博碩士論文 111223053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.224.0.57
姓名 王仁君(Ren-Jyun Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 移動污染源之黑碳、一氧化碳及二氧化碳相關係性探討
相關論文
★ 東亞高山背景氣膠二次有機碳成分估算與特性探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 近年台灣都會地區人口快速地增長,機動車輛數目也隨之持續成長,除了該地區既有之固定源,如火力發電廠、科技園區、工業區等等,機動車輛所排放之污染物也對空氣品質愈趨影響。其中黑碳(BC)主要來自柴油之不完全燃燒,如卡車、大貨車及公車等重型車輛;一氧化碳(CO)主要來自汽油之不完全燃燒,如小客車及機車等輕型車輛;二氧化碳(CO2)主要來自機動車輛之完全燃燒。因此,針對BC、CO及CO2三種污染物進行比較及分析,有助於了解該地區交通排放特性。
本研究於台北及台中兩大都會區的重要幹道進行即時觀測解析,台北測站觀測期間為2022年10月至2023年11月,地點位於台灣大學環工所旁之監測貨櫃,緊鄰基隆路;台中測站觀測期間為2017年9月至2018年4月,地點位於東海大學旁,緊鄰台灣大道。觀測期間,台北測站之BC、CO、CO2平均濃度分別為1.18 µg/m3、0.95 ppm及439.6 ppm;台中測站分別為2.47 µg/m3、0.64 ppm及429.7 ppm,為兩站不同背景環境及不同車流、車種等因素造成BC及CO濃度存在差異。BC、CO及CO2濃度在尖峰時段有高值,明顯受到上下班車潮之影響。假日之BC及CO濃度皆有下降的趨勢,顯示兩站皆受到假日效應之影響,尤其在上下班時間,下降幅度相較其他時段更為明顯。
日夜變化中,台北及台中兩站ΔBC/ΔCO在上下班時間皆出現低值,並發現CO變化量幅度勝於BC,說明CO在上下班時段為主要交通排放源,且兩站汽油車站比皆高於其他城市,CO之排放相較更多。在三種污染物之相關性中也顯示尖峰時段ΔBC/ΔCO斜率較大,代表CO變化量較大,皆為兩站之主要排放源。兩站之ΔBC/ΔCO2及ΔCO/ΔCO2在中午至下午間出現高值,因其光合作用消耗CO2造成CO2低值,而使比率在此時出現最高值。在季節變化中,台北與台中測站ΔBC/ΔCO與溫度呈反相關之趨勢,因車輛引擎會受環境溫度影響其燃燒效率,溫度愈高,燃燒效率愈低,產生更多不完全燃燒污染物,因此台北及台中測站於觀測期間CO排放較為顯著,主要移動污染來源為汽機車。
摘要(英) In recent years, the rapid population growth in urban areas of Taiwan has led to a continuous increase in the number of motor vehicles. Consequently, aside from existing stationary sources such as power plants, technology parks, and industrial zones, emissions from motor vehicles have increasingly impacted air quality. Black Carbon (BC) primarily originates from incomplete diesel combustion in heavy-duty vehicles like trucks, lorries, and buses. Carbon Monoxide (CO) mainly comes from the incomplete combustion of gasoline in light-duty vehicles such as cars and motorcycles. Carbon Dioxide (CO2) results from the complete combustion of motor vehicles. Therefore, comparing and analyzing BC, CO, and CO2 pollutants can help understand the area′s traffic emissions characteristics.
This study conducted real-time observations and analysis on major roads in the metropolitan areas of Taipei and Taichung. In Taipei, the observation period was from October 2022 to November 2023, with the location near National Taiwan University adjacent to Keelung Road. In Taichung, the observation period was from September 2017 to April 2018, near Tunghai University adjacent to Taiwan Boulevard. During the observation period, the average concentrations of BC, CO, and CO2 in Taipei were 1.18 µg/m3, 0.95 ppm, and 439.6 ppm, respectively. In Taichung, the average concentrations of BC, CO, and CO2 were 2.47 µg/m3, 0.64 ppm, and 429.7 ppm, respectively. The differences in BC and CO concentrations between the two areas are attributed to different background environments, traffic flows, and vehicle types.
BC, CO, and CO2 concentrations peaked during rush hours, indicating a significant impact from commuter traffic. There was a noticeable downward trend in BC and CO concentrations on holidays, showing the influence of the holiday effect in both areas, with a more pronounced decline during commuting hours compared to other times. During day and night variations, ΔBC/ΔCO in both Taipei and Taichung exhibited low values during commuting hours, with CO showing greater variability than BC. This suggests that CO is the primary traffic emission during these times, and the proportion of gasoline vehicles is higher in these areas compared to other cities, resulting in more CO emissions. The correlation among the three pollutants also shows a larger ΔBC/ΔCO slope during peak hours, indicating a greater variation in CO, which is a primary emission source in both areas. ΔBC/ΔCO2 and ΔCO/ΔCO2 showed high values from noon to afternoon due to photosynthesis consuming CO2, leading to lower CO2 values and thus higher ratios during this period.
During seasonal changes, the ΔBC/ΔCO ratio and temperature at the Taipei and Taichung monitoring stations show a negative correlation trend. This is because vehicle engines efficiency is affected by ambient temperature; the higher the temperature, the lower the combustion efficiency, resulting in more incomplete combustion pollutants. Therefore, during the observation period, CO emissions were more significant at the Taipei and Taichung stations.
關鍵字(中) ★ 黑碳
★ 一氧化碳
★ 二氧化碳
★ 交通源
關鍵字(英)
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 ix
表目錄 xii
一、緒論 1
二、文獻回顧 3
2-1 移動源污染物 3
2-1-1 黑碳(Black Carbon, BC) 3
2-1-2 一氧化碳(Carbon Monoxide, CO) 6
2-1-3 二氧化碳(Carbon Dioxide, CO2) 10
2-2 不同地區污染物排放比特性 14
三、研究方法 17
3-1 觀測地點及環境部空品質監測站 17
3-2 BC、CO及CO2濃度監測儀 20
3-2-1 氣膠吸光儀(Aethalometer, AE-33) 20
3-2-2 EC9830及Seriuns 30 22
3-2-3 Picarro G1301 24
3-3 ∆BC/∆CO、∆BC/∆CO2及∆CO/∆CO2排放比計算 26
3-4 車輛種類計算 32
3-4-1 基隆路車輛種類及數目計算 32
3-4-2 台灣大道車輛種類計算 35
四、結果與討論 38
4-1 BC、CO及CO2濃度變化 38
4-1-1 台北及台中觀測濃度與空品站之比較 38
4-1-2 日夜變化 46
4-1-3 假日效應 50
4-2 日夜變化與尖峰時段∆BC/∆CO排放比之探討 55
4-2-1 ∆BC/∆CO日夜週期性變化 55
4-2-2 尖峰時段車輛種類比與∆BC/∆CO之關係 60
4-2-3 台北及台中觀測期間與尖峰時段污染物相關性斜率之比較 64
4-3 ∆BC/∆CO2及∆CO/∆CO2排放比之日夜變化 68
4-3-1 ∆BC/∆CO2日夜週期性變化 68
4-3-2 ∆CO/∆CO2日夜週期性變化 71
4-4 季節變化中∆BC/∆CO與溫度之關係 74
4-4-1 台北∆BC/∆CO與溫度之關係 74
4-4-2 台中∆BC/∆CO與溫度之關係 80
4-4-3 其他城市∆BC/∆CO與溫度之關係 85
結論 87
參考文獻 89
參考文獻 Āboliņš, D., and P. Grabusts (2021), OPTIMIZATION OF ENGINE CONTROL UNIT PARAMETERS, paper presented at HUMAN. ENVIRONMENT. TECHNOLOGIES. Proceedings of the Students International Scientific and Practical Conference.
Ajtai, T., G. Kiss-Albert, N. Utry, A. Toth, A. Hoffer, G. Szabo, and Z. Bozoki (2019), Diurnal variation of aethalometer correction factors and optical absorption assessment of nucleation events using multi-wavelength photoacoustic spectroscopy, J Environ Sci (China), 83, 96-109, doi:10.1016/j.jes.2019.01.022.
Al-Arkawazi, S. A. F. (2019), Analyzing and predicting the relation between air–fuel ratio (AFR), lambda (λ) and the exhaust emissions percentages and values of gasoline-fueled vehicles using versatile and portable emissions measurement system tool, SN Applied Sciences, 1(11), 1370.
Ammoura, L., I. Xueref-Remy, V. Gros, A. Baudic, B. Bonsang, J.-E. Petit, O. Perrussel, N. Bonnaire, J. Sciare, and F. Chevallier (2014), Atmospheric measurements of ratios between CO 2 and co-emitted species from traffic: a tunnel study in the Paris megacity, Atmospheric Chemistry and Physics, 14(23), 12871-12882.
Antony Chen, L. W., B. G. Doddridge, R. R. Dickerson, J. C. Chow, P. K. Mueller, J. Quinn, and W. A. Butler (2001), Seasonal variations in elemental carbon aerosol, carbon monoxide and sulfur dioxide: Implications for sources, Geophysical Research Letters, 28(9), 1711-1714.
Barbir, F. (2013), Chapter Two - Fuel Cell Basic Chemistry and Thermodynamics, in PEM Fuel Cells (Second Edition), edited by F. Barbir, pp. 17-32, Academic Press, Boston, doi:https://doi.org/10.1016/B978-0-12-387710-9.00002-3.
Baumgardner, D., G. Raga, O. Peralta, I. Rosas, T. Castro, T. Kuhlbusch, A. John, and A. Petzold (2002), Diagnosing black carbon trends in large urban areas using carbon monoxide measurements, Journal of Geophysical Research: Atmospheres, 107(D21), ICC 4-1-ICC 4-9.
Boehning, D., C. Moon, S. Sharma, K. J. Hurt, L. D. Hester, G. V. Ronnett, D. Shugar, and S. H. Snyder (2003), Carbon monoxide neurotransmission activated by CK2 phosphorylation of heme oxygenase-2, Neuron, 40(1), 129-137.
Bond, T. C., et al. (2013), Bounding the role of black carbon in the climate system: A scientific assessment, Journal of Geophysical Research: Atmospheres, 118(11), 5380-5552, doi:10.1002/jgrd.50171.
Bond., D. G. Streets, K. F. Yarber, S. M. Nelson, J. H. Woo, and Z. Klimont (2004), A technology‐based global inventory of black and organic carbon emissions from combustion, Journal of Geophysical Research: Atmospheres, 109(D14), doi:10.1029/2003jd003697.
Burnett, R., et al. (2018), Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter, Proceedings of the National Academy of Sciences, 115(38), 9592-9597, doi:10.1073/pnas.1803222115.
Cao, Z. Y., W. Xuan, Z. Y. Liu, X. N. Li, N. Zhao, P. Xu, Z. Wang, R. Z. Guan, and W. B. Shen (2007), Carbon monoxide promotes lateral root formation in rapeseed, Journal of Integrative Plant Biology, 49(7), 1070-1079.
Chan, T. W., E. Meloche, J. Kubsh, R. Brezny, D. Rosenblatt, and G. Rideout (2013), Impact of ambient temperature on gaseous and particle emissions from a direct injection gasoline vehicle and its implications on particle filtration, SAE International Journal of Fuels and Lubricants, 6(2), 350-371.
Chen, H., et al. (2010), High-accuracy continuous airborne measurements of greenhouse gases (CO<sub>2</sub> and CH<sub>4</sub>) using the cavity ring-down spectroscopy (CRDS) technique, Atmospheric Measurement Techniques, 3(2), 375-386, doi:10.5194/amt-3-375-2010.
Cholakov, G. S. (1999), Catalytic converters and other emission control devices, Pollut Control Technol, 3, 1-8.
Cipollone, R., D. Di Battista, and D. Vittorini (2017), Experimental assessment of engine charge air cooling by a refrigeration unit, Energy Procedia, 126, 1067-1074.
Cole, K. J., A. F. Carley, M. J. Crudace, M. Clarke, S. H. Taylor, and G. J. Hutchings (2010), Copper manganese oxide catalysts modified by gold deposition: The influence on activity for ambient temperature carbon monoxide oxidation, Catalysis letters, 138, 143-147.
Collaud Coen, M., et al. (2010), Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms, Atmospheric Measurement Techniques, 3(2), 457-474, doi:10.5194/amt-3-457-2010.
Council, N. R., D. o. Earth, L. Studies, B. o. A. Sciences, B. o. E. Studies, and C. o. A. Q. M. i. t. U. States (2004), Air quality management in the United States, National Academies Press.
Crépat, G., and R. Fritsch (1998), Satellite meeting of IUTOX VIIIth International Congress of Toxicology Carbon Monoxide: the unnoticed poison of the 21st century, Human & Experimental Toxicology, 17(11).
Das, S., D. Pal, and A. Sarkar (2021), Particulate matter pollution and global agricultural productivity, Sustainable Agriculture Reviews 50: Emerging Contaminants in Agriculture, 79-107.
Dey, S., and G. C. Dhal (2019), Materials progress in the control of CO and CO2 emission at ambient conditions: An overview, Materials Science for Energy Technologies, 2(3), 607-623.
Drinovec, L., et al. (2015), The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation, Atmospheric Measurement Techniques, 8(5), 1965-1979, doi:10.5194/amt-8-1965-2015.
Eldesouki, M. H., A. E. Rashed, and A. A. El-Moneim (2023), A comprehensive overview of carbon dioxide, including emission sources, capture technologies, and the conversion into value-added products, Clean Technologies and Environmental Policy, 25(10), 3131-3148.
Friedlingstein, P., M. O′sullivan, M. W. Jones, R. M. Andrew, L. Gregor, J. Hauck, C. Le Quéré, I. T. Luijkx, A. Olsen, and G. P. Peters (2022), Global carbon budget 2022, Earth System Science Data, 14(11), 4811-4900.
Gaihre, Y. K., M. A. Satter, U. Singh, and R. Austin (2014), Automated Continuous Measurement of Greenhouse Gas Emissions.
García-Franco, J. L., W. Stremme, A. Bezanilla, A. Ruiz-Angulo, and M. Grutter (2018), Variability of the Mixed-Layer Height Over Mexico City, Boundary-Layer Meteorology, 167(3), 493-507, doi:10.1007/s10546-018-0334-x.
Ghommem, M., M. R. Hajj, and I. K. Puri (2012), Influence of natural and anthropogenic carbon dioxide sequestration on global warming, Ecological Modelling, 235, 1-7.
Giakoumis, E. G., and A. T. Zachiotis (2021), A comprehensive comparative investigation of a heavy-duty vehicle’s performance, consumption and emissions during eight driving cycles, International Journal of Ambient Energy, 42(1), 29-45.
Gonzalez-Meler, M. A., L. Taneva, and R. J. Trueman (2004), Plant respiration and elevated atmospheric CO2 concentration: cellular responses and global significance, Annals of botany, 94(5), 647-656.
Grantz, D., J. Garner, and D. Johnson (2003), Ecological effects of particulate matter, Environment international, 29(2-3), 213-239.
Greene, S. (2017), Black Carbon Methodology for the Logistics Sector.
Gu, Y., W. Zhang, Y. Yang, C. Wang, D. G. Streets, and S. H. L. Yim (2020), Assessing outdoor air quality and public health impact attributable to residential black carbon emissions in rural China, Resources, Conservation and Recycling, 159, doi:10.1016/j.resconrec.2020.104812.
Guo, L. C., Y. Zhang, H. Lin, W. Zeng, T. Liu, J. Xiao, S. Rutherford, J. You, and W. Ma (2016), The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities, Environ Pollut, 215, 195-202, doi:10.1016/j.envpol.2016.05.003.
Hall-Quinlan, D. L., H. He, X. Ren, T. P. Canty, R. J. Salawitch, P. Stratton, and R. R. Dickerson (2023), Inferred vehicular emissions at a near-road site: Impacts of COVID-19 restrictions, traffic patterns, and ambient air temperature, Atmos Environ (1994), 299, 119649, doi:10.1016/j.atmosenv.2023.119649.
Hall, D. L., D. C. Anderson, C. R. Martin, X. Ren, R. J. Salawitch, H. He, T. P. Canty, J. C. Hains, and R. R. Dickerson (2020), Using near-road observations of CO, NOy, and CO2 to investigate emissions from vehicles: Evidence for an impact of ambient temperature and specific humidity, Atmospheric Environment, 232, 117558.
Han, S., et al. (2009), Temporal variations of elemental carbon in Beijing, Journal of Geophysical Research: Atmospheres, 114(D23), doi:10.1029/2009jd012027.
Hansen, A., T. Conway, L. Strele, B. Bodhaine, K. Thoning, P. Tans, and T. Novakov (1989), Correlations among combustion effluent species at Barrow, Alaska: Aerosol black carbon, carbon dioxide, and methane, Journal of Atmospheric Chemistry, 9(1), 283-299.
Henry, C. R., D. Satran, B. Lindgren, C. Adkinson, C. I. Nicholson, and T. D. Henry (2006), Myocardial injury and long-term mortality following moderate to severe carbon monoxide poisoning, Jama, 295(4), 398-402.
Heywood, J. B. (2018), Internal Combustion Engine Fundamentals, 2nd Edition ed., McGraw-Hill Education, New York.
Ibraheem, R. R., and K. A. Abdullah (2019), Effect of Ambient Air Temperature on the Performance of Petrol Engine, Diyala Journal of Engineering Sciences, 7-11.
Inman, M. (2008), Carbon is forever, Nature Climate Change, 1(812), 156-158.
Jasper, B. W., R. O. Hopkins, H. Van Duker, and L. K. Weaver (2005), Affective outcome following carbon monoxide poisoning: a prospective longitudinal study, Cognitive and behavioral neurology, 18(2), 127-134.
Jha, R. K. (2022), Non-Dispersive Infrared Gas Sensing Technology: A Review, IEEE Sensors Journal, 22(1), 6-15, doi:10.1109/jsen.2021.3130034.
Jones, R. D., and J. A. Amador (1993), Methane and carbon monoxide production, oxidation, and turnover times in the Caribbean Sea as influenced by the Orinoco River, Journal of Geophysical Research: Oceans, 98(C2), 2353-2359.
Joshi, A. A., S. James, P. Meckl, G. King, and K. Jennings (2009), Assessment of charge-air cooler health in diesel engines using nonlinear time series analysis of intake manifold temperature.
Kang, S., Y. Zhang, Y. Qian, and H. Wang (2020), A review of black carbon in snow and ice and its impact on the cryosphere, Earth-Science Reviews, 210, doi:10.1016/j.earscirev.2020.103346.
Klimont, Z., K. Kupiainen, C. Heyes, P. Purohit, J. Cofala, P. Rafaj, J. Borken-Kleefeld, and W. Schöpp (2017), Global anthropogenic emissions of particulate matter including black carbon, Atmospheric Chemistry and Physics, 17(14), 8681-8723.
Kondo, Y., et al. (2006), Temporal variations of elemental carbon in Tokyo, Journal of Geophysical Research: Atmospheres, 111(D12), doi:10.1029/2005jd006257.
Kutcherov, V., D. Kudryavtsev, and A. Serovaiskii (2023), Sources of Carbon Dioxide in the Atmosphere: Hydrocarbon Emission from Gas Hydrates in Focus, Atmosphere, 14(2), 321.
Liñán-Abanto, R. N., D. Salcedo, P. Arnott, G. Paredes-Miranda, M. Grutter, O. Peralta, G. Carabali, N. Serrano-Silva, L. G. Ruiz-Suárez, and T. Castro (2021), Temporal variations of black carbon, carbon monoxide, and carbon dioxide in Mexico City: Mutual correlations and evaluation of emissions inventories, Urban Climate, 37, doi:10.1016/j.uclim.2021.100855.
Lin, C.-Y., W.-C. Chen, P.-L. Chang, and Y.-F. Sheng (2011), Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan, Journal of Applied Meteorology and Climatology, 50(2), 339-353.
Lindsey, R., and L. Dahlman (2020), Climate change: Global temperature, Climate. gov, 16.
Loxham, M., D. E. Davies, and S. T. Holgate (2019), The health effects of fine particulate air pollution, Bmj, doi:10.1136/bmj.l6609.
Magee Scientific: Aethalometer Model AE33 User Manual Version 1.57, Aerosol d.o.o., Ljubljana, Slovenia, 2018.
Maity, A., S. Maithani, and M. Pradhan (2020), Cavity ring-down spectroscopy: recent technological advances and applications, in Molecular and Laser Spectroscopy, edited, pp. 83-120, doi:10.1016/b978-0-12-818870-5.00003-4.
Masson-Delmotte, V., P. Zhai, S. Pirani, C. Connors, S. Péan, N. Berger, Y. Caud, L. Chen, M. Goldfarb, and P. M. Scheel Monteiro (2021), Ipcc, 2021: Summary for policymakers. in: Climate change 2021: The physical science basis. contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change.
Miguel, A. H., T. W. Kirchstetter, R. A. Harley, and S. V. Hering (1998), On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles, Environmental Science & Technology, 32(4), 450-455.
Molina, M., D. Zaelke, K. M. Sarma, S. O. Andersen, V. Ramanathan, and D. Kaniaru (2009), Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions, Proceedings of the National Academy of Sciences, 106(49), 20616-20621.
Moschandreas, D., S. Relwani, H. O′Neill, J. Cole, and R. Elkins (1985), Characterization of emission rates from indoor combustion sources. Final report, March 1982-March 1985Rep., IIT Research Inst., Chicago, IL (USA).
Pan, X., Y. Kanaya, Z. Wang, Y. Liu, P. Pochanart, H. Akimoto, Y. Sun, H. Dong, J. Li, and H. Irie (2011), Correlation of black carbon aerosol and carbon monoxide in the high-altitude environment of Mt. Huang in Eastern China, Atmospheric Chemistry and Physics, 11(18), 9735-9747.
Pope, C. A., R. T. Burnett, M. C. Turner, A. Cohen, D. Krewski, M. Jerrett, S. M. Gapstur, and M. J. Thun (2011), Lung Cancer and Cardiovascular Disease Mortality Associated with Ambient Air Pollution and Cigarette Smoke: Shape of the Exposure–Response Relationships, Environmental Health Perspectives, 119(11), 1616-1621, doi:10.1289/ehp.1103639.
Radford, E. P., and T. Drizd (1982), Blood carbon monoxide levels in persons 3-74 years of age, United States, 1976-80, US Department of Health and Human Services, Public Health Service, Office of ….
Ramanathan, V., and Y. Xu (2010), The Copenhagen Accord for limiting global warming: Criteria, constraints, and available avenues, Proceedings of the National Academy of Sciences, 107(18), 8055-8062.
Ramanathan., and G. Carmichael (2008), Global and regional climate changes due to black carbon, Nature Geoscience, 1(4), 221-227, doi:10.1038/ngeo156.
Reşitoğlu, İ. A., K. Altinişik, and A. Keskin (2015), The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems, Clean Technologies and Environmental Policy, 17, 15-27.
Rodhe, H., C. Persson, and O. Åkesson (1972), An investigation into regional transport of soot and sulfate aerosols, Atmospheric Environment (1967), 6(9), 675-693.
Salam, M. T., J. Millstein, Y.-F. Li, F. W. Lurmann, H. G. Margolis, and F. D. Gilliland (2005), Birth outcomes and prenatal exposure to ozone, carbon monoxide, and particulate matter: results from the Children’s Health Study, Environmental health perspectives, 113(11), 1638-1644.
Shakerian, F., K.-H. Kim, J. E. Szulejko, and J.-W. Park (2015), A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture, Applied Energy, 148, 10-22.
Shukla, J. B., A. K. Misra, S. Sundar, and R. Naresh (2008), Effect of rain on removal of a gaseous pollutant and two different particulate matters from the atmosphere of a city, Mathematical and Computer Modelling, 48(5-6), 832-844, doi:10.1016/j.mcm.2007.10.016.
Sicard, P., E. Paoletti, E. Agathokleous, V. Araminiene, C. Proietti, F. Coulibaly, and A. De Marco (2020), Ozone weekend effect in cities: Deep insights for urban air pollution control, Environ Res, 191, 110193, doi:10.1016/j.envres.2020.110193.
Sigel, A., H. Sigel, and R. K. Sigel (2015), Metal-carbon bonds in enzymes and cofactors, Walter de Gruyter GmbH & Co KG.
Singh, S., and R. Prasad (2016), Physico-chemical analysis and study of different parameters of hopcalite catalyst for CO oxidation at ambient temperature, Int. J. Sci. Eng. Res, 7(4), 846-855.
Subramanian, R., G. Kok, D. Baumgardner, A. Clarke, Y. Shinozuka, T. Campos, C. Heizer, B. Stephens, B. De Foy, and P. B. Voss (2010), Black carbon over Mexico: the effect of atmospheric transport on mixing state, mass absorption cross-section, and BC/CO ratios, Atmospheric Chemistry and Physics, 10(1), 219-237.
Sullivan, J., R. Baker, B. Boyer, R. Hammerle, T. Kenney, L. Muniz, and T. Wallington (2004), CO2 emission benefit of diesel (versus gasoline) powered vehicles, edited, ACS Publications.
Swinnerton, J., R. Lamontagne, and V. Linnenbom (1971), Carbon monoxide in rainwater, Science, 172(3986), 943-945.
Takegawa, N., Y. Kondo, M. Koike, G. Chen, T. Machida, T. Watai, D. Blake, D. Streets, J. H. Woo, and G. Carmichael (2004), Removal of NOx and NOy in Asian outflow plumes: Aircraft measurements over the western Pacific in January 2002, Journal of Geophysical Research: Atmospheres, 109(D23).
Ting, Y.-C., P.-K. Chang, P.-C. Hung, C. C.-K. Chou, K.-H. Chi, and T.-C. Hsiao (2023), Characterizing emission factors and oxidative potential of motorcycle emissions in a real-world tunnel environment, Environmental Research, 234, 116601.
Tomita, H., K. Watanabe, Y. Takiguchi, J. Kawarabayashi, and T. Iguchi (2006), Rapid-Swept CW Cavity Ring-down Laser Spectroscopy for Carbon Isotope Analysis, Journal of Nuclear Science and Technology, 43(4), 311-315, doi:10.1080/18811248.2006.9711095.
Vasileva, A., K. Moiseenko, A. Skorokhod, I. Belikov, V. Kopeikin, and O. Lavrova (2017), Emission ratios of trace gases and particles for Siberian forest fires on the basis of mobile ground observations, Atmospheric Chemistry and Physics, 17(20), 12303-12325.
Victor DG, Zhou D, Ahmed EHM, Dadhich PK, Olivier JGJ, Rogner H-H, Sheikho K, Yamaguchi M (2014) Introductory chapter. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate Change 2014: Mitigation of Climate Change. Contribution of working group III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York.
VoPham, T., N. J. Kim, K. Berry, J. A. Mendoza, J. D. Kaufman, and G. N. Ioannou (2022), PM2.5 air pollution exposure and nonalcoholic fatty liver disease in the Nationwide Inpatient Sample, Environmental Research, 213, doi:10.1016/j.envres.2022.113611.
Waheed, R., D. Chang, S. Sarwar, and W. Chen (2018), Forest, agriculture, renewable energy, and CO2 emission, Journal of Cleaner Production, 172, 4231-4238.
Wang, J. M., C.-H. Jeong, N. Hilker, K. K. Shairsingh, R. M. Healy, U. Sofowote, J. Debosz, Y. Su, M. McGaughey, and G. Doerksen (2018), Near-road air pollutant measurements: accounting for inter-site variability using emission factors, Environmental science & technology, 52(16), 9495-9504.
Weinstock, B., and H. Niki (1972), Carbon monoxide balance in nature, Science, 176(4032), 290-292.
WHO (2021) WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Bonn: World Health Organization Available at: https://apps.who.int/iris/handle/10665/345329
Wilhelm, M., and B. Ritz (2005), Local variations in CO and particulate air pollution and adverse birth outcomes in Los Angeles County, California, USA, Environmental health perspectives, 113(9), 1212-1221.
Yang, J.-P., Y.-J. Ding, S.-Y. Liu, and C.-P. Tan (2015), Vulnerability of mountain glaciers in China to climate change, Advances in Climate Change Research, 6(3-4), 171-180.
Yin, Y., F. Chevallier, P. Ciais, G. Broquet, A. Fortems-Cheiney, I. Pison, and M. Saunois (2015), Decadal trends in global CO emissions as seen by MOPITT, Atmospheric Chemistry and Physics, 15(23), 13433-13451.
Yokelson, R. J., I. T. Bertschi, T. J. Christian, P. V. Hobbs, D. E. Ward, and W. M. Hao (2003), Trace gas measurements in nascent, aged, and cloud‐processed smoke from African savanna fires by airborne Fourier transform infrared spectroscopy (AFTIR), Journal of Geophysical Research: Atmospheres, 108(D13).
Yokota, H., S. Tahara, H. Ueno, and K. Sakamoto (2003), Reduction of diesel exhaust emissions by passive regeneration-type diesel particulate filters, J. Aerosol Res, 18, 185-194.
Zhang, X., R. Rao, Y. Huang, M. Mao, M. J. Berg, and W. Sun (2015), Black carbon aerosols in urban central China, Journal of Quantitative Spectroscopy and Radiative Transfer, 150, 3-11, doi:10.1016/j.jqsrt.2014.03.006.
Zheng, B., F. Chevallier, Y. Yin, P. Ciais, A. Fortems-Cheiney, M. N. Deeter, R. J. Parker, Y. Wang, H. M. Worden, and Y. Zhao (2019), Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions, Earth System Science Data, 11(3), 1411-1436.
指導教授 林能暉 歐陽長風 審核日期 2024-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明