博碩士論文 111324032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:3.147.66.250
姓名 劉雅評(Ya-Ping Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 通過表面分析技術研究高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)鋰離子電池負極之失效機制
(The investigation of the failure mechanism of high entropy oxide (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O) anode in lithium-ion batteries via surface analysis)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-1以後開放)
摘要(中) 在2050淨零碳排的推動下,轉向更加環保和可再生的能源來源已成為當務之急,太陽能發電、水力發電或是風力發電等可再生能源雖然潔淨環保,但存在著間歇性和不穩定性的挑戰。因此,如何有效管理和儲存這些間歇性能源成為一個重大的目標,能源儲存技術的重要性也日益顯著。
鋰離子電池作為應用最廣泛的二次電池,在儲能領域的應用也得到了大量的關注。高熵氧化物(High entropy oxide, HEO)為一種新興材料,以其獨特的性能如高結構穩定性和優異的離子電導率等優勢,被視為極具潛力的鋰離子電池電極材料。相較於傳統材料,高熵氧化物具有多個元素,為其提供了更多活性位點,從而提高理論電容。然而,多元素的組成也增加了材料內部反應的複雜性,在電池充放電過程中,鋰離子與高熵氧化物材料之間的反應機制,以及對於電池性能的影響,仍需要進行深入研究。
本研究採用噴霧造粒法,分別以三種不同的燒結參數,合成岩鹽結構的高熵氧化物((Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O),並用作鋰離子電池的負極活性材料,並以半電池形式測試性能。在三種材料中,燒結溫度最高者表現出最佳的電化學性能,於小電流(0.05C)充放電下,具有311.54mAh g-1的電容;在100次的長時間循環性能測試中,也能達到84.01%的高電容保持率。相較之下,燒結溫度較低、時間較短的樣品,在100次的長時間循環性能測試中,僅有60.28%的電容保持率。
此外,使用X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS),分析不同循環狀態下的電極表面,探討固態電解質介面(Solid electrolyte interphase, SEI)的成分組成及電極活性物質之化學組態變化。藉由分析,我們推測了SEI層的生長機制,並發現高熵氧化物中,鈷(Co)、銅(Cu)及鋅(Zn)在充放電過程中會發生不可逆的還原反應,可能是此組成之高熵氧化物電極主要的老化原因之一。而鎂(Mg)元素不參與反應,推測其為材料穩定結構的主要元素。另外,也藉由化學組態變化,分析出不同燒結參數下的高熵氧化物材料中,各元素的轉化反應對於電化學性能的影響。
摘要(英) In order to achieve net-zero carbon emissions by 2050, lithium-ion batteries have garnered significant attention in the field of energy storage. High entropy oxides (HEO) are considered highly promising as electrode materials for lithium-ion batteries due to their unique properties, such as high structural stability and excellent ionic conductivity. They are consist of multiple elements, providing more active sites and potentially increasing their theoretical capacity. However, a fully understanding of electrochemical behavior of HEO in lithium-ion battery is still lacking. The storage mechanism is complicated due to the multiple electroactive centers. Especially, the degradation mechanism of HEO electrode is debating.
In this research, we employed the spray granulation method with three different sintering parameters to synthesize HEO with rock-salt structures. The synthesized (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O HEO is used as an active material for the anode electrode of the lithium-ion batteries. Among three materials, the one sintered at the highest temperature exhibited the best electrochemical performance, delivering a capacity of 311.54mAh g-1 at 0.05C, and achieving a high capacity retention of 84.01% after 100 cycles of long-term cycling tests. In contrast, the samples sintered at lower temperatures and shorter times showed only 60.28% capacity retention after 100 cycles. Furthermore, we used X-ray photoelectron spectroscopy to analyze the surface of the electrodes at different cycling states, investigating the composition of the solid electrolyte interphase and the chemical state changes of the active materials. We proposed a growth mechanism for the SEI layer and discovered that cobalt, copper, and zinc undergo irreversible reduction reactions during the charging and discharging process, which may be one of the main causes of anode degradation. Magnesium, on the other hand, did not participate in the reactions, suggesting that it plays a crucial role in stabilizing the material′s structure.
關鍵字(中) ★ 高熵氧化物
★ 高熵氧化物
★ 鋰離子電池
★ 負極材料
★ 失效機制
關鍵字(英) ★ 
★ High entropy oxides
★ Lithium-ion batteries
★ Anode materials
★ Failure mechanism
論文目次 第一章 緒論 1
1-1 前言 1
1-2 ESG(Environmental, Social, and Governance)永續發展 3
第二章 文獻回顧 4
2-1 鋰離子電池的發展與各類型鋰離子電池簡介 4
2-1-1 鋰離子電池的發展及工作原理 4
2-1-2 各類型鋰離子電池的材料種類 6
2-2 高熵材料的介紹與優勢 9
2-3 高熵材料用於鋰離子電池的相關文獻回顧 11
2-4 高熵材料的合成方式 15
2-4-1 水熱法(Hydrothermal method)[26] 15
2-4-2 溶膠凝膠法(Sol-gel method)[27] 16
2-4-3 共沉澱法(Co-precipitation method)[29] 16
2-4-4 噴霧造粒法(Spray drying method) 17
2-5 高熵材料用於鋰離子電池的挑戰 18
2-6 表面分析用於高熵材料的優勢 18
2-7 研究動機 20
第三章 實驗方法 21
3-1 實驗藥品資訊 21
3-2 製程儀器資訊 22
3-3 製程方法與參數 23
3-3-1 高熵氧化物粉末製備(三種製程參數) 23
3-3-2 高熵氧化物負極極片製備及半電池(HEO/Li)封裝流程 24
3-4 電化學量測系統 25
3-4-1 循環伏安法(CV) 25
3-4-2 電化學阻抗圖譜(EIS) 26
3-4-3 充放電率測試(C-rate) 27
3-4-4 恆電流充放電測試(Galvanostatic charge-discharge test, GCD) 28
3-5 材料分析儀器 29
3-5-1 感應耦合電漿光學發射光譜儀(ICP-OES) 29
3-5-2 X射線繞射儀(XRD) 30
3-5-3 雷射粒徑分析儀(LD-PSA) 31
3-5-4 場發射掃描式電子顯微鏡(FE-SEM) 31
3-5-5 X射線光電子能譜儀(XPS) 32
第四章 結果與討論 34
4-1 三種高熵氧化物樣品之比較 34
4-1-1 噴霧造粒製程粉末感應耦合電漿質譜分析(ICP-OES) 34
4-1-2 三種高熵氧化物粉末樣品X射線繞射圖譜(XRD)與粒徑分析(PSA) 34
4-1-3 三種高熵氧化物粉末樣品表面型態(FE-SEM) 36
4-1-4 三種高熵氧化物電極樣品化學組態分析(XPS) 37
4-2 三種高熵鋰離子半電池的性能測試 & 反應後電極化學組態變化 39
4-2-1 三種高熵鋰離子半電池之循環伏安法(CV)測試 39
4-2-2 三種高熵鋰離子半電池之電化學阻抗測試(EIS) 40
4-2-3 三種高熵鋰離子半電池之充放電率測試(C-rate)及恆電流長時間循環穩定性測試(Long-cycle stability test) 41
4-2-4 三種高熵負極之化學組態分析(XPS) 42
4-3 三種高熵負極不同元素含量對電化學性能的影響 & 反應途徑推導 48
4-3-1 不同元素含量對電化學性能的影響 48
4-3-2 反應途徑推導 49
第五章 結論與未來工作 50
5-1 結論 50
5-2 未來工作 51
第六章 參考文獻 52
參考文獻 1. Nations, U., Kyoto protocol to the united nations framework convention on climate change. 1998.
2. Agreement, P. Paris agreement. in report of the conference of the parties to the United Nations framework convention on climate change (21st session, 2015: Paris). Retrived December. 2015. HeinOnline.
3. Han, X., et al., Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nature materials, 2017. 16(5): p. 572-579.
4. Yang, C.-P., et al., Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature communications, 2015. 6(1): p. 8058.
5. Mizushima, K., et al., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
6. Mizushima, K., et al., LixCoO2 (0< x⩽ 1): A new cathode material for batteries of high energy density. Solid State Ionics, 1981. 3: p. 171-174.
7. Nagaura, T., Lithium ion rechargeable battery. Progress in Batteries & Solar Cells, 1990. 9: p. 209.
8. Kim, T., et al., Lithium-ion batteries: outlook on present, future, and hybridized technologies. Journal of materials chemistry A, 2019. 7(7): p. 2942-2964.
9. Nitta, N., et al., Li-ion battery materials: present and future. Materials today, 2015. 18(5): p. 252-264.
10. Xu, B., et al., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports, 2012. 73(5-6): p. 51-65.
11. Ding, X., et al., An ultra‐long‐life lithium‐rich Li1. 2Mn0. 6Ni0. 2O2 cathode by three‐in‐one surface modification for lithium‐ion batteries. Angewandte Chemie International Edition, 2020. 59(20): p. 7778-7782.
12. Carnovale, A. and X. Li, A modeling and experimental study of capacity fade for lithium-ion batteries. Energy and AI, 2020. 2: p. 100032.
13. Ashuri, M., Q. He, and L.L. Shaw, Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale, 2016. 8(1): p. 74-103.
14. Song, Z., et al., Taming the chemical instability of lithium hexafluorophosphate-based electrolyte with lithium fluorosulfonimide salts. Journal of Power Sources, 2022. 526: p. 231105.
15. Zhang, S.S., Unveiling the mystery of lithium bis (fluorosulfonyl) imide as a single salt in low-to-moderate concentration electrolytes of lithium metal and lithium-ion batteries. Journal of The Electrochemical Society, 2022. 169(11): p. 110515.
16. Babiker, D.M., et al., Recent progress of composite polyethylene separators for lithium/sodium batteries. Journal of Power Sources, 2023. 564: p. 232853.
17. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, 2004. 6(5): p. 299-303.
18. Murty, B.S., et al., High-entropy alloys. 2019: Elsevier.
19. Yeh, J.-W., Alloy design strategies and future trends in high-entropy alloys. Jom, 2013. 65: p. 1759-1771.
20. Yeh, J.-W., Physical metallurgy of high-entropy alloys. Jom, 2015. 67(10): p. 2254-2261.
21. Oses, C., C. Toher, and S. Curtarolo, High-entropy ceramics. Nature Reviews Materials, 2020. 5(4): p. 295-309.
22. Li, H., et al., High-entropy oxides: Advanced research on electrical properties. Coatings, 2021. 11(6): p. 628.
23. Xiang, H., et al., High-entropy ceramics: Present status, challenges, and a look forward. Journal of Advanced Ceramics, 2021. 10: p. 385-441.
24. Sarkar, A., et al., High entropy oxides for reversible energy storage. Nature communications, 2018. 9(1): p. 3400.
25. Nguyen, T.X., et al., High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance. Journal of Materials Chemistry A, 2020. 8(36): p. 18963-18973.
26. Xiao, B., et al., High-entropy oxides as advanced anode materials for long-life lithium-ion Batteries. Nano Energy, 2022. 95: p. 106962.
27. Su, J., et al., High entropy oxide nanofiber by electrospun method and its application for lithium battery anode material. International Journal of Applied Ceramic Technology, 2022. 19(4): p. 2004-2015.
28. Yazhou, K. and Y. Zhiren, Synthesis, structure and electrochemical properties of Al doped high entropy perovskite Lix (LiLaCaSrBa) Ti1-xAlxO3. Ceramics International, 2022. 48(4): p. 5035-5039.
29. Marques, O.J., et al., Effect of initial structure on performance of high-entropy oxide anodes for li-ion batteries. Batteries, 2023. 9(2): p. 115.
30. Chen, T.-Y., et al., In operando synchrotron X-ray studies of a novel spinel (Ni 0.2 Co 0.2 Mn 0.2 Fe 0.2 Ti 0.2) 3 O 4 high-entropy oxide for energy storage applications. Journal of Materials Chemistry A, 2020. 8(41): p. 21756-21770.
31. Tian, K.-H., et al., High-entropy chemistry stabilizing spinel oxide (CoNiZnXMnLi) 3O4 (X= Fe, Cr) for high-performance anode of Li-ion batteries. Rare Metals, 2022. 41(4): p. 1265-1275.
32. Luo, X.F., et al., Charge–Discharge Mechanism of High‐Entropy Co‐Free Spinel Oxide Toward Li+ Storage Examined Using Operando Quick‐Scanning X‐Ray Absorption Spectroscopy. Advanced Science, 2022. 9(21): p. 2201219.
33. Petrovičovà, B., et al., High-entropy spinel oxides produced via sol-gel and electrospinning and their evaluation as anodes in Li-ion batteries. Applied Sciences, 2022. 12(12): p. 5965.
34. Wang, S.-Y., et al., Operando synchrotron transmission X-ray microscopy study on (Mg, Co, Ni, Cu, Zn) O high-entropy oxide anodes for lithium-ion batteries. Materials Chemistry and Physics, 2021. 274: p. 125105.
35. Zheng, Y., et al., A spinel (FeNiCrMnMgAl) 3O4 high entropy oxide as a cycling stable anode material for Li-ion batteries. Processes, 2021. 10(1): p. 49.
36. Feng, S.-H. and G.-H. Li, Hydrothermal and solvothermal syntheses, in Modern inorganic synthetic chemistry. 2017, Elsevier. p. 73-104.
37. Jyothi, M., et al., Novel hydrothermal method for effective doping of N and F into nano Titania for both, energy and environmental applications. Materials Research Bulletin, 2016. 74: p. 478-484.
38. Zulkifli, Z., et al. Synthesis and characterisation of bismuth oxide nanoparticles using hydrothermal method: the effect of reactant concentrations and application in radiotherapy. in Journal of Physics: Conference Series. 2018. IOP Publishing.
39. Tam, K., et al., Defects in ZnO nanorods prepared by a hydrothermal method. The Journal of Physical Chemistry B, 2006. 110(42): p. 20865-20871.
40. Parashar, M., V.K. Shukla, and R. Singh, Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics, 2020. 31(5): p. 3729-3749.
41. Trindade, F. and M.J. Politi, Sol-gel chemistry—deals with sol–gel processes, in Nano Design for Smart Gels. 2019, Elsevier. p. 15-34.
42. Desissa, T.D., et al., Synthesis and characterizations of (Mg, Co, Ni, Cu, Zn) O high-entropy oxides. SN Applied Sciences, 2021. 3: p. 1-10.
43. Santos, D., et al., Spray drying: an overview. Biomaterials-Physics and Chemistry-New Edition, 2018: p. 9-35.
44. Zhang, J., et al., Surface chemistry of LiFePO 4 cathode material as unraveled by HRTEM and XPS. Ionics, 2021. 27: p. 31-37.
45. Wang, K., et al., Synergy of cations in high entropy oxide lithium ion battery anode. Nature Communications, 2023. 14(1): p. 1487.
46. Yamada, H., et al., Cyclic Voltammetry Part 1: Fundamentals. Electrochemistry, 2022. 90(10): p. 102005-102005.
47. Pastor-Fernández, C., et al. Identification and quantification of ageing mechanisms in Lithium-ion batteries using the EIS technique. in 2016 IEEE Transportation Electrification Conference and Expo (ITEC). 2016. IEEE.
48. Neale, Z., Inductively coupled plasma optical emission spectroscopy (ICP-OES) Overview. 2020.
49. Harrington, G.F. and J. Santiso, Back-to-Basics tutorial: X-ray diffraction of thin films. Journal of Electroceramics, 2021. 47(4): p. 141-163.
50. Stefanov, B., Photocatalytic TiO2 thin films for air cleaning: Effect of facet orientation, chemical functionalization, and reaction conditions. 2015, Acta Universitatis Upsaliensis.
51. Mokobi, F., Scanning Electron Microscope (SEM)-Definition, Principle, Parts, Images. Microbe Notes, 2021.
52. Chen, F.-R., Field emission source - Brightness of source. 2014.
53. Grimmgroup, XPS and UPS Background.
54. PHI-CHINA, XPS Principle.
指導教授 洪緯璿 林煒淳(Wei-Hsuan Hung Wei-Chun Lin) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明