博碩士論文 111324042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.119.157.241
姓名 蔡武雄(WU-XIONG CAI)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 高效環境友善製程回收鋰離子電池正極材料製備 析氧反應之催化劑
(Efficient and environmentally friendly process for recycling lithium-ion battery cathode materials into Oxygen Evolution Reaction catalysts)
相關論文
★ Development of periodic nanostructure substrates for the applications of SERS and water-splitting★ 應用於電催化析氧反應之高性能多金屬尖晶石 合成及其機理動力學模擬研究
★ 高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)應用於鋰離子電池負極材料之研究★ 利用金屬鹽類雷射加工技術於碳材料上 製造高熵奈米粒子進行催化反應之應用
★ 石墨烯/高熵奈米陶瓷觸媒之製備暨有機汙染物降解效率探討★ 高熵氧化物電極於類海水催化應用
★ 利用噴霧造粒製備中熵氧化物應用於鋰離子電池負極材料之研究★ 回收廢棄電路板之材料於生醫檢測與儲能元件 之應用
★ 可逆高熵氧化物陽極應用於 鋰離子全電池之研究★ 開發液漩式重力分選技術用於廢棄PCB成型板粉塵回收資源化
★ 高熵硒化物觸媒應用於電芬頓反應降解有機污染物之研究★ 廢棄印刷電路板粉塵回收:非金屬部分摻混至高分子再利用
★ 先進高熵電催化劑在水處理中的開發之氨分解和氫生產★ 水熱合成析氧反應電催化觸媒及其在鹼性膜電解水中的應用
★ 高熵氧化物應用於鋰離子電池負極並探討最佳負極/正極配方★ 通過表面分析技術研究高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)鋰離子電池負極之失效機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-1以後開放)
摘要(中) 鋰離子電池(Lithium Ion Battery, LIB)作為一種新興的二次能源系統,因其高能量密度、長循環壽命和優異的安全性能而被廣泛應用。這些電池在電子產品如智能手機、筆記本電腦和其他便攜設備中占有重要地位。此外,隨著電動車市場的快速增長,鋰離子電池已成為電動車的主要動力來源。隨著時間的推移,老舊的鋰離子電池逐漸達到其循環壽命的終點,隨之而來的是大量的鋰離子電池廢棄物產生,隨著電子產品和電動車的不斷普及,鋰離子電池的需求只會持續增長,這也導致了報廢電池數量的增加。這些廢棄電池含有大量有價值的金屬,如鋰、鈷、鎳等,如果不加以回收再利用,不僅會造成資源浪費,還會對環境造成潛在危害,因此鋰離子電池廢棄物的處理和回收,成為一個迫切解決的重要環保問題。
本研究致力於開發同時具有高效率及環保性的濕式冶金方法來進行鋰離子電池正極材料之回收,以亞臨界醋酸浸出對鋰鎳鈷鋁氧化物(NCA)進行回收,透過實驗確定了最佳反應條件為溫度180℃、6M醋酸、固液比30g/L、反應時間4小時,可得到96%以上的Al、Co、Li、Ni浸出效率,後續將回收後所得到之金屬分別以水熱法及真空雷射鹽類還原法兩種方法,再利用於合成水電解產氫製程中所使用之三元鐵鎳鈷催化劑泡沫鎳電極,在循環伏安法測定中獲得最佳起始電位1.359V,且在固定電流密度100mA/cm2的計時電位法測定500小時後電壓只上升了0.07V,顯示了優異的電化學性能及穩定性,也顯示了回收的廢棄鋰離子電池正極材料金屬在循環利用上有非常高的未來發展性與應用潛力。
摘要(英) Lithium-ion batteries (LIBs) are an emerging secondary energy system widely used due to their high energy density, long cycle life, and excellent safety performance. These batteries play a crucial role in electronic products such as smartphones, laptops, and other portable devices. Furthermore, with the rapid growth of the electric vehicle (EV) market, LIBs have become the primary power source for EVs. Over time, as old lithium-ion batteries reach the end of their cycle life, a significant amount of LIB waste is generated. With the continued proliferation of electronic products and EVs, the demand for lithium-ion batteries will only increase, leading to a corresponding rise in the number of discarded batteries. These waste batteries contain valuable metals such as lithium, cobalt, and nickel. If not properly recycled, it will result in resource wastage and pose potential environmental hazards. Therefore, the treatment and recycling of lithium-ion battery waste have become urgent and critical environmental issues.
This study aims to develop an efficient and environmentally friendly hydrometallurgical method for the recovery of cathode materials from LIBs. Subcritical acetic acid leaching was used to recover lithium nickel cobalt aluminum oxide (NCA). Through experiments, the optimal reaction conditions were determined to be a temperature of 180°C, 6M acetic acid, a solid-liquid ratio of 30g/L, and a reaction time of 4 hours, achieving leaching efficiencies of over 96% for Al, Co, Li, and Ni. The recovered metals were then used to synthesize ternary iron-nickel-cobalt catalysts on nickel foam electrodes for hydrogen production via water electrolysis, using hydrothermal and vacuum laser salt reduction methods. Cyclic voltammetry measurements showed an optimal onset potential of 1.359V, and chronoamperometry at a fixed current density of 100mA/cm² demonstrated that the voltage increased by only 0.07V after 500 hours, indicating excellent electrochemical performance and stability. This also highlights the significant future development potential and application prospects for recycled metals from spent lithium-ion battery cathode materials.
關鍵字(中) ★ 鋰離子電池回收
★ 濕式冶金
★ 亞臨界流
★ 循環經濟
★ 析氧反應
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 x
一、前言與ESG指標 1
二、文獻回顧 3
2.1鋰離子電池介紹 3
2.2.1鋰離子電池正極活性材料介紹 4
2.2鋰離子電池正極材料之回收 4
2.2.1火法冶金 5
2.2.2濕式冶金 5
2.2.3直接回收法 7
2.2.4機械化學法 8
2.2.5電化學法 8
2.3水電解 9
2.3.1再生能源之發展 9
2.3.2析氧反應與電催化劑發展 10
2.3.3電催化劑之合成方法 11
2.3.4鎳、鈷和鐵基電催化劑 13
2.4回收材料循環利用於製備析氧反應催化劑 14
三、實驗步驟 15
3.1實驗藥品 15
3.2實驗材料 16
3.3亞臨界流醋酸回收NCA活性材料 16
3.3 NCA回收液於三元金屬催化劑之合成應用 16
3.3.1水熱法進行三元金屬催化劑合成 16
3.3.2真空雷射鹽類製程(PLMS)進行三元金屬催化劑合成 17
3.4分析儀器 19
3.4.1場發射掃描式電子顯微鏡(Field Emission-Scanning Electron Microscopy, FE-SEM) 19
3.4.2感應耦合電漿光學發射光譜儀(Inductively coupled plasma optical emission spectrometry, ICP-OES) 19
3.4.3 X射線繞射儀(X-ray diffractometer, XRD) 20
3.4.4 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 21
3.4.5電化學量測系統(CH Instruments electrochemical analyzer, CHI) 22
四、結果與討論 23
4.1亞臨界流醋酸對NCA活性材料浸出程序 23
4.1.1 NCA活性材料 23
4.1.2酸浸出程序 24
4.1.3不同實驗參數下之浸出效率 28
4.2 NCA浸出溶液前驅物合成三元金屬催化劑 32
4.2.1 FeNiCo催化劑 32
4.2.2 電化學特性分析 37
4.3循環回收程序之成本 39
五、結論 42
六、參考文獻 43
參考文獻 1. Tsiropoulos, I., D. Tarvydas, and N. Lebedeva, Li-ion batteries for mobility and stationary storage applications. 2018.
2. Leuthner, S., Lithium-ion battery overview. Lithium-Ion Batteries: Basics and Applications, 2018: p. 13-19.
3. Or, T., et al., Recycling of mixed cathode lithium‐ion batteries for electric vehicles: Current status and future outlook. Carbon Energy, 2020. 2(1): p. 6-43.
4. Baum, Z.J., et al., Lithium-ion battery recycling─ overview of techniques and trends. 2022, ACS Publications.
5. Li, Y., et al., Recycling of spent lithium-ion batteries in view of green chemistry. Green Chemistry, 2021. 23(17): p. 6139-6171.
6. Makuza, B., et al., Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. Journal of Power Sources, 2021. 491: p. 229622.
7. al., W.Y.e., Research progress on selective recovery of lithium element from spent lithium-ion battery cathode materials. 2022.
8. Yao, Y., et al., Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review. ACS Sustainable Chemistry & Engineering, 2018. 6(11): p. 13611-13627.
9. Zheng, Y., et al., Leaching procedure and kinetic studies of cobalt in cathode materials from spent lithium ion batteries using organic citric acid as leachant. International Journal of Environmental Research, 2016. 10(1): p. 159-168.
10. Sun, C., et al., Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspect. Waste Management & Research, 2018. 36(2): p. 113-120.
11. Liu, K. and F.-S. Zhang, Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water. Journal of hazardous materials, 2016. 316: p. 19-25.
12. Liang, Z., et al., Acetate acid and glucose assisted subcritical reaction for metal recovery from spent lithium ion batteries. Journal of Cleaner Production, 2022. 369: p. 133281.
13. Liu, B., et al., Direct recycling of spent LiNi0. 5Co0. 2Mn0. 3O2 cathodes based on single oxalic acid leaching and regeneration under mild conditions assisted by lithium acetate. Energy & Fuels, 2022. 36(12): p. 6552-6559.
14. Dolotko, O., et al., Universal and efficient extraction of lithium for lithium-ion battery recycling using mechanochemistry. Communications Chemistry, 2023. 6(1): p. 49.
15. Liu, K., et al., Innovative electrochemical strategy to recovery of cathode and efficient lithium leaching from spent lithium-ion batteries. ACS Applied Energy Materials, 2020. 3(5): p. 4767-4776.
16. Ren, X., et al., Cobalt–borate nanowire array as a high-performance catalyst for oxygen evolution reaction in near-neutral media. Journal of materials chemistry A, 2017. 5(16): p. 7291-7294.
17. Feng, C., et al., Fe-based electrocatalysts for oxygen evolution reaction: progress and perspectives. Acs Catalysis, 2020. 10(7): p. 4019-4047.
18. Gebreslase, G.A., M.V. Martínez-Huerta, and M.J. Lázaro, Recent progress on bimetallic NiCo and CoFe based electrocatalysts for alkaline oxygen evolution reaction: A review. Journal of Energy Chemistry, 2022. 67: p. 101-137.
19. Jiang, J., et al., Nickel–cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2015. 278: p. 445-451.
20. Wang, Y., et al., Nickel induced electronic structural regulation of cobalt hydroxide for enhanced water oxidation. Journal of materials chemistry A, 2020. 8(14): p. 6699-6708.
21. Parashar, M., V.K. Shukla, and R. Singh, Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics, 2020. 31(5): p. 3729-3749.
22. Waghmode, B.J., et al., Calixarene intercalated NiCo layered double hydroxide for enhanced oxygen evolution catalysis. ACS sustainable chemistry & engineering, 2018. 6(8): p. 9649-9660.
23. Hu, X., et al., Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media. RSC advances, 2019. 9(54): p. 31563-31571.
24. Shi, H. and G. Zhao, Water oxidation on spinel NiCo2O4 nanoneedles anode: microstructures, specific surface character, and the enhanced electrocatalytic performance. The Journal of Physical Chemistry C, 2014. 118(45): p. 25939-25946.
25. Ou, G., et al., Boosting the electrocatalytic water oxidation performance of CoFe2O4 nanoparticles by surface defect engineering. ACS applied materials & interfaces, 2019. 11(4): p. 3978-3983.
26. Zhu, S., et al., Efficient electrocatalytic oxygen evolution by Fe3C nanosheets perpendicularly grown on 3D Ni foams. International Journal of Hydrogen Energy, 2019. 44(31): p. 16507-16515.
27. Lyons, M.E. and M.P. Brandon, A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base. Journal of Electroanalytical Chemistry, 2010. 641(1-2): p. 119-130.
28. Osgood, H., et al., Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 2016. 11(5): p. 601-625.
29. Burke, M.S., et al., Cobalt–iron (oxy) hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. Journal of the American Chemical Society, 2015. 137(10): p. 3638-3648.
30. Oliver-Tolentino, M.A., et al., An approach to understanding the electrocatalytic activity enhancement by superexchange interaction toward OER in alkaline media of Ni–Fe LDH. The Journal of Physical Chemistry C, 2014. 118(39): p. 22432-22438.
31. Anantharaj, S., S. Kundu, and S. Noda, “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy, 2021. 80: p. 105514.
32. Chen, Z., et al., Synergistic recycling and conversion of spent Li-ion battery leachate into highly efficient oxygen evolution catalysts. Green Chemistry, 2021. 23(17): p. 6538-6547.
33. Sim, G.S., et al., Silkworm protein-derived nitrogen-doped carbon-coated Li [Ni0. 8Co0. 15Al0. 05] O2 for lithium-ion batteries. Nanomaterials, 2022. 12(7): p. 1166.
34. Joulié, M., R. Laucournet, and E. Billy, Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries. Journal of power sources, 2014. 247: p. 551-555.
35. Kroh, L.W., Caramelisation in food and beverages. Food chemistry, 1994. 51(4): p. 373-379.
36. Chen, H., et al., Leaching of cathode materials from spent lithium-ion batteries by using a mixture of ascorbic acid and HNO3. Hydrometallurgy, 2021. 205: p. 105746.
37. Chen, X. and T. Zhou, Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media. Waste Management & Research, 2014. 32(11): p. 1083-1093.
38. Gupita, L.T., et al. Green hydrometallurgical route for recycling process of NCA cathode scrap. in AIP Conference Proceedings. 2020. AIP Publishing.
39. Geng, X., et al., Synthesis of layered double hydroxide-based hybrid electrode for efficient removal of phosphate ions in capacitive deionization. Water Science & Technology, 2022. 86(11): p. 3014-3027.
40. Xu, J., et al., Preparation of one dimensional silver nanowire/nickel-cobalt layered double hydroxide and its electrocatalysis of glucose. Journal of Electroanalytical Chemistry, 2018. 823: p. 315-321.
41. Li, Y.-Y., et al., Synergistic effect of composition gradient and morphology on the catalytic activity of amorphous FeCoNi-LDH. Nanoscale Advances, 2024. 6(2): p. 638-647.
42. Dai, Z., X. Du, and X. Zhang, The synthesis of Ni-Co-Fe-Se@ NiCo-LDH nanoarrays on Ni foam as efficient overall water splitting electrocatalyst. Journal of Alloys and Compounds, 2023. 946: p. 169451.
43. Chastain, J. and R.C. King Jr, Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, 1992. 40: p. 221.
44. Zhang, L., et al., Photo-deposition of ZnO/Co 3 O 4 core-shell nanorods with pn junction for efficient oxygen evolution reaction. Journal of Solid State Electrochemistry, 2019. 23: p. 3287-3297.
45. Petitto, S. and M. Langell, Surface composition and structure of Co 3 O 4 (110) and the effect of impurity segregation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2004. 22(4): p. 1690-1696.
46. Kuai, C., et al., Fully oxidized Ni–Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction. ACS Catalysis, 2019. 9(7): p. 6027-6032.
指導教授 洪緯璿 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明