博碩士論文 111223025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:146 、訪客IP:3.144.6.66
姓名 邱歆文(Hsin-Wen Chiu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 東亞高山背景氣膠二次有機碳成分估算與特性探討
相關論文
★ 移動污染源之黑碳、一氧化碳及二氧化碳相關係性探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 氣膠是大氣中的重要成分並且也是影響氣候變遷的主因之一,其中黑
碳(Black carbon, BC)主要來源為化石燃料、生質燃燒等,有機碳(Organic
carbon, OC)則又可包含原生性有機碳(Primary organic carbon, POC)及衍生性
有機碳(Secondary organic carbon, SOC),其中POC通常與BC具有相同的來源,
而SOC則為經由光化學反應後產生。鹿林山大氣背景監測站(Lulin
Atmospheric Background Station, LABS, 23.47°N, 120.87°E, 海拔高度2862 m)
為西太平洋北方以及東亞唯一的高山背景監測站,可作為區域背景大氣特
性之代表。本研究利用最小相關係數法(Minimum R Squared, MRS),搭配氣
流軌跡的分析,探討鹿林山氣膠總碳質量濃度(Total carbon, TC)中POC、SOC
以及BC的分布變化,分析不同來源氣團的氣膠碳成分組成特性。
實驗觀測期間為 2021 年 8 月至 2024 年 7 月,結果顯示每年春季(3-5
月)東南亞生質燃燒所產生之氣膠,會藉由西風帶將污染物傳送至鹿林山,
導致春季時各碳成分的濃度達到季節性峰值,本研究依照後推軌跡推估資
料,分為 6 個不同的氣團來源,包括中國、西風帶、日韓、太平洋、南海以
及東南亞,其中以西風帶為最高 TC 濃度(1.57 μg/m3
)之來源,相比最低的太平洋來源氣團 TC 濃度(0.60 μg/m3
)高約 161%,而太平洋氣團中 SOC 所佔
的比例(35.1%)皆高於其他來源,東南亞來源氣團中 SOC 則佔最少之比例
(21.0%),針對事件值與背景值分析的結果證明事件發生期間 PM2.5 中的碳
成分氣膠比例較高,且主要成分為 BC (26.0%)與 POC (50.5%)。
本研究為確定污染物的傳輸路徑與來源,利用潛在源貢獻因子法
(Potential Source Contribution Factor, PSCF) 結 合 濃 度 加 權 軌 跡 法
(Concentration Weighted Trajectory, CWT)的分析,探討潛在源的貢獻,其
PSCF 與 CWT 具有一致的結果,顯示影響 LABS 主要污染源來自西風帶與
東南亞地區,且於春季期間最為顯著,少部分 OC 來源來自中國的貢獻。
摘要(英) Aerosols are an important component of the atmosphere and one of the main
factors affecting climate change. Among them, black carbon (BC) mainly
originates from fossil fuels and biomass burning, while organic carbon (OC) can
include primary organic carbon (POC) and secondary organic carbon (SOC). POC
usually shares the same sources as BC, whereas SOC is produced through
photochemical reactions. The Lulin Atmospheric Background Station (LABS;
2862 m) is the only high-altitude background monitoring station in East Asia,
representing the regional background atmospheric characteristics. This study
utilizes the Minimum R Squared (MRS) method combined with air mass
trajectory analysis to investigate the distribution variations of POC, SOC, and BC
in the total carbon (TC) mass concentration of aerosols at LABS. It analyzes the
composition characteristics of aerosol carbon components in different seasons and
from different air mass sources.
The observation period of this study spans from August 2021 to April 2024.
The results indicate that each spring (March-May), aerosols produced by biomass
burning in Southeast Asia are transported to LABS by the westerlies, causing
seasonal peaks in the concentrations of carbon components. BC and POC account
for the highest proportions of TC in spring. During the summer to autumn period,
the dominance of marine air masses leads to a significant reduction in pollutant
concentrations. Based on backward trajectory analysis, the study identifies six
different air mass sources: China, westerlies, Japan-Korea, Pacific Ocean, South
China Sea, and Southeast Asia. The westerlies are the source of the highest TC
concentration (1.57 μg/m3
), which is approximately 161% higher than the lowest
iv
TC concentration from the Pacific Ocean air mass source (0.60 μg/m3
). The
proportion of SOC in the Pacific Ocean air mass source (35.1%) is higher than in
other sources, while the Southeast Asia air mass source has the lowest proportion
of SOC (21.0%). The analysis of event and background values indicates that the
proportion of carbonaceous aerosols in PM2.5 is higher during events, with BC
(26.0%) and POC (50.5%) being the main components.
To determine the transport paths and sources of pollutants, this study uses
the Potential Source Contribution Factor (PSCF) combined with Concentration
Weighted Trajectory (CWT) analysis to investigate potential source contributions.
The consistent results of PSCF and CWT indicate that the main pollution sources
affecting LABS originate from the westerlies and Southeast Asia, with the most
significant impact during the spring. A smaller portion of OC comes from
contributions from China.
關鍵字(中) ★ 黑碳
★ 二次有機碳
★ 碳成分氣膠
關鍵字(英)
論文目次 目錄
摘要........................................................................................................................i
Abstract.................................................................................................................iii
致謝....................................................................................................................... v
目錄.....................................................................................................................vii
圖目錄................................................................................................................... x
表目錄................................................................................................................xvi
一、緒論............................................................................................................... 1
二、文獻回顧....................................................................................................... 3
2.1 氣膠的特性與來源.................................................................................... 3
2.2 碳成分氣膠的來源與特性........................................................................ 6
2.2.1 碳成分氣膠的來源............................................................................. 6
2.2.2 碳成分氣膠光學特性......................................................................... 7
2.2.3 碳成分氣膠對於全球的影響........................................................... 10
2.3 生質燃燒.................................................................................................. 12
2.3.1 全球生質燃燒的貢獻....................................................................... 12
2.3.2 亞洲生質燃燒傳輸機制................................................................... 13
三、研究方法..................................................................................................... 15
3.1 研究地點與時間...................................................................................... 15
3.2 監測方法與儀器操作原理...................................................................... 16
viii
3.2.1 錐形元件震盪微量天秤................................................................... 16
3.2.2 總碳分析儀....................................................................................... 17
3.2.3 氣膠吸光儀....................................................................................... 18
3.2.4 精密氣體分析儀............................................................................... 21
3.3 最小相關係數法(Minimum R Squired method, MRS) .......................... 23
3.4 後推軌跡模式.......................................................................................... 25
3.5 潛在源貢獻因子法(Potential Source Contribution Factor, PSCF)......... 25
3.6 濃度加權軌跡法(Concentration Weighted Trajectory, CWT)................ 27
3.7 事件與背景值篩選條件.......................................................................... 29
四、結果與討論................................................................................................. 30
4.1 鹿林山污染物濃度時序變化.................................................................. 30
4.1.1 污染物濃度月變化........................................................................... 31
4.1.2 污染物濃度日變化........................................................................... 36
4.2 鹿林山氣團來源分類.............................................................................. 40
4.3 POC 與 SOC 的估算與特性分析............................................................ 41
4.3.1 不同來源氣團之 OC/BC 初始排放比率......................................... 42
4.3.2 不同來源氣團之含碳氣膠成分比例............................................... 46
4.3.3 事件值與背景值初始排放比率....................................................... 49
4.3.4 MRS 估算初始排放比率之比較 ...................................................... 53
ix
4.4 BC 與 OC 之關係..................................................................................... 56
4.4.1 季節性 BC 與 OC 之相關性............................................................ 56
4.4.2 不同來源氣團 BC 與 OC 之相關性................................................ 59
4.5.2 不同來源氣團 OC/BC 比率............................................................. 61
4.6 特殊個案探討.......................................................................................... 65
4.6.1 2023 年 4 月....................................................................................... 65
4.6.2 2024 年 3 月....................................................................................... 77
4.7 污染物潛在源貢獻分析.......................................................................... 88
4.7.1 PSCF 分析結果.................................................................................. 89
4.7.2 CWT 分析結果.................................................................................. 97
結論................................................................................................................... 104
參考文獻........................................................................................................... 106
參考文獻 參考文獻
Alexeeff, S. E., Coull, B. A., Gryparis, A., Suh, H., Sparrow, D., Vokonas, P. S.,
& Schwartz, J. (2011). Medium-term exposure to traffic-related air
pollution and markers of inflammation and endothelial function.
Environmental Health Perspectives, 119(4), 481-486.
Andreae, M., & Rosenfeld, D. (2008). Aerosol–cloud–precipitation interactions.
Part 1. The nature and sources of cloud-active aerosols. Earth-Science
Reviews, 89(1-2), 13-41.
Arashiro, M., Lin, Y.-H., Zhang, Z., Sexton, K. G., Gold, A., Jaspers, I., Fry, R.
C., & Surratt, J. D. (2018). Effect of secondary organic aerosol from
isoprene-derived hydroxyhydroperoxides on the expression of oxidative
stress response genes in human bronchial epithelial cells. Environmental
Science: Processes & Impacts, 20(2), 332-339.
Arun, B., Gogoi, M. M., Hegde, P., Borgohain, A., Boreddy, S. K., Kundu, S. S.,
& Babu, S. S. (2021). Carbonaceous aerosols over Lachung in the Eastern
Himalayas: primary sources and secondary formation of organic aerosols
in a remote high-altitude environment. ACS Earth and Space Chemistry,
5(9), 2493-2506.
Asa-Awuku, A., Engelhart, G., Lee, B., Pandis, S. N., & Nenes, A. (2009).
Relating CCN activity, volatility, and droplet growth kinetics of βcaryophyllene secondary organic aerosol. Atmospheric Chemistry and
Physics, 9(3), 795-812.
Ashbaugh, L. L., Malm, W. C., & Sadeh, W. Z. (1985). A residence time
probability analysis of sulfur concentrations at grand Canyon national park.
Atmospheric Environment, 19, 1263-1270.
Babu, S. S., Satheesh, S., & Moorthy, K. K. (2002). Aerosol radiative forcing due
to enhanced black carbon at an urban site in India. Geophysical Research
Letters, 29(18), 27-21-27-24.
Bian, Q., Alharbi, B., Shareef, M. M., Husain, T., Pasha, M. J., Atwood, S. A., &
Kreidenweis, S. M. (2018). Sources of PM 2.5 carbonaceous aerosol in
Riyadh, Saudi Arabia. Atmospheric Chemistry and Physics, 18(6), 3969-
3985.
Bond, T. C. (2001). Spectral dependence of visible light absorption by
carbonaceous particles emitted from coal combustion. Geophysical
Research Letters, 28(21), 4075-4078.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo,
B. J., Flanner, M. G., Ghan, S., Kärcher, B., & Koch, D. (2013). Bounding
107
the role of black carbon in the climate system: A scientific assessment.
Journal of Geophysical Research: Atmospheres, 118(11), 5380-5552.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P.,
Kerminen, V.-M., Kondo, Y., Liao, H., & Lohmann, U. (2013). Clouds and
aerosols. In Climate change 2013: The physical science basis. Contribution
of working group I to the fifth assessment report of the intergovernmental
panel on climate change (pp. 571-657). Cambridge University Press.
Castro, L., Pio, C., Harrison, R. M., & Smith, D. (1999). Carbonaceous aerosol in
urban and rural European atmospheres: estimation of secondary organic
carbon concentrations. Atmospheric Environment, 33(17), 2771-2781.
Chen, P., Kang, S., Li, C., Zhang, Q., Guo, J., Tripathee, L., Zhang, Y., Li, G., Gul,
C., & Cong, Z. (2019). Carbonaceous aerosol characteristics on the Third
Pole: A primary study based on the Atmospheric Pollution and Cryospheric
Change (APCC) network. Environmental Pollution, 253, 49-60.
Chen, Y., Zhi, G., Feng, Y., Fu, J., Feng, J., Sheng, G., & Simoneit, B. R. (2006).
Measurements of emission factors for primary carbonaceous particles from
residential raw‐coal combustion in China. Geophysical Research Letters,
33(20).
China, S., Scarnato, B., Owen, R. C., Zhang, B., Ampadu, M. T., Kumar, S.,
Dzepina, K., Dziobak, M. P., Fialho, P., & Perlinger, J. A. (2015).
Morphology and mixing state of aged soot particles at a remote marine free
troposphere site: Implications for optical properties. Geophysical Research
Letters, 42(4), 1243-1250.
Choi, E., Choi, K., & Yi, S.-M. (2011). Non-methane hydrocarbons in the
atmosphere of a Metropolitan City and a background site in South Korea:
Sources and health risk potentials. Atmospheric Environment, 45(40),
7563-7573.
Chow, J. C., Watson, J. G., Chen, L.-W. A., Arnott, W. P., Moosmüller, H., & Fung,
K. (2004). Equivalence of elemental carbon by thermal/optical reflectance
and transmittance with different temperature protocols. Environmental
Science & Technology, 38(16), 4414-4422.
Chow, J. C., Watson, J. G., Lowenthal, D. H., Chen, L.-W. A., & Motallebi, N.
(2011). PM2. 5 source profiles for black and organic carbon emission
inventories. Atmospheric Environment, 45(31), 5407-5414.
Chow, J. C., Watson, J. G., Lu, Z., Lowenthal, D. H., Frazier, C. A., Solomon, P.
A., Thuillier, R. H., & Magliano, K. (1996). Descriptive analysis of PM2.
5 and PM10 at regionally representative locations during
SJVAQS/AUSPEX. Atmospheric Environment, 30(12), 2079-2112.
108
Chuang, M.-T., Lee, C.-T., Chou, C. C.-K., Lin, N.-H., Sheu, G.-R., Wang, J.-L.,
Chang, S.-C., Wang, S.-H., Chi, K. H., & Young, C.-Y. (2014).
Carbonaceous aerosols in the air masses transported from Indochina to
Taiwan: Long-term observation at Mt. Lulin. Atmospheric Environment, 89,
507-516.
Collett, J. L., Herckes, P., Youngster, S., & Lee, T. (2008). Processing of
atmospheric organic matter by California radiation fogs. Atmospheric
Research, 87(3), 232-241.
Dai, L., Zhang, L., Chen, D., & Zhao, Y. (2022). Assessment of carbonaceous
aerosols in suburban Nanjing under air pollution control measures: Insights
from long-term measurements. Environmental Research, 212, 113302.
Decesari, S., Facchini, M., Carbone, C., Giulianelli, L., Rinaldi, M., Finessi, E.,
Fuzzi, S., Marinoni, A., Cristofanelli, P., & Duchi, R. (2010). Chemical
composition of PM 10 and PM 1 at the high-altitude Himalayan station
Nepal Climate Observatory-Pyramid (NCO-P)(5079 m asl). Atmospheric
Chemistry and Physics, 10(10), 4583-4596.
Draxler, R., & Hess, G. (1998). An overview of the HYSPLIT_4 modelling
system for trajectories. Aust. Meteorol. Mag., 47.
Dubowsky, S. D., Suh, H., Schwartz, J., Coull, B. A., & Gold, D. R. (2006).
Diabetes, obesity, and hypertension may enhance associations between air
pollution and markers of systemic inflammation. Environmental Health
Perspectives, 114(7), 992-998.
Dunbar, E. J., & Gupta, L. (2023). Temporal variation and source identification
of carbonaceous aerosols in Monrovia, Liberia. Scientific African, 19,
e01540.
Eck, T., Holben, B., Reid, J., Mukelabai, M., Piketh, S., Torres, O., Jethva, H.,
Hyer, E., Ward, D., & Dubovik, O. (2013). A seasonal trend of single
scattering albedo in southern African biomass‐burning particles:
Implications for satellite products and estimates of emissions for the
world′s largest biomass‐burning source. Journal of Geophysical Research:
Atmospheres, 118(12), 6414-6432.
Fang, S. C., Mehta, A. J., Alexeeff, S. E., Gryparis, A., Coull, B., Vokonas, P.,
Christiani, D. C., & Schwartz, J. (2012). Residential black carbon exposure
and circulating markers of systemic inflammation in elderly males: the
normative aging study. Environmental Health Perspectives, 120(5), 674-
680.
Franco, C. F. J., de Resende, M. F., de Almeida Furtado, L., Brasil, T. F., Eberlin,
M. N., & Netto, A. D. P. (2017). Polycyclic aromatic hydrocarbons (PAHs)
109
in street dust of Rio de Janeiro and Niterói, Brazil: particle size distribution,
sources and cancer risk assessment. Science of the Total Environment, 599,
305-313.
Furuuchi, M., Fissan, H., & Horodecki, J. (2001). Evaporation behavior of volatile
particles on fibrous filter flushed with particle-free dry air. Powder
technology, 118(1-2), 171-179.
Fuzzi, S., Andreae, M. O., Huebert, B. J., Kulmala, M., Bond, T. C., Boy, M.,
Doherty, S. J., Guenther, A., Kanakidou, M., Kawamura, K., Kerminen, V.
M., Lohmann, U., Russell, L. M., & Pöschl, U. (2006). Critical assessment
of the current state of scientific knowledge, terminology, and research
needs concerning the role of organic aerosols in the atmosphere, climate,
and global change. Atmos. Chem. Phys., 6(7), 2017-2038.
Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Denier van der Gon, H.,
Facchini, M. C., Fowler, D., Koren, I., Langford, B., & Lohmann, U. (2015).
Particulate matter, air quality and climate: lessons learned and future needs.
Atmospheric Chemistry and Physics, 15(14), 8217-8299.
Ganguly, D., Jayaraman, A., Rajesh, T., & Gadhavi, H. (2006). Wintertime aerosol
properties during foggy and nonfoggy days over urban center Delhi and
their implications for shortwave radiative forcing. Journal of Geophysical
Research: Atmospheres, 111(D15).
Gao, Y., Wang, S., Zhang, C., Xing, C., Tan, W., Wu, H., Niu, X., & Liu, C. (2023).
Assessing the impact of urban form and urbanization process on
tropospheric nitrogen dioxide pollution in the Yangtze River Delta, China.
Environmental Pollution, 336, 122436.
Grantz, D., Garner, J., & Johnson, D. (2003). Ecological effects of particulate
matter. Environment international, 29(2-3), 213-239.
Hadley, O. L., & Kirchstetter, T. W. (2012). Black-carbon reduction of snow
albedo. Nature Climate Change, 2(6), 437-440.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys,
M., Dommen, J., Donahue, N., George, C., & Goldstein, A. (2009). The
formation, properties and impact of secondary organic aerosol: current and
emerging issues. Atmospheric Chemistry and Physics, 9(14), 5155-5236.
Han, X., & Cao, T. (2022). Urbanization level, industrial structure adjustment and
spatial effect of urban haze pollution: Evidence from China′s Yangtze River
Delta urban agglomeration. Atmospheric Pollution Research, 13(6),
101427.
Han, Y., Cao, J., Lee, S., Ho, K., & An, Z. (2010). Different characteristics of char
and soot in the atmosphere and their ratio as an indicator for source
110
identification in Xi′an, China. Atmospheric Chemistry and Physics, 10(2),
595-607.
Hattori, T., Tang, N., Tamura, K., Hokoda, A., Yang, X., Igarashi, K., Ohno, M.,
Okada, Y., Kameda, T., & Toriba, A. (2007). Particulate polycyclic aromatic
hydrocarbons and their nitrated derivatives in three cities in Liaoning
Province, China. Environmental Forensics, 8(1-2), 165-172.
He, L.-Y., Hu, M., Huang, X.-F., Yu, B.-D., Zhang, Y.-H., & Liu, D.-Q. (2004).
Measurement of emissions of fine particulate organic matter from Chinese
cooking. Atmospheric Environment, 38(38), 6557-6564.
Holland, M. M., & Bitz, C. M. (2003). Polar amplification of climate change in
coupled models. Climate dynamics, 21(3), 221-232.
Hu, S., Polidori, A., Arhami, M., Shafer, M., Schauer, J., Cho, A., & Sioutas, C.
(2008). Redox activity and chemical speciation of size fractioned PM in the
communities of the Los Angeles-Long Beach harbor. Atmospheric
Chemistry and Physics, 8(21), 6439-6451.
Hu, Z., Kang, S., Li, C., Yan, F., Chen, P., Gao, S., Wang, Z., Zhang, Y., &
Sillanpää, M. (2017). Light absorption of biomass burning and vehicle
emission-sourced carbonaceous aerosols of the Tibetan Plateau.
Environmental Science and Pollution Research, 24, 15369-15378.
Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., Zhang, Y., & Jiang, M. (2018).
Characteristics, source apportionment and contribution of VOCs to ozone
formation in Wuhan, Central China. Atmospheric Environment, 192, 55-71.
Janssen, N. A., Gerlofs-Nijland, M. E., Lanki, T., Salonen, R. O., Cassee, F., Hoek,
G., Fischer, P., Brunekreef, B., & Krzyzanowski, M. (2012). Health effects
of black carbon. World Health Organization. Regional Office for Europe.
Jeong, U., Kim, J., Lee, H., Jung, J., Kim, Y. J., Song, C. H., & Koo, J.-H. (2011).
Estimation of the contributions of long range transported aerosol in East
Asia to carbonaceous aerosol and PM concentrations in Seoul, Korea using
highly time resolved measurements: a PSCF model approach. Journal of
Environmental Monitoring, 13(7), 1905-1918.
Jeong, U., Kim, J., Lee, H., & Lee, Y. G. (2017). Assessing the effect of longrange pollutant transportation on air quality in Seoul using the conditional
potential source contribution function method. Atmospheric Environment,
150, 33-44.
Ji, D., Gao, M., Maenhaut, W., He, J., Wu, C., Cheng, L., Gao, W., Sun, Y., Sun,
J., & Xin, J. (2019). The carbonaceous aerosol levels still remain a
challenge in the Beijing-Tianjin-Hebei region of China: Insights from
continuous high temporal resolution measurements in multiple cities.
111
Environment international, 126, 171-183.
Jiang, K., Xing, R., Luo, Z., Huang, W., Yi, F., Men, Y., Zhao, N., Chang, Z., Zhao,
J., & Pan, B. (2023). Pollutant emissions from biomass burning: A review
on emission characteristics, environmental impacts, and research
perspectives. Particuology.
Jones, A. M., & Harrison, R. M. (2005). Interpretation of particulate elemental
and organic carbon concentrations at rural, urban and kerbside sites.
Atmospheric Environment, 39(37), 7114-7126.
Kanakidou, M., , J. H. S., , S. N. P., , I. B., , F. J. D., , M. C. F., , R. V. D., , Ervens7,
B., , A. N., , C. J. N., , E. S., J. P. Putaud5, , Y. B., S. Fuzzi6, , J. H., , G. K.
Moortgat12, R. W., C. E. L. Myhre9, , K. T., , E. V., , E. G. S., & , a. J. W.
(2005). Organic aerosol and global climate modelling: a review.
Atmospheric Chemistry and Physics.
Kang, S., Zhang, Q., Qian, Y., Ji, Z., Li, C., Cong, Z., Zhang, Y., Guo, J., Du, W.,
& Huang, J. (2019). Linking atmospheric pollution to cryospheric change
in the Third Pole region: current progress and future prospects. National
Science Review, 6(4), 796-809.
Kaskaoutis, D. G., Grivas, G., Theodosi, C., Tsagkaraki, M., Paraskevopoulou, D.,
Stavroulas, I., Liakakou, E., Gkikas, A., Hatzianastassiou, N., & Wu, C.
(2020). Carbonaceous aerosols in contrasting atmospheric environments in
Greek cities: Evaluation of the EC-tracer methods for secondary organic
carbon estimation. Atmosphere, 11(2), 161.
Katsoulakos, N. M., Kaliampakos, D. C., & Kaliampakos, D. C. (2018). The
energy identity of mountainous areas: the example of Greece. Journal of
Mountain Science, 15(7), 1429-1445.
Kawanaka, Y., Matsumoto, E., Sakamoto, K., Wang, N., & Yun, S.-J. (2004). Size
distributions of mutagenic compounds and mutagenicity in atmospheric
particulate matter collected with a low-pressure cascade impactor.
Atmospheric Environment, 38(14), 2125-2132.
Khan, B., Hays, M. D., Geron, C., & Jetter, J. (2012). Differences in the OC/EC
ratios that characterize ambient and source aerosols due to thermal-optical
analysis. Aerosol Science and Technology, 46(2), 127-137.
Kim, S.-W., Yoon, S.-C., Jefferson, A., Ogren, J. A., Dutton, E. G., Won, J.-G.,
Ghim, Y. S., Lee, B.-I., & Han, J.-S. (2005). Aerosol optical, chemical and
physical properties at Gosan, Korea during Asian dust and pollution
episodes in 2001. Atmospheric Environment, 39(1), 39-50.
Kim, Y., Yi, S.-M., & Heo, J. (2020). Fifteen-year trends in carbon species and
PM2. 5 in Seoul, South Korea (2003–2017). Chemosphere, 261, 127750.
112
Kirchstetter, T. W., Novakov, T., & Hobbs, P. V. (2004). Evidence that the spectral
dependence of light absorption by aerosols is affected by organic carbon.
Journal of Geophysical Research: Atmospheres, 109(D21).
Lüthi, Z., Škerlak, B., Kim, S.-W., Lauer, A., Mues, A., Rupakheti, M., & Kang,
S. (2015). Atmospheric brown clouds reach the Tibetan Plateau by crossing
the Himalayas. Atmospheric Chemistry and Physics, 15(11), 6007-6021.
Lack, D., & Langridge, J. (2013). On the attribution of black and brown carbon
light absorption using the Ångström exponent. Atmospheric Chemistry and
Physics, 13(20), 10535-10543.
Lack, D. A., Cappa, C. D., Covert, D. S., Baynard, T., Massoli, P., Sierau, B.,
Bates, T. S., Quinn, P. K., Lovejoy, E. R., & Ravishankara, A. (2008). Bias
in filter-based aerosol light absorption measurements due to organic aerosol
loading: Evidence from ambient measurements. Aerosol Science and
Technology, 42(12), 1033-1041.
Laskin, A., Laskin, J., & Nizkorodov, S. A. (2015). Chemistry of atmospheric
brown carbon. Chemical reviews, 115(10), 4335-4382.
Lau, K., Kim, M., & Kim, K. (2006). Asian summer monsoon anomalies induced
by aerosol direct forcing: the role of the Tibetan Plateau. Climate dynamics,
26, 855-864.
Lee, C., Chuang, M., Lin, N., Wang, J., Sheu, G., Wang, S., Huang, H., Chen, H.,
Weng, G., & Hsu, S. (2011). The enhancement of biosmoke from Southeast
Asia on PM2. 5 water-soluble ions during the transport over the Mountain
Lulin site in Taiwan. Atmos. Environ, 45, 5784-5794.
Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos,
C., Romero, J., Aldunce, P., & Barret, K. (2023). IPCC, 2023: Climate
Change 2023: Synthesis Report, Summary for Policymakers. Contribution
of Working Groups I, II and III to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee
and J. Romero (eds.)]. IPCC, Geneva, Switzerland.
Lewis, K., Arnott, W. P., Moosmüller, H., & Wold, C. E. (2008). Strong spectral
variation of biomass smoke light absorption and single scattering albedo
observed with a novel dual‐wavelength photoacoustic instrument. Journal
of Geophysical Research: Atmospheres, 113(D16).
Li, C., Yan, F., Kang, S., Yan, C., Hu, Z., Chen, P., Gao, S., Zhang, C., He, C., &
Kaspari, S. (2021). Carbonaceous matter in the atmosphere and glaciers of
the Himalayas and the Tibetan plateau: An investigative review.
Environment international, 146, 106281.
Li, J., Wang, W.-C., Liao, H., & Chang, W. (2015). Past and future direct radiative
113
forcing of nitrate aerosol in East Asia. Theoretical and Applied Climatology,
121, 445-458.
Lin, N.-H., Tsay, S.-C., Maring, H. B., Yen, M.-C., Sheu, G.-R., Wang, S.-H., Chi,
K. H., Chuang, M.-T., Ou-Yang, C.-F., & Fu, J. S. (2013). An overview of
regional experiments on biomass burning aerosols and related pollutants in
Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-
SEAS. Atmospheric Environment, 78, 1-19.
Liu, M., & Matsui, H. (2022). Secondary organic aerosol formation regulates
cloud condensation nuclei in the global remote troposphere. Geophysical
Research Letters, 49(18), e2022GL100543.
Liu, W., Wang, Y., Russell, A., & Edgerton, E. S. (2006). Enhanced source
identification of southeast aerosols using temperature-resolved carbon
fractions and gas phase components. Atmospheric Environment, 40, 445-
466.
Liyan, M., Dongmei, H., Yulong, Y., Yueyuan, N., Xiaolin, D., Yafei, G., Wanhua,
L., & Lin, P. (2024). Pollution Characteristics and Source Analysis of
Carbonaceous Components in PM_(2.5) in a Typical Industrial City.
Aerosol and Air Quality Research, 24(5), 1-14.
Luo, Z., Zhang, L., Li, G., Du, W., Chen, Y., Cheng, H., Tao, S., & Shen, G. (2021).
Evaluating co-emissions into indoor and outdoor air of EC, OC, and BC
from in-home biomass burning. Atmospheric Research, 248, 105247.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S.,
Caud, N., Chen, Y., Goldfarb, L., & Gomis, M. (2021). Climate change
2021: the physical science basis. Contribution of working group I to the
sixth assessment report of the intergovernmental panel on climate change,
2(1), 2391.
Mbengue, S., Zikova, N., Schwarz, J., Vodička, P., Šmejkalová, A. H., &
Holoubek, I. (2021). Mass absorption cross-section and absorption
enhancement from long term black and elemental carbon measurements: A
rural background station in Central Europe. Science of the Total
Environment, 794, 148365.
Millet, D. B., Donahue, N. M., Pandis, S. N., Polidori, A., Stanier, C. O., Turpin,
B. J., & Goldstein, A. H. (2005). Atmospheric volatile organic compound
measurements during the Pittsburgh Air Quality Study: Results,
interpretation, and quantification of primary and secondary contributions.
Journal of Geophysical Research: Atmospheres, 110(D7).
Monks, P. S., Granier, C., Fuzzi, S., Stohl, A., Williams, M. L., Akimoto, H.,
Amann, M., Baklanov, A., Baltensperger, U., Bey, I., Blake, N., Blake, R.
114
S., Carslaw, K., Cooper, O. R., Dentener, F., Fowler, D., Fragkou, E., Frost,
G. J., Generoso, S., . . . von Glasow, R. (2009). Atmospheric composition
change – global and regional air quality. Atmospheric Environment, 43(33),
5268-5350.
Moosmüller, H., & Arnott, W. P. (2009). Particle optics in the Rayleigh regime.
Journal of the Air & Waste Management Association, 59(9), 1028-1031.
Na, K., Sawant, A. A., Song, C., & Cocker III, D. R. (2004). Primary and
secondary carbonaceous species in the atmosphere of Western Riverside
County, California. Atmospheric Environment, 38(9), 1345-1355.
Nan, Z., Li, S., & Cheng, G. (2005). Prediction of permafrost distribution on the
Qinghai-Tibet Plateau in the next 50 and 100 years. Science in China Series
D: Earth Sciences, 48, 797-804.
Nassar, H. F., Tang, N., Kameda, T., Toriba, A., Khoder, M. I., & Hayakawa, K.
(2011). Atmospheric concentrations of polycyclic aromatic hydrocarbons
and selected nitrated derivatives in Greater Cairo, Egypt. Atmospheric
Environment, 45(39), 7352-7359.
Nichols, J. L., Owens, E. O., Dutton, S. J., & Luben, T. J. (2013). Systematic
review of the effects of black carbon on cardiovascular disease among
individuals with pre-existing disease. International Journal of Public
Health, 58, 707-724.
Nussbaumer, T. (2001). Relevance of aerosols for the air quality in Switzerland.
Aerosols from Biomass Combustion, 1.
Offer, S., Hartner, E., Di Bucchianico, S., Bisig, C., Bauer, S., Pantzke, J.,
Zimmermann, E. J., Cao, X., Binder, S., & Kuhn, E. (2022). Effect of
atmospheric aging on soot particle toxicity in lung cell models at the air–
liquid interface: differential toxicological impacts of biogenic and
anthropogenic secondary organic aerosols (SOAs). Environmental Health
Perspectives, 130(2), 027003.
Ou-Yang, C.-F., Lin, N.-H., Lin, C.-C., Wang, S.-H., Sheu, G.-R., Lee, C.-T.,
Schnell, R. C., Lang, P. M., Kawasato, T., & Wang, J.-L. (2014).
Characteristics of atmospheric carbon monoxide at a high-mountain
background station in East Asia. Atmospheric Environment, 89, 613-622.
Ou-Yang, C.-F., Lin, N.-H., Sheu, G.-R., Lee, C.-T., & Wang, J.-L. (2012).
Seasonal and diurnal variations of ozone at a high-altitude mountain
baseline station in East Asia. Atmospheric Environment, 46, 279-288.
Pöschl, U. (2005). Atmospheric aerosols: composition, transformation, climate
and health effects. Angew Chem Int Ed Engl, 44(46), 7520-7540.
Pani, S. K., Chantara, S., Khamkaew, C., Lee, C.-T., & Lin, N.-H. (2019).
115
Biomass burning in the northern peninsular Southeast Asia: aerosol
chemical profile and potential exposure. Atmospheric Research, 224, 180-
195.
Pani, S. K., Lee, C.-T., Chou, C. C.-K., Shimada, K., Hatakeyama, S., Takami, A.,
Wang, S.-H., & Lin, N.-H. (2017). Chemical characterization of wintertime
aerosols over islands and mountains in East Asia: impacts of the continental
Asian outflow. Aerosol and Air Quality Research, 17(12), 3006-3036.
Peters, A., Liu, E., Verrier, R. L., Schwartz, J., Gold, D. R., Mittleman, M., Baliff,
J., Oh, J. A., Allen, G., & Monahan, K. (2000). Air pollution and incidence
of cardiac arrhythmia. Epidemiology, 11(1), 11-17.
Pinakana, S. D., Raysoni, A. U., Sayeed, A., Gonzalez, J. L., Temby, O., Wladyka,
D., Sepielak, K., & Gupta, P. (2024). Review of Agricultural Biomass
Burning and its Impact on Air Quality in the Continental United States of
America. Environmental Advances, 100546.
Polissar, A. V., Hopke, P. K., & Harris, J. M. (2001). Source regions for
atmospheric aerosol measured at Barrow, Alaska. Environmental Science
& Technology, 35(21), 4214-4226.
Polissar., Hopke, P. K., & Harris, J. M. (2001). Source regions for atmospheric
aerosol measured at Barrow, Alaska. Environ Sci Technol, 35(21), 4214-
4226.
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O.,
Ruosteenoja, K., Vihma, T., & Laaksonen, A. (2022). The Arctic has
warmed nearly four times faster than the globe since 1979.
Communications earth & environment, 3(1), 168.
Rastogi, N., Singh, A., Sarin, M., & Singh, D. (2016). Temporal variability of
primary and secondary aerosols over northern India: Impact of biomass
burning emissions. Atmospheric Environment, 125, 396-403.
Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic
aromatic hydrocarbons: source attribution, emission factors and regulation.
Atmospheric Environment, 42(13), 2895-2921.
Sandradewi, J., Prévôt, A. S. H., Alfarra, M. R., Szidat, S., Wehrli, M. N., Ruff,
M., Weimer, S., Lanz, V. A., Weingartner, E., Perron, N., Caseiro, A.,
Kasper-Giebl, A., Puxbaum, H., Wacker, L., & Baltensperger, U. (2008).
Comparison of several wood smoke markers and source apportionment
methods for wood burning particulate mass. Atmos. Chem. Phys. Discuss.,
2008, 8091-8118.
Sandrini, S., Fuzzi, S., Piazzalunga, A., Prati, P., Bonasoni, P., Cavalli, F., Bove,
M. C., Calvello, M., Cappelletti, D., & Colombi, C. (2014). Spatial and
116
seasonal variability of carbonaceous aerosol across Italy. Atmospheric
Environment, 99, 587-598.
Santra, S., Verma, S., Fujita, K., Chakraborty, I., Boucher, O., Takemura, T.,
Burkhart, J. F., Matt, F., & Sharma, M. (2019). Simulations of black carbon
(BC) aerosol impact over Hindu Kush Himalayan sites: validation, sources,
and implications on glacier runoff. Atmospheric Chemistry and Physics,
19(4), 2441-2460.
Sayer, A., Hsu, N., Eck, T., Smirnov, A., & Holben, B. (2014). AERONET-based
models of smoke-dominated aerosol near source regions and transported
over oceans, and implications for satellite retrievals of aerosol optical depth.
Atmospheric Chemistry and Physics, 14(20), 11493-11523.
Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. (1999).
Measurement of emissions from air pollution sources. 2. C1 through C30
organic compounds from medium duty diesel trucks. Environmental
Science & Technology, 33(10), 1578-1587.
Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. (2002).
Measurement of emissions from air pollution sources. 5. C1− C32 organic
compounds from gasoline-powered motor vehicles. Environmental Science
& Technology, 36(6), 1169-1180.
Schmeisser, L., Andrews, E., Ogren, J. A., Sheridan, P., Jefferson, A., Sharma, S.,
Kim, J. E., Sherman, J. P., Sorribas, M., & Kalapov, I. (2017). Classifying
aerosol type using in situ surface spectral aerosol optical properties.
Atmospheric Chemistry and Physics, 17(19), 12097-12120.
Schwarz, J. P., Spackman, J., Fahey, D., Gao, R., Lohmann, U., Stier, P., Watts,
L., Thomson, D., Lack, D., & Pfister, L. (2008). Coatings and their
enhancement of black carbon light absorption in the tropical atmosphere.
Journal of Geophysical Research: Atmospheres, 113(D3).
Shen, J., & Cao, N. (2020). Comprehensive observation and analysis of aerosol
optical properties and vertical distribution in Nanjing, China. Atmospheric
Environment, 239, 117767.
Sheu, G.-R., Lin, N.-H., Wang, J.-L., & Lee, C.-T. (2009). Lulin Atmospheric
Background Station: a new high-elevation baseline station in Taiwan. J.Jpn.
Assoc. Aerosol Sci. Technol., 24, 84-89.
Shi, J., Wu, X., Han, X., Zhong, Y., Wang, Z., & Ning, P. (2024). Characterization
and sources of carbonaceous aerosols in southwest plateau of China:
Effects of biomass burning and low oxygen concentration. Atmospheric
Environment, 318, 120250.
Shu, L., Wang, T., Liu, J., Chen, Z., Wu, H., Qu, Y., Li, M., & Xie, M. (2024).
117
Elucidating drivers of severe wintertime fine particulate matter pollution
episodes in the Yangtze River Delta region of eastern China. Science of the
Total Environment, 912, 169546.
Singh, A., Chou, C. C.-K., Chang, S.-Y., Chang, S.-C., Lin, N.-H., Chuang, M.-
T., Pani, S. K., Chi, K. H., Huang, C.-H., & Lee, C.-T. (2020). Long-term
(2003–2018) trends in aerosol chemical components at a high-altitude
background station in the western North Pacific: impact of long-range
transport from continental Asia. Environmental Pollution, 265, 114813.
Song, X., Hu, Y., Ma, Y., Jiang, L., Wang, X., Shi, A., Zhao, J., Liu, Y., Liu, Y., &
Tang, J. (2022). Is short-term and long-term exposure to black carbon
associated with cardiovascular and respiratory diseases? A systematic
review and meta-analysis based on evidence reliability. BMJ open, 12(5),
e049516.
Stanhill, G., & Cohen, S. (2001). Global dimming: a review of the evidence for a
widespread and significant reduction in global radiation with discussion of
its probable causes and possible agricultural consequences. Agricultural
and Forest Meteorology, 107(4), 255-278.
Streets, D., Yarber, K., Woo, J. H., & Carmichael, G. (2003). Biomass burning in
Asia: Annual and seasonal estimates and atmospheric emissions. Global
Biogeochemical Cycles, 17(4).
Szidat, S., Ruff, M., Perron, N., Wacker, L., Synal, H.-A., Hallquist, M.,
Shannigrahi, A. S., Yttri, K. E., Dye, C., & Simpson, D. (2009). Fossil and
non-fossil sources of organic carbon (OC) and elemental carbon (EC) in
Göteborg, Sweden. Atmospheric Chemistry and Physics, 9(5), 1521-1535.
Taiz, L., & Zeiger, E. (1991). Plant physiology: Mineral nutrition. The Benjamin
Cummings Publishing Co., Redwood City, 100, 119.
Tomita, H., Watanabe, K., Takiguchi, Y., Kawarabayashi, J., & Iguchi, T. (2006).
Rapid-Swept CW Cavity Ring-down Laser Spectroscopy for Carbon
Isotope Analysis. Journal of Nuclear Science and Technology, 43(4), 311-
315.
Turpin, B. J., & Huntzicker, J. J. (1995). Identification of secondary organic
aerosol episodes and quantitation of primary and secondary organic aerosol
concentrations during SCAQS. Atmospheric Environment, 29(23), 3527-
3544.
Wang, K., Dickinson, R. E., & Liang, S. (2009). Clear sky visibility has decreased
over land globally from 1973 to 2007. Science, 323(5920), 1468-1470.
Wang, Y., Zhang, X., & Arimoto, R. (2006). The contribution from distant dust
sources to the atmospheric particulate matter loadings at XiAn, China
118
during spring. Science of the Total Environment, 368(2-3), 875-883.
Watson, J. G., Chow, J. C., & Houck, J. E. (2001). PM2. 5 chemical source profiles
for vehicle exhaust, vegetative burning, geological material, and coal
burning in Northwestern Colorado during 1995. Chemosphere, 43(8),
1141-1151.
Whitby, K., & Cantrell, B. (1976). Atmospheric aerosols- Characteristics and
measurement. International Conference on Environmental Sensing and
Assessment, Las Vegas, Nev,
Williams, P. I., & Baltensperger, U. (2009). Particulate matter in the atmosphere.
Atmospheric Science for Environmental Scientists, 168-197.
Wu, C., & Yu, J. Z. (2016). Determination of primary combustion source organic
carbon-to-elemental carbon (OC/EC) ratio using ambient OC and EC
measurements: secondary OC-EC correlation minimization method. Atmos.
Chem. Phys., 16(8), 5453-5465.
Xiong, Y., & Du, K. (2020). Source-resolved attribution of ground-level ozone
formation potential from VOC emissions in Metropolitan Vancouver, BC.
Science of the Total Environment, 721, 137698.
Yang, C.-F. O., Lin, N.-H., Sheu, G.-R., Lee, C.-T., & Wang, J.-L. (2012).
Seasonal and diurnal variations of ozone at a high-altitude mountain
baseline station in East Asia. Atmospheric Environment, 46, 279-288.
Yang, M., Howell, S., Zhuang, J., & Huebert, B. (2009). Attribution of aerosol
light absorption to black carbon, brown carbon, and dust in China–
interpretations of atmospheric measurements during EAST-AIRE.
Atmospheric Chemistry and Physics, 9(6), 2035-2050.
Yao, L., Huo, J., Wang, D., Fu, Q., Sun, W., Li, Q., & Chen, J. (2020). Online
measurement of carbonaceous aerosols in suburban Shanghai during winter
over a three-year period: Temporal variations, meteorological effects, and
sources. Atmospheric Environment, 226, 117408.
Yen, M.-C., Peng, C.-M., Chen, T.-C., Chen, C.-S., Lin, N.-H., Tzeng, R.-Y., Lee,
Y.-A., & Lin, C.-C. (2013). Climate and weather characteristics in
association with the active fires in northern Southeast Asia and spring air
pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment.
Atmospheric Environment, 78, 35-50.
Yoo, H. Y., Kim, K. A., Kim, Y. P., Jung, C. H., Shin, H. J., Moon, K. J., Park, S.
M., & Lee, J. Y. (2022). Validation of SOC Estimation using OC and EC
Concentration in PM2. 5 Measured at Seoul. Aerosol and Air Quality
Research, 22(4), 210388.
Yuan, C.-S., Wong, K.-W., Tseng, Y.-L., Ceng, J.-H., Lee, C.-E., & Lin, C. (2022).
119
Chemical significance and source apportionment of fine particles (PM2. 5)
in an industrial port area in East Asia. Atmospheric Pollution Research,
13(4), 101349.
Yuan, Q., Wan, X., Cong, Z., Li, M., Liu, L., Shu, S., Liu, R., Xu, L., Zhang, J.,
& Ding, X. (2020). In situ observations of light‐absorbing carbonaceous
aerosols at Himalaya: Analysis of the South Asian sources and trans‐
Himalayan valleys transport pathways. Journal of Geophysical Research:
Atmospheres, 125(18), e2020JD032615.
Zaelke, D., & Clare, D. (2008). Reducing Black Carbon May Be the Fastest
Strategy for Slowing Climate Change. Institute for Governance and
Sustainable Development/INECE Climate Briefing Note.
Zaveri, R. A., Easter, R. C., Singh, B., Wang, H., Lu, Z., Tilmes, S., Emmons, L.
K., Vitt, F., Zhang, R., & Liu, X. (2021). Development and evaluation of
chemistry‐aerosol‐climate model CAM5‐chem‐MAM7‐MOSAIC: Global
atmospheric distribution and radiative effects of nitrate aerosol. Journal of
Advances in Modeling Earth Systems, 13(4), e2020MS002346.
Zhang, B. (2020). The effect of aerosols to climate change and society. Journal of
Geoscience and Environment Protection, 8(08), 55.
Zhang, X., Wang, Y., Zhang, X., Guo, W., & Gong, S. (2008). Carbonaceous
aerosol composition over various regions of China during 2006. Journal of
Geophysical Research: Atmospheres, 113(D14).
Zhang, Y.-x., Min, S., Zhang, Y.-h., Zeng, L.-m., He, L.-y., Bin, Z., Wei, Y.-j., &
Zhu, X.-l. (2007). Source profiles of particulate organic matters emitted
from cereal straw burnings. Journal of Environmental Sciences, 19(2), 167-
175.
Zong, Z., Wang, X., Tian, C., Chen, Y., Fu, S., Qu, L., Ji, L., Li, J., & Zhang, G.
(2018). PMF and PSCF based source apportionment of PM2. 5 at a regional
background site in North China. Atmospheric Research, 203, 207-215.
Zou, D., Zhao, L., Sheng, Y., Chen, J., Hu, G., Wu, T., Wu, J., Xie, C., Wu, X., &
Pang, Q. (2017). A new map of permafrost distribution on the Tibetan
Plateau. The Cryosphere, 11(6), 2527-2542.
指導教授 林能暉 歐陽長風(Neng-Huei Lin Ou-Yang, Chang-Feng) 審核日期 2024-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明