參考文獻 |
1. Nations, U., Kyoto protocol to the united nations framework convention on climate change. 1998.
2. Agreement, P. Paris agreement. in report of the conference of the parties to the United Nations framework convention on climate change (21st session, 2015: Paris). Retrived December. 2015. HeinOnline.
3. Han, X., et al., Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nature materials, 2017. 16(5): p. 572-579.
4. Yang, C.-P., et al., Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature communications, 2015. 6(1): p. 8058.
5. Mizushima, K., et al., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
6. Mizushima, K., et al., LixCoO2 (0< x⩽ 1): A new cathode material for batteries of high energy density. Solid State Ionics, 1981. 3: p. 171-174.
7. Nagaura, T., Lithium ion rechargeable battery. Progress in Batteries & Solar Cells, 1990. 9: p. 209.
8. Kim, T., et al., Lithium-ion batteries: outlook on present, future, and hybridized technologies. Journal of materials chemistry A, 2019. 7(7): p. 2942-2964.
9. Nitta, N., et al., Li-ion battery materials: present and future. Materials today, 2015. 18(5): p. 252-264.
10. Xu, B., et al., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports, 2012. 73(5-6): p. 51-65.
11. Ding, X., et al., An ultra‐long‐life lithium‐rich Li1. 2Mn0. 6Ni0. 2O2 cathode by three‐in‐one surface modification for lithium‐ion batteries. Angewandte Chemie International Edition, 2020. 59(20): p. 7778-7782.
12. Carnovale, A. and X. Li, A modeling and experimental study of capacity fade for lithium-ion batteries. Energy and AI, 2020. 2: p. 100032.
13. Ashuri, M., Q. He, and L.L. Shaw, Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale, 2016. 8(1): p. 74-103.
14. Song, Z., et al., Taming the chemical instability of lithium hexafluorophosphate-based electrolyte with lithium fluorosulfonimide salts. Journal of Power Sources, 2022. 526: p. 231105.
15. Zhang, S.S., Unveiling the mystery of lithium bis (fluorosulfonyl) imide as a single salt in low-to-moderate concentration electrolytes of lithium metal and lithium-ion batteries. Journal of The Electrochemical Society, 2022. 169(11): p. 110515.
16. Babiker, D.M., et al., Recent progress of composite polyethylene separators for lithium/sodium batteries. Journal of Power Sources, 2023. 564: p. 232853.
17. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, 2004. 6(5): p. 299-303.
18. Murty, B.S., et al., High-entropy alloys. 2019: Elsevier.
19. Yeh, J.-W., Alloy design strategies and future trends in high-entropy alloys. Jom, 2013. 65: p. 1759-1771.
20. Yeh, J.-W., Physical metallurgy of high-entropy alloys. Jom, 2015. 67(10): p. 2254-2261.
21. Oses, C., C. Toher, and S. Curtarolo, High-entropy ceramics. Nature Reviews Materials, 2020. 5(4): p. 295-309.
22. Li, H., et al., High-entropy oxides: Advanced research on electrical properties. Coatings, 2021. 11(6): p. 628.
23. Xiang, H., et al., High-entropy ceramics: Present status, challenges, and a look forward. Journal of Advanced Ceramics, 2021. 10: p. 385-441.
24. Sarkar, A., et al., High entropy oxides for reversible energy storage. Nature communications, 2018. 9(1): p. 3400.
25. Nguyen, T.X., et al., High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance. Journal of Materials Chemistry A, 2020. 8(36): p. 18963-18973.
26. Xiao, B., et al., High-entropy oxides as advanced anode materials for long-life lithium-ion Batteries. Nano Energy, 2022. 95: p. 106962.
27. Su, J., et al., High entropy oxide nanofiber by electrospun method and its application for lithium battery anode material. International Journal of Applied Ceramic Technology, 2022. 19(4): p. 2004-2015.
28. Yazhou, K. and Y. Zhiren, Synthesis, structure and electrochemical properties of Al doped high entropy perovskite Lix (LiLaCaSrBa) Ti1-xAlxO3. Ceramics International, 2022. 48(4): p. 5035-5039.
29. Marques, O.J., et al., Effect of initial structure on performance of high-entropy oxide anodes for li-ion batteries. Batteries, 2023. 9(2): p. 115.
30. Chen, T.-Y., et al., In operando synchrotron X-ray studies of a novel spinel (Ni 0.2 Co 0.2 Mn 0.2 Fe 0.2 Ti 0.2) 3 O 4 high-entropy oxide for energy storage applications. Journal of Materials Chemistry A, 2020. 8(41): p. 21756-21770.
31. Tian, K.-H., et al., High-entropy chemistry stabilizing spinel oxide (CoNiZnXMnLi) 3O4 (X= Fe, Cr) for high-performance anode of Li-ion batteries. Rare Metals, 2022. 41(4): p. 1265-1275.
32. Luo, X.F., et al., Charge–Discharge Mechanism of High‐Entropy Co‐Free Spinel Oxide Toward Li+ Storage Examined Using Operando Quick‐Scanning X‐Ray Absorption Spectroscopy. Advanced Science, 2022. 9(21): p. 2201219.
33. Petrovičovà, B., et al., High-entropy spinel oxides produced via sol-gel and electrospinning and their evaluation as anodes in Li-ion batteries. Applied Sciences, 2022. 12(12): p. 5965.
34. Wang, S.-Y., et al., Operando synchrotron transmission X-ray microscopy study on (Mg, Co, Ni, Cu, Zn) O high-entropy oxide anodes for lithium-ion batteries. Materials Chemistry and Physics, 2021. 274: p. 125105.
35. Zheng, Y., et al., A spinel (FeNiCrMnMgAl) 3O4 high entropy oxide as a cycling stable anode material for Li-ion batteries. Processes, 2021. 10(1): p. 49.
36. Feng, S.-H. and G.-H. Li, Hydrothermal and solvothermal syntheses, in Modern inorganic synthetic chemistry. 2017, Elsevier. p. 73-104.
37. Jyothi, M., et al., Novel hydrothermal method for effective doping of N and F into nano Titania for both, energy and environmental applications. Materials Research Bulletin, 2016. 74: p. 478-484.
38. Zulkifli, Z., et al. Synthesis and characterisation of bismuth oxide nanoparticles using hydrothermal method: the effect of reactant concentrations and application in radiotherapy. in Journal of Physics: Conference Series. 2018. IOP Publishing.
39. Tam, K., et al., Defects in ZnO nanorods prepared by a hydrothermal method. The Journal of Physical Chemistry B, 2006. 110(42): p. 20865-20871.
40. Parashar, M., V.K. Shukla, and R. Singh, Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics, 2020. 31(5): p. 3729-3749.
41. Trindade, F. and M.J. Politi, Sol-gel chemistry—deals with sol–gel processes, in Nano Design for Smart Gels. 2019, Elsevier. p. 15-34.
42. Desissa, T.D., et al., Synthesis and characterizations of (Mg, Co, Ni, Cu, Zn) O high-entropy oxides. SN Applied Sciences, 2021. 3: p. 1-10.
43. Santos, D., et al., Spray drying: an overview. Biomaterials-Physics and Chemistry-New Edition, 2018: p. 9-35.
44. Zhang, J., et al., Surface chemistry of LiFePO 4 cathode material as unraveled by HRTEM and XPS. Ionics, 2021. 27: p. 31-37.
45. Wang, K., et al., Synergy of cations in high entropy oxide lithium ion battery anode. Nature Communications, 2023. 14(1): p. 1487.
46. Yamada, H., et al., Cyclic Voltammetry Part 1: Fundamentals. Electrochemistry, 2022. 90(10): p. 102005-102005.
47. Pastor-Fernández, C., et al. Identification and quantification of ageing mechanisms in Lithium-ion batteries using the EIS technique. in 2016 IEEE Transportation Electrification Conference and Expo (ITEC). 2016. IEEE.
48. Neale, Z., Inductively coupled plasma optical emission spectroscopy (ICP-OES) Overview. 2020.
49. Harrington, G.F. and J. Santiso, Back-to-Basics tutorial: X-ray diffraction of thin films. Journal of Electroceramics, 2021. 47(4): p. 141-163.
50. Stefanov, B., Photocatalytic TiO2 thin films for air cleaning: Effect of facet orientation, chemical functionalization, and reaction conditions. 2015, Acta Universitatis Upsaliensis.
51. Mokobi, F., Scanning Electron Microscope (SEM)-Definition, Principle, Parts, Images. Microbe Notes, 2021.
52. Chen, F.-R., Field emission source - Brightness of source. 2014.
53. Grimmgroup, XPS and UPS Background.
54. PHI-CHINA, XPS Principle. |