assurance of Synthetic Isotopic Peptides ...................................................... 18 3-1-3 Quality Assurance for Quality Control Samples......................................................... 18 3-1-4 Optimization of Instrument Parameters ...................................................................... 19 3-1-5 Absolute Quantification by External Calibration Curve and Quality Control ............ 20
3-2 Addressing and Overcoming Inconsistencies in Tg-iMRM MS Assay Performance ....... 21
3-2-1 Monitoring and Addressing Heterogeneity in Synthetic Internal Standard (SIS) Peptide Aliquots................................................................................................................................. 22
3-2-2 Data Processing by Savitzky-Golay Filtration ............................................................ 23
3-2-3 Enhancing Instrument Intensity for Tg-iMRM MS Assay Performance .................... 24
3-3 Evaluating Tg-iMRM MS Assay Performance with 2% DMSO Added to Mobile Phase 26
3-3-1 Evaluating the Lower Limit of Detection (LLOD) ..................................................... 26
3-3-2 Intra- and Inter-Assay Evaluation of Precision and Accuracy .................................... 27
3-3-3 Evaluating Assay Consistency and Operator Variability with Enhanced Mobile Phase ............................................................................................................................................... 28
3-4 Application of Tg-iMRM MS Assay in Clinical Samples ................................................ 28 3-4-1 Evaluation in Patients with Low TgAb Levels (<3 IU/mL) ....................................... 29 3-4-2 Evaluating in Patients with Medium TgAb Level (3<TgAb<16 IU/mL) ................... 29
Chapter IV Conclusions................................................................................................................ 31 Chapter V Future Directions......................................................................................................... 33 Reference ...................................................................................................................................... 34 Figures........................................................................................................................................... 47 Tables............................................................................................................................................ 74 Supplementary .............................................................................................................................. 82
參考文獻 (1) Ferlay J, E. M., Lam F, Laversanne M, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F. Global Cancer Observatory: Cancer Today (version 1.1). Lyon, France: International Agency for Research on Cancer. 2024. https://gco.iarc.who.int/today (accessed 2024 0517).
(2) 〈110 年癌症登記報告〉; 衛生福利部國民健康署, 2023 年 11 月 10 日.
https://www.hpa.gov.tw/Pages/List.aspx?nodeid=269.
(3) Sherman, S. I. Thyroid carcinoma. Lancet 2003, 361 (9356), 501-511. DOI: 10.1016/s0140- 6736(03)12488-9 From NLM.
(4) Cancer Research UK, https://www.cancerresearchuk.org/about-cancer/thyroid-cancer/stages- types/typese (accessed 2024 0519).
(5) Pacini, F.; Castagna, M. G. Approach to and treatment of differentiated thyroid carcinoma. Med Clin North Am 2012, 96 (2), 369-383. DOI: 10.1016/j.mcna.2012.01.002 From NLM.
(6) Giuffrida, D.; Giuffrida, R.; Puliafito, I.; Vella, V.; Memeo, L.; Puglisi, C.; Regalbuto, C.; Pellegriti, G.; Forte, S.; Belfiore, A. Thyroidectomy as Treatment of Choice for Differentiated Thyroid Cancer. Int J Surg Oncol 2019, 2019, 2715260. DOI: 10.1155/2019/2715260 From NLM. (7) Cooper, D. S.; Doherty, G. M.; Haugen, B. R.; Kloos, R. T.; Lee, S. L.; Mandel, S. J.; Mazzaferri, E. L.; McIver, B.; Pacini, F.; Schlumberger, M.; et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009, 19 (11), 1167-1214. DOI: 10.1089/thy.2009.0110 From NLM.
(8) Schlumberger, M.; Catargi, B.; Borget, I.; Deandreis, D.; Zerdoud, S.; Bridji, B.; Bardet, S.; Leenhardt, L.; Bastie, D.; Schvartz, C.; et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med 2012, 366 (18), 1663-1673. DOI: 10.1056/NEJMoa1108586 From NLM.
(9) Momesso, D. P.; Vaisman, F.; Yang, S. P.; Bulzico, D. A.; Corbo, R.; Vaisman, M.; Tuttle, R. M. Dynamic Risk Stratification in Patients with Differentiated Thyroid Cancer Treated Without Radioactive Iodine. The Journal of Clinical Endocrinology & Metabolism 2016, 101 (7), 2692- 2700. DOI: 10.1210/jc.2015-4290 (acccessed 5/18/2024).
(10) Jonklaas, J.; Sarlis, N. J.; Litofsky, D.; Ain, K. B.; Bigos, S. T.; Brierley, J. D.; Cooper, D. S.; Haugen, B. R.; Ladenson, P. W.; Magner, J.; et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid 2006, 16 (12), 1229-1242. DOI: 10.1089/thy.2006.16.1229 From NLM.
(11) Schmidbauer, B.; Menhart, K.; Hellwig, D.; Grosse, J. Differentiated Thyroid Cancer- Treatment: State of the Art. Int J Mol Sci 2017, 18 (6). DOI: 10.3390/ijms18061292 From NLM. (12) Hovens, G. C.; Stokkel, M. P.; Kievit, J.; Corssmit, E. P.; Pereira, A. M.; Romijn, J. A.; Smit, J. W. Associations of serum thyrotropin concentrations with recurrence and death in differentiated thyroid cancer. J Clin Endocrinol Metab 2007, 92 (7), 2610-2615. DOI: 10.1210/jc.2006-2566 From NLM.
(13) Haugen, B. R.; Alexander, E. K.; Bible, K. C.; Doherty, G. M.; Mandel, S. J.; Nikiforov, Y. E.; Pacini, F.; Randolph, G. W.; Sawka, A. M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26 (1), 1-133. DOI: 10.1089/thy.2015.0020 From NLM.
(14) Lamartina, L.; Grani, G.; Durante, C.; Borget, I.; Filetti, S.; Schlumberger, M. Follow-up of differentiated thyroid cancer - what should (and what should not) be done. Nat Rev Endocrinol 2018, 14 (9), 538-551. DOI: 10.1038/s41574-018-0068-3 From NLM.
(15) Whitley, R. J.; Ain, K. B. Thyroglobulin: a specific serum marker for the management of thyroid carcinoma. Clin Lab Med 2004, 24 (1), 29-47. DOI: 10.1016/j.cll.2004.01.001 From NLM. (16) Bournaud, C.; Raverot, V. Follow-up of differentiated thyroid carcinoma. Ann Endocrinol (Paris) 2015, 76 (1 Suppl 1), 1s27-33. DOI: 10.1016/s0003-4266(16)30011-7 From NLM.
(17) Peiris, A. N.; Medlock, D.; Gavin, M. Thyroglobulin for Monitoring for Thyroid Cancer Recurrence. JAMA 2019, 321 (12), 1228-1228. DOI: 10.1001/jama.2019.0803 (acccessed 5/18/2024).
(18) Wheeler, S. E.; Liu, L.; Blair, H. C.; Sivak, R.; Longo, N.; Tischler, J.; Mulvey, K.; Palmer, O. M. P. Clinical laboratory verification of thyroglobulin concentrations in the presence of autoantibodies to thyroglobulin: comparison of EIA, radioimmunoassay and LC MS/MS measurements in an Urban Hospital. BMC Research Notes 2017, 10 (1), 725. DOI: 10.1186/s13104-017-3050-6.
(19) Sipos, J. A.; Aloi, J.; Gianoukakis, A.; Lee, S. L.; Klopper, J. P.; Kung, J. T.; Lupo, M. A.; Morgenstern, D.; Prat-Knoll, C.; Schuetzenmeister, A.; et al. Thyroglobulin Cutoff Values for Detecting Excellent Response to Therapy in Patients With Differentiated Thyroid Cancer. J Endocr Soc 2023, 7 (9), bvad102. DOI: 10.1210/jendso/bvad102 From NLM.
(20) Mazzaferri, E. L.; Robbins, R. J.; Spencer, C. A.; Braverman, L. E.; Pacini, F.; Wartofsky, L.; Haugen, B. R.; Sherman, S. I.; Cooper, D. S.; Braunstein, G. D.; et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab 2003, 88 (4), 1433-1441. DOI: 10.1210/jc.2002-021702 From NLM.
(21) Pacini, F.; Molinaro, E.; Castagna, M. G.; Agate, L.; Elisei, R.; Ceccarelli, C.; Lippi, F.; Taddei, D.; Grasso, L.; Pinchera, A. Recombinant human thyrotropin-stimulated serum thyroglobulin combined with neck ultrasonography has the highest sensitivity in monitoring differentiated thyroid carcinoma. J Clin Endocrinol Metab 2003, 88 (8), 3668-3673. DOI: 10.1210/jc.2002-021925 From NLM.
(22) Chomsky-Higgins, K. H.; Nydam, T. L.; McIntyre, R. C.; Palmer, B. J. A. Chapter 62 - Thyroid Nodules and Cancer. In Abernathy′s Surgical Secrets (Seventh Edition), Harken, A. H., Moore, E. E. Eds.; Elsevier, 2018; pp 271-276.
(23) Spencer, C. A. Recoveries cannot be used to authenticate thyroglobulin (Tg) measurements when sera contain Tg autoantibodies. Clin Chem 1996, 42 (5), 661-663. From NLM.
(24) Ericsson, U. B.; Christensen, S. B.; Thorell, J. I. A high prevalence of thyroglobulin autoantibodies in adults with and without thyroid disease as measured with a sensitive solid-phase immunosorbent radioassay. Clin Immunol Immunopathol 1985, 37 (2), 154-162. DOI: 10.1016/0090-1229(85)90146-1 From NLM.
(25) Demers, L. M.; Spencer, C. A. Laboratory medicine practice guidelines: laboratory support for the diagnosis and monitoring of thyroid disease. Clin Endocrinol (Oxf) 2003, 58 (2), 138-140. DOI: 10.1046/j.1365-2265.2003.01681.x From NLM.
(26) Spencer, C. A. Clinical Utility of Thyroglobulin Antibody (TgAb) Measurements for Patients with Differentiated Thyroid Cancers (DTC). The Journal of Clinical Endocrinology & Metabolism 2011, 96 (12), 3615-3627. DOI: 10.1210/jc.2011-1740 (acccessed 1/14/2024).
(27) Ringel, M. D.; Nabhan, F. Approach to follow-up of the patient with differentiated thyroid cancer and positive anti-thyroglobulin antibodies. J Clin Endocrinol Metab 2013, 98 (8), 3104- 3110. DOI: 10.1210/jc.2013-1412 From NLM.
(28) Spencer, C. A. Challenges of Serum Thyroglobulin (Tg) Measurement in the Presence of Tg Autoantibodies. The Journal of Clinical Endocrinology & Metabolism 2004, 89 (8), 3702-3704. DOI: 10.1210/jc.2004-0986 (acccessed 5/28/2024).
(29) Spencer, C. A.; Takeuchi, M.; Kazarosyan, M.; Wang, C. C.; Guttler, R. B.; Singer, P. A.; Fatemi, S.; LoPresti, J. S.; Nicoloff, J. T. Serum thyroglobulin autoantibodies: prevalence, influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab 1998, 83 (4), 1121-1127. DOI: 10.1210/jcem.83.4.4683 From NLM.
(30) Goto, M.; Kuribayashi, K.; Umemori, Y.; Ohe, Y.; Asanuma, K.; Tanaka, M.; Kobayashi, D.; Watanabe, N. High prevalence of human anti-mouse antibodies in the serum of colorectal cancer patients. Anticancer Res 2010, 30 (10), 4353-4356. From NLM.
(31) Koshida, S.; Asanuma, K.; Kuribayashi, K.; Goto, M.; Tsuji, N.; Kobayashi, D.; Tanaka, M.; Watanabe, N. Prevalence of human anti-mouse antibodies (HAMAs) in routine examinations. Clinica Chimica Acta 2010, 411 (5), 391-394. DOI: https://doi.org/10.1016/j.cca.2009.12.006. (32) Preissner, C. M.; O’Kane, D. J.; Singh, R. J.; Morris, J. C.; Grebe, S. K. G. Phantoms in the Assay Tube: Heterophile Antibody Interferences in Serum Thyroglobulin Assays. The Journal of Clinical Endocrinology & Metabolism 2003, 88 (7), 3069-3074. DOI: 10.1210/jc.2003-030122 (acccessed 1/14/2024).
(33) Spencer, C.; Fatemi, S.; Singer, P.; Nicoloff, J.; Lopresti, J. Serum Basal thyroglobulin measured by a second-generation assay correlates with the recombinant human thyrotropin- stimulated thyroglobulin response in patients treated for differentiated thyroid cancer. Thyroid 2010, 20 (6), 587-595. DOI: 10.1089/thy.2009.0338 From NLM.
(34) Verburg, F. A.; Wäschle, K.; Reiners, C.; Giovanella, L.; Lentjes, E. G. Heterophile antibodies rarely influence the measurement of thyroglobulin and thyroglobulin antibodies in differentiated thyroid cancer patients. Horm Metab Res 2010, 42 (10), 736-739. DOI: 10.1055/s- 0030-1254132 From NLM.
(35) Rotmensch, S.; Cole, L. A. False diagnosis and needless therapy of presumed malignant disease in women with false-positive human chorionic gonadotropin concentrations. Lancet 2000, 355 (9205), 712-715. DOI: 10.1016/s0140-6736(00)01324-6 From NLM.
(36) Kricka, L. J. Human anti-animal antibody interferences in immunological assays. Clin Chem 1999, 45 (7), 942-956. From NLM.
(37) Hennig, C.; Rink, L.; Fagin, U.; Jabs, W. J.; Kirchner, H. The influence of naturally occurring heterophilic anti-immunoglobulin antibodies on direct measurement of serum proteins using sandwich ELISAs. J Immunol Methods 2000, 235 (1-2), 71-80. DOI: 10.1016/s0022- 1759(99)00206-9 From NLM.
(38) Black, E. G.; Hoffenberg, R. Should one measure serum thyroglobulin in the presence of anti- thyroglobulin antibodies? Clin Endocrinol (Oxf) 1983, 19 (5), 597-601. DOI: 10.1111/j.1365- 2265.1983.tb00036.x From NLM.
(39) Spencer, C. A.; LoPresti, J. S. Technology Insight: measuring thyroglobulin and thyroglobulin autoantibody in patients with differentiated thyroid cancer. Nature Clinical Practice Endocrinology & Metabolism 2008, 4 (4), 223-233. DOI: 10.1038/ncpendmet0757.
(40) Spencer, C.; Petrovic, I.; Fatemi, S. Current thyroglobulin autoantibody (TgAb) assays often fail to detect interfering TgAb that can result in the reporting of falsely low/undetectable serum Tg IMA values for patients with differentiated thyroid cancer. J Clin Endocrinol Metab 2011, 96 (5), 1283-1291. DOI: 10.1210/jc.2010-2762 From NLM.
(41) Strathmann, F. G.; Ka, M. M.; Rainey, P. M.; Baird, G. S. Use of the BD vacutainer rapid serum tube reduces false-positive results for selected beckman coulter Unicel DxI immunoassays. Am J Clin Pathol 2011, 136 (2), 325-329. DOI: 10.1309/ajcpzofj7kx5qmrw From NLM.
(42) Hoofnagle, A. N.; Becker, J. O.; Wener, M. H.; Heinecke, J. W. Quantification of thyroglobulin, a low-abundance serum protein, by immunoaffinity peptide enrichment and tandem mass spectrometry. Clin Chem 2008, 54 (11), 1796-1804. DOI: 10.1373/clinchem.2008.109652 From NLM.
(43) Kushnir, M. M.; Rockwood, A. L.; Roberts, W. L.; Abraham, D.; Hoofnagle, A. N.; Meikle, A. W. Measurement of Thyroglobulin by Liquid Chromatography–Tandem Mass Spectrometry in Serum and Plasma in the Presence of Antithyroglobulin Autoantibodies. Clinical Chemistry 2013, 59 (6), 982-990. DOI: 10.1373/clinchem.2012.195594 (acccessed 5/14/2024).
(44) Netzel, B. C.; Grebe, S. K.; Algeciras-Schimnich, A. Usefulness of a thyroglobulin liquid chromatography-tandem mass spectrometry assay for evaluation of suspected heterophile interference. Clin Chem 2014, 60 (7), 1016-1018. DOI: 10.1373/clinchem.2014.224816 From NLM.
(45) Birhanu, A. G. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories. Clinical Proteomics 2023, 20 (1), 32. DOI: 10.1186/s12014-023-09424-x.
(46) Lee, S. J.; Yoon, T.; Ha, J. W.; Kim, J.; Lee, K. H.; Lee, J. A.; Kim, C. H.; Lee, S.-W.; Kim, J. H.; Ahn, J. Y.; et al. Prevalence, clinical significance, and persistence of autoantibodies in COVID-19. Virology Journal 2023, 20 (1), 236. DOI: 10.1186/s12985-023-02191-z.
(47) Dincer Yazan, C.; Ilgin, C.; Elbasan, O.; Apaydin, T.; Dashdamirova, S.; Yigit, T.; Sili, U.; Karahasan Yagci, A.; Sirikci, O.; Haklar, G.; et al. The Association of Thyroid Hormone Changes with Inflammatory Status and Prognosis in COVID-19. Int J Endocrinol 2021, 2021, 2395212. DOI: 10.1155/2021/2395212 From NLM.
(48) Świątkowska-Stodulska, R.; Berlińska, A.; Puchalska-Reglińska, E. Thyroglobulin levels in COVID-19-positive patients: Correlations with thyroid function tests, inflammatory markers, and glucocorticoid use. Front Endocrinol (Lausanne) 2022, 13, 1031188. DOI: 10.3389/fendo.2022.1031188 From NLM.
(49) Boja, E. S.; Rodriguez, H. Mass spectrometry-based targeted quantitative proteomics: achieving sensitive and reproducible detection of proteins. Proteomics 2012, 12 (8), 1093-1110. DOI: 10.1002/pmic.201100387 From NLM.
(50) Sato, Y.; Miyashita, A.; Iwatsubo, T.; Usui, T. Simultaneous absolute protein quantification of carboxylesterases 1 and 2 in human liver tissue fractions using liquid chromatography-tandem mass spectrometry. Drug Metab Dispos 2012, 40 (7), 1389-1396. DOI: 10.1124/dmd.112.045054 From NLM.
(51) Zheng, J.; Mandal, R.; Wishart, D. S. A sensitive, high-throughput LC-MS/MS method for measuring catecholamines in low volume serum. Analytica Chimica Acta 2018, 1037, 159-167. DOI: https://doi.org/10.1016/j.aca.2018.01.021.
(52) Krasny, L.; Huang, P. H. Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology. Molecular Omics 2021, 17 (1), 29-42, 10.1039/D0MO00072H. DOI: 10.1039/D0MO00072H.
(53) Timms, J. F.; Hale, O. J.; Cramer, R. Advances in mass spectrometry-based cancer research and analysis: from cancer proteomics to clinical diagnostics. Expert Rev Proteomics 2016, 13 (6), 593-607. DOI: 10.1080/14789450.2016.1182431 From NLM.
(54) Seong, Y.; Yoo, Y. S.; Akter, H.; Kang, M.-J. Sample preparation for detection of low abundance proteins in human plasma using ultra-high performance liquid chromatography coupled with highly accurate mass spectrometry. Journal of Chromatography B 2017, 1060, 272-280. DOI: https://doi.org/10.1016/j.jchromb.2017.06.023.
(55) Gillet, L. C.; Navarro, P.; Tate, S.; Röst, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis*. Molecular & Cellular Proteomics 2012, 11 (6), O111.016717. DOI: https://doi.org/10.1074/mcp.O111.016717.
(56) Tully, B.; Balleine, R. L.; Hains, P. G.; Zhong, Q.; Reddel, R. R.; Robinson, P. J. Addressing the Challenges of High-Throughput Cancer Tissue Proteomics for Clinical Application: ProCan. Proteomics 2019, 19 (21-22), e1900109. DOI: 10.1002/pmic.201900109 From NLM.
(57) Barkovits, K.; Pacharra, S.; Pfeiffer, K.; Steinbach, S.; Eisenacher, M.; Marcus, K.; Uszkoreit, J. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library- based Data-independent Acquisition. Mol Cell Proteomics 2020, 19 (1), 181-197. DOI: 10.1074/mcp.RA119.001714 From NLM.
(58) Poulos, R. C.; Hains, P. G.; Shah, R.; Lucas, N.; Xavier, D.; Manda, S. S.; Anees, A.; Koh, J. M. S.; Mahboob, S.; Wittman, M.; et al. Strategies to enable large-scale proteomics for reproducible research. Nat Commun 2020, 11 (1), 3793. DOI: 10.1038/s41467-020-17641-3 From NLM.
(59) Lange, V.; Picotti, P.; Domon, B.; Aebersold, R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 2008, 4, 222. DOI: 10.1038/msb.2008.61 From NLM.
(60) Wu, W.; Dai, R.-T.; Bendixen, E. Comparing SRM and SWATH Methods for Quantitation of Bovine Muscle Proteomes. Journal of Agricultural and Food Chemistry 2019, 67 (5), 1608- 1618. DOI: 10.1021/acs.jafc.8b05459.
(61) Mermelekas, G.; Vlahou, A.; Zoidakis, J. SRM/MRM targeted proteomics as a tool for biomarker validation and absolute quantification in human urine. Expert Rev Mol Diagn 2015, 15 (11), 1441-1454. DOI: 10.1586/14737159.2015.1093937 From NLM.
(62) Masuda, T.; Mori, A.; Ito, S.; Ohtsuki, S. Quantitative and targeted proteomics-based identification and validation of drug efficacy biomarkers. Drug Metabolism and Pharmacokinetics 2021, 36, 100361. DOI: https://doi.org/10.1016/j.dmpk.2020.09.006.
(63) Mani, D. R.; Abbatiello, S. E.; Carr, S. A. Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics. BMC Bioinformatics 2012, 13 Suppl 16 (Suppl 16), S9. DOI: 10.1186/1471-2105-13-s16-s9 From NLM.
(64) Fung, A. W. S.; Sugumar, V.; Ren, A. H.; Kulasingam, V. Emerging role of clinical mass spectrometry in pathology. J Clin Pathol 2020, 73 (2), 61-69. DOI: 10.1136/jclinpath-2019- 206269 From NLM.
(65) Shi, T.; Song, E.; Nie, S.; Rodland, K. D.; Liu, T.; Qian, W. J.; Smith, R. D. Advances in targeted proteomics and applications to biomedical research. Proteomics 2016, 16 (15-16), 2160- 2182. DOI: 10.1002/pmic.201500449 From NLM.
(66) Shi, T.; Fillmore, T. L.; Sun, X.; Zhao, R.; Schepmoes, A. A.; Hossain, M.; Xie, F.; Wu, S.; Kim, J. S.; Jones, N.; et al. Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum. Proc Natl Acad Sci U S A 2012, 109 (38), 15395-15400. DOI: 10.1073/pnas.1204366109 From NLM.
(67) Pernemalm, M.; Lewensohn, R.; Lehtiö, J. Affinity prefractionation for MS-based plasma proteomics. Proteomics 2009, 9 (6), 1420-1427. DOI: 10.1002/pmic.200800377 From NLM. (68) Sparbier, K.; Wenzel, T.; Dihazi, H.; Blaschke, S.; Müller, G. A.; Deelder, A.; Flad, T.; Kostrzewa, M. Immuno-MALDI-TOF MS: new perspectives for clinical applications of mass spectrometry. Proteomics 2009, 9 (6), 1442-1450. DOI: 10.1002/pmic.200800616 From NLM. (69) Ravela, S.; Valmu, L.; Domanskyy, M.; Koistinen, H.; Kylänpää, L.; Lindström, O.; Stenman, J.; Hämäläinen, E.; Stenman, U. H.; Itkonen, O. An immunocapture-LC-MS-based assay for serum SPINK1 allows simultaneous quantification and detection of SPINK1 variants. Anal Bioanal Chem 2018, 410 (6), 1679-1688. DOI: 10.1007/s00216-017-0803-y From NLM.
(70) Netzel, B. C.; Grant, R. P.; Hoofnagle, A. N.; Rockwood, A. L.; Shuford, C. M.; Grebe, S. K. First Steps toward Harmonization of LC-MS/MS Thyroglobulin Assays. Clin Chem 2016, 62 (1), 297-299. DOI: 10.1373/clinchem.2015.245266 From NLM.
(71) Farré-Segura, J.; Le Goff, C.; Lukas, P.; Cobraiville, G.; Fillet, M.; Servais, A.-C.; Delanaye, P.; Cavalier, E. Validation of an LC-MS/MS Method Using Solid-Phase Extraction for the Quantification of 1-84 Parathyroid Hormone: Toward a Candidate Reference Measurement Procedure. Clinical Chemistry 2022, 68 (11), 1399-1409. DOI: 10.1093/clinchem/hvac135 (acccessed 6/17/2024).
(72) Schindler, S. E.; Bollinger, J. G.; Ovod, V.; Mawuenyega, K. G.; Li, Y.; Gordon, B. A.; Holtzman, D. M.; Morris, J. C.; Benzinger, T. L. S.; Xiong, C.; et al. High-precision plasma β- amyloid 42/40 predicts current and future brain amyloidosis. Neurology 2019, 93 (17), e1647- e1659. DOI: doi:10.1212/WNL.0000000000008081.
(73) Bystrom, C. E.; Sheng, S.; Clarke, N. J. Narrow Mass Extraction of Time-of-Flight Data for Quantitative Analysis of Proteins: Determination of Insulin-Like Growth Factor-1. Analytical Chemistry 2011, 83 (23), 9005-9010. DOI: 10.1021/ac201800g.
(74) Taylor, S. W.; Clarke, N. J.; Chen, Z.; McPhaul, M. J. A high-throughput mass spectrometry assay to simultaneously measure intact insulin and C-peptide. Clinica Chimica Acta 2016, 455, 202-208. DOI: https://doi.org/10.1016/j.cca.2016.01.019.
(75) Lim, A.; Prokaeva, T.; McComb, M. E.; O′Connor, P. B.; Théberge, R.; Connors, L. H.; Skinner, M.; Costello, C. E. Characterization of transthyretin variants in familial transthyretin amyloidosis by mass spectrometric peptide mapping and DNA sequence analysis. Anal Chem 2002, 74 (4), 741-751. DOI: 10.1021/ac010780+ From NLM.
(76) Hoofnagle, A. N.; Roth, M. Y. Clinical review: improving the measurement of serum thyroglobulin with mass spectrometry. J Clin Endocrinol Metab 2013, 98 (4), 1343-1352. DOI: 10.1210/jc.2012-4172 From NLM.
(77) Shuford, C. M.; Johnson, J. S.; Thompson, J. W.; Holland, P. L.; Hoofnagle, A. N.; Grant, R. P. More sensitivity is always better: Measuring sub-clinical levels of serum thyroglobulin on a μLC–MS/MS system. Clinical Mass Spectrometry 2020, 15, 29-35. DOI: https://doi.org/10.1016/j.clinms.2020.01.001.
(78) Shi, J.; Phipps, W. S.; Owusu, B. Y.; Henderson, C. M.; Laha, T. J.; Becker, J. O.; Razavi, M.; Emrick, M. A.; Hoofnagle, A. N. A distributable LC-MS/MS method for the measurement of serum thyroglobulin. J Mass Spectrom Adv Clin Lab 2022, 26, 28-33. DOI: 10.1016/j.jmsacl.2022.09.005 From NLM.
(79) Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature 2003, 422 (6928), 198-207. DOI: 10.1038/nature01511.
(80) Whiteaker, J. R.; Paulovich, A. G. Peptide immunoaffinity enrichment coupled with mass spectrometry for peptide and protein quantification. Clin Lab Med 2011, 31 (3), 385-396. DOI: 10.1016/j.cll.2011.07.004 From NLM.
(81) Nesvizhskii, A. I.; Keller, A.; Kolker, E.; Aebersold, R. A Statistical Model for Identifying Proteins by Tandem Mass Spectrometry. Analytical Chemistry 2003, 75 (17), 4646-4658. DOI: 10.1021/ac0341261.
(82) Clarke, N. J.; Zhang, Y.; Reitz, R. E. A Novel Mass Spectrometry–Based Assay for the Accurate Measurement of Thyroglobulin from Patient Samples Containing Antithyroglobulin Autoantibodies. Journal of Investigative Medicine 2012, 60 (8), 1157-1163. DOI: 10.2310/JIM.0b013e318276deb4 (acccessed 2024/05/14).
(83) Netzel, B. C.; Grebe, S. K.; Carranza Leon, B. G.; Castro, M. R.; Clark, P. M.; Hoofnagle, A. N.; Spencer, C. A.; Turcu, A. F.; Algeciras-Schimnich, A. Thyroglobulin (Tg) Testing Revisited: Tg Assays, TgAb Assays, and Correlation of Results With Clinical Outcomes. J Clin Endocrinol Metab 2015, 100 (8), E1074-1083. DOI: 10.1210/jc.2015-1967 From NLM.
(84) Whiteaker, J. R.; Zhao, L.; Lin, C.; Yan, P.; Wang, P.; Paulovich, A. G. Sequential multiplexed analyte quantification using peptide immunoaffinity enrichment coupled to mass spectrometry. Mol Cell Proteomics 2012, 11 (6), M111.015347. DOI: 10.1074/mcp.M111.015347 From NLM.
(85) Anderson, N. L.; Jackson, A.; Smith, D.; Hardie, D.; Borchers, C.; Pearson, T. W. SISCAPA peptide enrichment on magnetic beads using an in-line bead trap device. Mol Cell Proteomics 2009, 8 (5), 995-1005. DOI: 10.1074/mcp.M800446-MCP200 From NLM.
(86) Anderson, N. L.; Anderson, N. G.; Haines, L. R.; Hardie, D. B.; Olafson, R. W.; Pearson, T. W. Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J Proteome Res 2004, 3 (2), 235-244. DOI: 10.1021/pr034086h From NLM.
(87) Han, C.-L.; Lai, C.-T.; Reyes, A. J.; Yang, H.-C.; Lu, J.-Y.; Shih, S.-R.; Chen, K.-Y.; Hoofnagle, A. N.; Yu, S.-L.; Bocik, W.; et al. Lessons learned: establishing a CLIA-equivalent laboratory for targeted mass spectrometry assays – navigating the transition from research to clinical practice. Clinical Proteomics 2024, 21 (1), 12. DOI: 10.1186/s12014-024-09455-y.
(88) Strathmann, F. G.; Hoofnagle, A. N. Current and future applications of mass spectrometry to the clinical laboratory. Am J Clin Pathol 2011, 136 (4), 609-616. DOI: 10.1309/ajcpw0ta8obbngck From NLM.
(89) Jannetto, P. J.; Fitzgerald, R. L. Effective Use of Mass Spectrometry in the Clinical Laboratory. Clinical Chemistry 2016, 62 (1), 92-98. DOI: 10.1373/clinchem.2015.248146 (acccessed 6/3/2024).
(90) Banerjee, S. Empowering Clinical Diagnostics with Mass Spectrometry. ACS Omega 2020, 5 (5), 2041-2048. DOI: 10.1021/acsomega.9b03764 From NLM.
(91) Adaway, J. E.; Keevil, B. G.; Owen, L. J. Liquid chromatography tandem mass spectrometry in the clinical laboratory. Ann Clin Biochem 2015, 52 (Pt 1), 18-38. DOI: 10.1177/0004563214557678 From NLM.
(92) Rolland, D. C. M.; Lim, M. S.; Elenitoba-Johnson, K. S. J. Mass spectrometry and proteomics in hematology. Semin Hematol 2019, 56 (1), 52-57. DOI: 10.1053/j.seminhematol.2018.05.009 From NLM.
(93) Füzéry, A. K.; Levin, J.; Chan, M. M.; Chan, D. W. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clinical Proteomics 2013, 10 (1), 13. DOI: 10.1186/1559-0275-10-13.
(94) Ryu, J.; Thomas, S. N. Quantitative Mass Spectrometry-Based Proteomics for Biomarker Development in Ovarian Cancer. Molecules 2021, 26 (9), 2674.
(95) Dichtl, K.; Klugherz, I.; Greimel, H.; Luxner, J.; Köberl, J.; Friedl, S.; Steinmetz, I.; Leitner, E. A head-to-head comparison of three MALDI-TOF mass spectrometry systems with 16S rRNA gene sequencing. Journal of Clinical Microbiology 2023, 61 (10), e01913-01922. DOI: 10.1128/jcm.01913-22 (acccessed 2024/06/03).
(96) Lathrop, J. T.; Jeffery, D. A.; Shea, Y. R.; Scholl, P. F.; Chan, M. M. US Food and Drug Administration Perspectives on Clinical Mass Spectrometry. Clin Chem 2016, 62 (1), 41-47. DOI: 10.1373/clinchem.2015.244731 From NLM.
(97) Lynch, K. L. Accreditation and Quality Assurance for Clinical Liquid Chromatography-Mass Spectrometry Laboratories. Clin Lab Med 2018, 38 (3), 515-526. DOI: 10.1016/j.cll.2018.05.002 From NLM.
(98) Ren, Z.; Sun, G.; Zhang, Q.; Zou, S.; Chen, J.; Zhao, W.; Hou, G.; Zhong, Z.; Li, J.; Ye, Y.; et al. LC-MS/MS-Based Absolute Quantitation of Hemoglobin Subunits from Dried Blood Spots Reveals Novel Biomarkers for α-Thalassemia Silent Carriers. Anal Chem 2023, 95 (24), 9244- 9251. DOI: 10.1021/acs.analchem.3c00895 From NLM.
(99) Parker, C. E.; Borchers, C. H. Mass spectrometry based biomarker discovery, verification, and validation – Quality assurance and control of protein biomarker assays. Molecular Oncology 2014, 8 (4), 840-858. DOI: https://doi.org/10.1016/j.molonc.2014.03.006.
(100) Demeuse, J. J.; Calaprice, C.; Huyghebaert, L. C.; Rechchad, M.; Peeters, S.; Cavalier, E.; Le Goff, C. Development and Validation of an Ultrasensitive LC-MS/MS Method for the Quantification of Melatonin in Human Saliva. J Am Soc Mass Spectrom 2023, 34 (6), 1056-1064. DOI: 10.1021/jasms.3c00021 From NLM.
(101) Fernández-Metzler, C.; Ackermann, B.; Garofolo, F.; Arnold, M. E.; DeSilva, B.; Gu, H.; Laterza, O.; Mao, Y.; Rose, M.; Vazvaei-Smith, F.; et al. Biomarker Assay Validation by Mass Spectrometry. The AAPS Journal 2022, 24 (3), 66. DOI: 10.1208/s12248-022-00707-z.
(102) McIntosh, M.; Fitzgibbon, M. Biomarker validation by targeted mass spectrometry. Nature Biotechnology 2009, 27 (7), 622-623. DOI: 10.1038/nbt0709-622.
(103) Abdelhameed, A. S.; Kadi, A. A.; Attwa, M. W.; AlRabiah, H. Validated LC-MS/MS assay for quantification of the newly approved tyrosine kinase inhibitor, dacomitinib, and application to investigating its metabolic stability. PLoS One 2019, 14 (4), e0214598. DOI: 10.1371/journal.pone.0214598 From NLM.
(104) Laboratory Developed Tests. FDA, https://www.fda.gov/medical-devices/in-vitro- diagnostics/laboratory-developed-tests (accessed 2024 0604).
(105) Marzinke, M. A.; Clarke, W.; Dietzen, D. J.; Hoofnagle, A. N.; McMillin, G. A.; Willrich, M. A. V. The VALIDity of Laboratory Developed Tests: Leave it to the experts? J Mass Spectrom Adv Clin Lab 2023, 27, 1-6. DOI: 10.1016/j.jmsacl.2022.12.002 From NLM.
(106) Lin, Y.; Thomas, S. N. Impact of VALID Act implementation on mass spectrometry-based clinical proteomic laboratory developed tests. J Mass Spectrom Adv Clin Lab 2023, 28, 30-34. DOI: 10.1016/j.jmsacl.2023.02.001 From NLM.
(107) Liquid chromatography-mass spectrometry methods; CLSI C62, https://clsi.org/standards/products/clinical-chemistry-and-toxicology/documents/c62/.
(108) Lynch, K. L. CLSI C62-A: A New Standard for Clinical Mass Spectrometry. Clinical Chemistry 2016, 62 (1), 24-29. DOI: 10.1373/clinchem.2015.238626 (acccessed 6/3/2024).
(109) Quantitative Measurement of Proteins and Peptides by Mass Spectrometry; CLSI C64, https://clsi.org/standards/products/clinical-chemistry-and-toxicology/documents/c64/.
(110) Best, C. M.; Riley, D. V.; Laha, T. J.; Pflaum, H.; Zelnick, L. R.; Hsu, S.; Thummel, K. E.; Foster-Schubert, K. E.; Kuzma, J. N.; Cromer, G.; et al. Vitamin D in human serum and adipose tissue after supplementation. The American Journal of Clinical Nutrition 2021, 113 (1), 83-91. DOI: https://doi.org/10.1093/ajcn/nqaa295.
(111) Razavi, M.; Pope, M. E.; Soste, M. V.; Eyford, B. A.; Jackson, A. M.; Anderson, N. L.; Pearson, T. W. MALDI Immunoscreening (MiSCREEN): A method for selection of anti-peptide monoclonal antibodies for use in immunoproteomics. Journal of Immunological Methods 2011, 364 (1), 50-64. DOI: https://doi.org/10.1016/j.jim.2010.11.001.
(112) Li, H.; Ortiz, R.; Tran, L.; Hall, M.; Spahr, C.; Walker, K.; Laudemann, J.; Miller, S.; Salimi- Moosavi, H.; Lee, J. W. General LC-MS/MS Method Approach to Quantify Therapeutic Monoclonal Antibodies Using a Common Whole Antibody Internal Standard with Application to Preclinical Studies. Analytical Chemistry 2012, 84 (3), 1267-1273. DOI: 10.1021/ac202792n. (113) G38-生物醫學之分子檢測方法確認指引; Taiwan Accreditation Foundation,TAF,
https://www.taftw.org.tw/document/purchase/ (accessed 2023/11/13).
(114) SCIEX Triple QuadTM 5500+ System System User Guide; SCIEX, https://sciex.jp/content/dam/SCIEX/pdf/customer-docs/user-guide/5500plus-system-user-guide- en.pdf.
(115) Lazzari, E.; Souza Silva, É. A.; Bjerk, T. R.; Schneider, J. K.; Bastos Caramão, E. Evaluation of the matrix effect in the quantitative bio-oil analysis by gas chromatography. Fuel 2021, 290, 119866. DOI: https://doi.org/10.1016/j.fuel.2020.119866.
(116) Hahne, H.; Pachl, F.; Ruprecht, B.; Maier, S. K.; Klaeger, S.; Helm, D.; Médard, G.; Wilm, M.; Lemeer, S.; Kuster, B. DMSO enhances electrospray response, boosting sensitivity of proteomic experiments. Nat Methods 2013, 10 (10), 989-991. DOI: 10.1038/nmeth.2610 From NLM.
(117) Strzelecka, D.; Holman, S. W.; Eyers, C. E. Evaluation of dimethyl sulfoxide (DMSO) as a mobile phase additive during top 3 label-free quantitative proteomics. International Journal of Mass Spectrometry 2015, 391, 157-160. DOI: https://doi.org/10.1016/j.ijms.2015.07.004.
指導教授 陳玉如 侯敦仁 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明