博碩士論文 111223065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:131 、訪客IP:3.145.96.137
姓名 孫煜程(Yu-Cheng Sun)  查詢紙本館藏   畢業系所 化學學系
論文名稱 微生物機器人:利用金屬有機骨架材料封裝大腸桿菌誘導癌症細胞焦亡
(Microbial Robots: Inducing Cancer Cell Pyroptosis with Encapsulated E. coli in Metal-Organic Framework)
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 癌症一直是全球公共衛生的重大挑戰,傳統治療方法如手術、化療和放療往往會引發強烈副作用。而細菌介導(Bacteria-mediated)的癌症治療作為一種有前景的替代方案逐漸嶄露頭角,但仍需克服在常規滅菌下維持目標細菌的活性,以及避免對人體有害的內毒素釋放的問題。因此,研究人員正探索新的藥物載體,以克服上述問題並提升療效。金屬有機骨架材料(MOFs)因為其多樣性及穩定性而備受關注。本研究展示了將大腸桿菌封裝在一種MOFs類型—類沸石咪唑骨架材料-90(ZIF-90)的過程,藉由封裝可以使細菌UV滅菌下保有活性,且可以規避人體內抗生素的侵襲,除此之外也可以防止細菌直接暴露於血液循環中引發強烈免疫反應。體外實驗表明,E. coli@ZIF-90使乳腺癌細胞僅剩47%的存活率,原因是細菌外膜上的脂多醣(LPS)誘導的發炎反應。本研究透過西方墨點法驗證E. coli@ZIF-90能誘導乳腺癌細胞焦亡(Pyroptosis),且在E. coli@ZIF-90的處理下細胞焦亡路徑的各蛋白質表現量與對照組均有顯著差異;相反地在正常細胞中沒有細胞焦亡的發生。並透過感應耦合電漿質譜檢測在E. coli@ZIF-90處理後乳腺癌細胞內鋅離子的濃度高達1.15 mg/L,而正常細胞僅有0.43 mg/L,兩者之間有顯著差異(P < 0.05)。最後利用顯微鏡觀察到在E. coli@ZIF-90處理後乳腺癌細胞內部大腸桿菌的數量和正常細胞有顯著差異(P < 0.0001),上述體外實驗證明癌症細胞比起正常細胞更能夠吞噬E. coli@ZIF-90,這突顯了治療的專一性。動物實驗進一步驗證在E. coli@ZIF-90處理之下,抑制了72%癌症細胞之結節面積。這些結果展現了ZIF-90作為細菌介導癌症治療載體的潛力。在酸性腫瘤環境中,E. coli@ZIF-90選擇性釋放出細菌,在缺氧環境下細菌將定植於腫瘤中。這不僅能誘導癌細胞的焦亡,還能活化免疫系統攻擊腫瘤。這項研究在癌症治療研究中做出了重要貢獻,提供了不一樣的治療可能性。
總之,將大腸桿菌封裝在ZIF-90中是一種新穎且有效的標靶細菌介導癌症治療策略,在體外和體內實驗均顯示抑制癌症腫瘤的結果。
摘要(英) Cancer remains a significant global health challenge, with traditional treatments like surgery, chemotherapy, and radiation often causing severe side effects. Bacterial-mediated cancer therapy is emerging as a promising alternative, though it faces challenges such as maintaining bacterial viability during sterilization and avoiding harmful endotoxin release. Researchers are exploring new drug delivery materials to enhance the efficacy of bacterial therapies, and Metal-Organic Frameworks (MOFs) have gained attention for their versatility and stability. This study demonstrates the encapsulation of E. coli within Zeolitic Imidazolate Framework-90 (ZIF-90), a type of MOFs. Encapsulating bacteria within ZIF-90 allows them to retain activity under UV sterilization and evade antibiotic attacks within the human body. Furthermore, this method prevents the bacteria directly exposed to the bloodstream, thereby avoiding a strong immune response .In vitro experiments showed that E. coli@ZIF-90 reduces the survival rate of breast cancer cells to 47%, attributed to lipopolysaccharides (LPS) on the bacterial membrane inducing inflammatory responses. Simultaneously, Western blot analysis verified that E. coli@ZIF-90 can induce pyroptosis in breast cancer cells. The expression levels of proteins involved in the pyroptosis pathway were significantly different in breast cancer cells treated with E. coli@ZIF-90 compared to the control group. In contrast, pyroptosis hasn’t been occured in normal cells. Using inductively coupled plasma mass spectrometry (ICP-MS), it was detected that the concentration of zinc ions in breast cancer cells after E. coli@ZIF-90 treatment reached up to 1.15 mg/L, compared to 0.43 mg/L in normal cells, showing a significant difference (P < 0.05). Microscopic observations revealed a significant difference (P < 0.0001) in the amount of internalized E. coli between breast cancer cells and normal cells after E. coli@ZIF-90 treatment. In vivo experiments confirmed that treatment with E. coli@ZIF-90 inhibited 72% of the cancer cell nodule area, underscoring the potential of ZIF-90 as a carrier in bacterial-mediated cancer therapy. In the acidic tumor environment, E. coli@ZIF-90 selectively releases bacteria that colonize the tumor in a hypoxic environment, inducing pyroptosis in cancer cells and activating the immune system to attack the tumor. This study offers innovative approaches that could lead to breakthroughs in cancer therapy.
In summary, encapsulating E. coli within ZIF-90 presents a novel and effective strategy for targeted bacterial-mediated cancer therapy, showing promising results both in vitro and in vivo.
關鍵字(中) ★ 金屬有機骨架材料
★ 微生物封裝
★ 細菌癌症療法
★ 乳腺癌細胞
★ 細胞焦亡
★ 脂多醣
關鍵字(英) ★ Metal-organic Frameworks
★ Microbe Encapsulation
★ Bacteria-mediated Cancer Therapy
★ Breast Cancer Cells
★ Pyroptosis
★ Lipopolysaccharide
論文目次 中文摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 xi
表目錄 xvi
1 第一章 緒論 1
1-1 金屬有機骨架材料 1
1-1-1金屬有機骨架材料 1
1-1-2類沸石咪唑骨架材料 2
1-1-3類沸石咪唑骨架材料-90 3
1-2 癌症 6
1-2-2乳腺癌簡述 7
1-2-3常見的癌症治療方法 7
1-3 細菌癌症療法 9
1-3-1細菌癌症療法簡述 9
1-3-2細菌癌症療法困境 12
1-3-3大腸桿菌(Escherichia coli, E. coli) 12
1-3-4脂多醣(Lipopolysaccharide, LPS) 15
1-4 癌症細胞株與正常細胞株 17
1-4-1鼻咽癌細胞(NPC-TW01) 17
1-4-2胃腺癌細胞株(AGS) 17
1-4-3小鼠乳腺癌細胞(4T1) 18
1-4-4人類乳腺癌細胞(Hs 578T) 18
1-4-5人類正常乳腺上皮細胞(H184) 18
1-5 細胞死亡 20
1-5-1細胞凋亡(Apoptosis) 20
1-5-2細胞焦亡(Pyroptosis) 20
1-6 研究動機與目的 22
2 第二章 實驗部分 24
2-1 實驗藥品與設備 24
2-2 實驗儀器原理 30
2-2-1粉末X射線繞射儀 (Powder X-ray Diffractometer, PXRD) 30
2-2-2螢光顯微鏡(Fluorescence Microscope) 31
2-2-3共軛焦顯微鏡(Confocal Microscopy) 33
2-2-4紫外/可見光光譜儀 34
2-2-5西方墨點法(Western Blotting) 34
2-2-6酶聯免疫吸附測定(Enzyme-linked Immunosorbent Assay, ELISA) 35
2-2-7細胞存活率測試(Cell Viability Assay) 36
2-2-8感應耦合電漿質譜儀(Inductively Coupled Plasma Mass Spectrometry, ICP-MS) 37
2-3 實驗步驟 38
2-3-1合成類沸石咪唑骨架材料-90(ZIF-90) 41
2-3-2大腸桿菌之培養步驟 41
2-3-3合成類沸石咪唑骨架材料-90封裝大腸桿菌及脂多醣之生物複合材料(E. coli@ZIF-90, ClearColi@ZIF-90, LPS@ZIF-90) 42
2-3-4 類沸石咪唑骨架材料-8塗覆大腸桿菌(E .coli⸦ZIF-8)之合成步驟 44
2-3-5細胞培養 44
2-3-6動物實驗 44
2-3-7組織分析 45
2-3-8西方墨點法(Western Blotting) 46
2-3-9酶聯免疫吸附測定(Enzyme-linked Immunosorbent Assay, ELISA) 51
2-3-10 細胞存活率實驗 52
2-3-11細胞吞噬染色實驗 52
2-3-12 溶酶體螢光探針(Lysotracker) 53
2-4 統計分析 54
3 第三章 結果與討論 55
3-1 ZIF-90與E. coli@ZIF-90之相關鑑定 55
3-1-1粉末X射線繞射儀之鑑定結果 55
3-1-2共軛焦顯微鏡之成像結果 56
3-2 E. coli@ZIF-90抵抗滅菌程序及抗生素 58
3-2-1 E. coli@ZIF-90抗UV實驗 58
3-2-2 E. coli@ZIF-90抵擋抗生素之實驗 59
3-3 巨噬細胞對於E. coli@ZIF-90的發炎反應 61
3-4 生物複合材料對於乳腺癌細胞株之存活率測試 63
3-5 生物複合材料對於乳腺癌細胞之發炎反應測試 65
3-6 ClearColi@ZIF-90與LPS@ZIF-90之相關鑑定 67
3-7 生物複合材料對於乳腺癌細胞株之存活率測試 69
3-8 生物複合材料對於正常乳腺細胞之細胞存活率測試 72
3-9 細胞對於生物複合材料之吞噬能力測試 74
3-9-1細胞內鋅離子濃度之測量 74
3-9-2在顯微鏡下觀測細胞吞噬效果 75
3-10 脂多醣誘導細胞焦亡反應之驗證 80
3-11 半胱天冬酶抑制劑對於細胞的影響 95
3-12 生物複合材料抑制小鼠乳腺癌細胞(4T1)於生物體內的生長 97
3-13 於生物體內驗證脂多醣誘導細胞焦亡反應的發生 104
4 第四章 結論及未來展望 107
參考文獻 108
附錄 114
參考文獻 1. Yaghi, O. M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378 (6558), 703-706.
2. Dhakshinamoorthy, A.; Li, Z.; Garcia, H. Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews 2018, 47 (22), 8134-8172.
3. Ren, Y.; Chia, G. H.; Gao, Z. Metal–organic frameworks in fuel cell technologies. Nano Today 2013, 8 (6), 577-597
4. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 782-835.
5. Li, B.; Wen, H.-M.; Zhou, W.; Chen, B. Porous Metal–Organic Frameworks for Gas Storage and Separation: What, How, and Why? The Journal of Physical Chemistry Letters 2014, 5 (20), 3468-3479.
6. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R. E.; Serre, C. Metal–organic frameworks in biomedicine. Chemical reviews 2012, 112 (2), 1232-1268.
7. He, C.; Liu, D.; Lin, W. Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chemical reviews 2015, 115 (19), 11079-11108
8. Gao, Q.; Bai, Q.; Zheng, C.; Sun, N.; Liu, J.; Chen, W.; Hu, F.; Lu, T. Application of Metal–Organic Framework in Diagnosis and Treatment of Diabetes. Biomolecules 2022, 12 (9), 1240.
9. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O′Keeffe, M.; Yaghi, O. M. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319 (5865), 939-943.
10. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 2006, 103 (27), 10186-10191.
11. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M. Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130 (38), 12626-12627.
12. Sang, Y.; Cao, F.; Li, W.; Zhang, L.; You, Y.; Deng, Q.; Dong, K.; Ren, J.; Qu, X. Bioinspired Construction of a Nanozyme-Based H2O2 Homeostasis Disruptor for Intensive Chemodynamic Therapy. Journal of the American Chemical Society 2020, 142 (11), 5177-5183.
13. Shieh, F. K.; Wang, S. C.; Leo, S. Y.; Wu, K. C. Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size. Chemistry 2013, 19 (34), 11139-42.
14. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K. Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society 2015, 137 (13), 4276-4279.
15. Li, H.; Kang, A.; An, B.; Chou, L. Y.; Shieh, F. K.; Tsung, C. K.; Zhong, C. Encapsulation of bacterial cells in cytoprotective ZIF-90 crystals as living composites. Materials Today Bio 2021, 10, 100097.
16. Hassanpour, S. H.; Dehghani, M. Review of cancer from perspective of molecular. Journal of Cancer Research and Practice 2017, 4 (4), 127-129.
17. Pantel, K.; Alix-Panabières, C.; Riethdorf, S. Cancer micrometastases. Nature Reviews Clinical Oncology 2009, 6 (6), 339-351.
18. Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA: A Cancer Journal for Clinicians 2011, 61 (2), 69-90.
19. World Health Organization. 2014: Chapter 1.1.
20. 癌症防治組, 與乳癌的親密對話~台灣乳癌防治概況. 衛生福利部 國民健康署 2022/01/25.
21. Coffey, J. C.; Wang, J. H.; Smith, M. J. F.; Bouchier-Hayes, D.; Cotter, T. G.; Redmond, H. P. Excisional surgery for cancer cure: therapy at a cost. The Lancet Oncology 2003, 4 (12), 760-768.
22. Baskar, R.; Lee, K. A.; Yeo, R.; Yeoh, K. W. Cancer and radiation therapy: current advances and future directions. Int J Med Sci 2012, 9 (3), 193-9.
23. Amjad, M. T.; Chidharla, A.; Kasi, A. Cancer Chemotherapy. StatPearls 2022.
24. Galstyan, A.; Markman, J. L.; Shatalova, E. S.; Chiechi, A.; Korman, A. J.; Patil, R.; Klymyshyn, D.; Tourtellotte, W. G.; Israel, L. L.; Braubach, O.; et al. Blood–brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nature Communications 2019, 10 (1), 3850.
25. Coley W. B. The Diagnosis and Treatment of Bone Sarcoma. Glasgow medical journal 1936, 126 (3), 128–164.
26. Yu, X.; Lin, C.; Yu, J.; Qi, Q.; Wang, Q. Bioengineered Escherichia coli Nissle 1917 for tumour-targeting therapy. Microbial Biotechnology 2020, 13 (3), 629-636.
27. Wen, M.; Zheng, J. H.; Choi, J. M.; Pei, J.; Li, C.-H.; Li, S.-Y.; Kim, I.-Y.; Lim, S.-H.; Jung, T.-Y.; Moon, K.-S.; et al. Genetically-engineered Salmonella typhimurium expressing TIMP-2 as a therapeutic intervention in an orthotopic glioma mouse model. Cancer Letters 2018, 433, 140-146.
28. Zhu, H.; Li, Z.; Mao, S.; Ma, B.; Zhou, S.; Deng, L.; Liu, T.; Cui, D.; Zhao, Y.; He, J.; et al. Antitumor effect of sFlt-1 gene therapy system mediated by Bifidobacterium Infantis on Lewis lung cancer in mice. Cancer Gene Therapy 2011, 18 (12), 884-896.
29. Wang, X.; Wang, X.; Jin, S.; Muhammad, N.; Guo, Z. Stimuli-Responsive Therapeutic Metallodrugs. Chemical Reviews 2019, 119 (2), 1138-1192.
30. Jiang, S.-N.; Park, S.-H.; Lee, H. J.; Zheng, J. H.; Kim, H.-S.; Bom, H.-S.; Hong, Y.; Szardenings, M.; Shin, M. G.; Kim, S.-C.; et al. Engineering of Bacteria for the Visualization of Targeted Delivery of a Cytolytic Anticancer Agent. Molecular Therapy 2013, 21 (11), 1985-1995.
31. Kocijancic, D.; Felgner, S.; Schauer, T.; Frahm,M.; Heise, U.; Zimmermann, K.; Erhardt, M.; Weiss, S. Local application of bacteria improves safety of Salmonella-mediated tumor therapy and retains advantages of systemic infection. Oncotarget 2017, 8 (30), 49988-50001.
32. Critchley-Thorne, R. J.; Stagg, A. J.; Vassaux, G. Recombinant Escherichia coli expressing invasin targets the Peyer′s patches: the basis for a bacterial formulation for oral vaccination. Mol Ther 2006, 14 (2), 183-91.
33. Vaupel, P.; Kallinowski, F.; Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989, 49 (23), 6449-65.
34. Liu, Y., Niu, L., Li, N., Wang, Y., Liu, M., Su, X., Shen, S. Bacterial‐mediated tumor therapy: Old treatment in a new context. Advanced Science 2023, 10 (18), 2205641.
35. Liu, S.; Xu, X.; Zeng, X.; Li, L.; Chen, Q.; Li, J. Tumor-targeting bacterial therapy: A potential treatment for oral cancer (Review). Oncol Lett 2014, 8 (6), 2359-2366
36. Rosadini, C. V.; Kagan, J. C. Early innate immune responses to bacterial LPS. Current Opinion in Immunology 2017, 44, 14-19.
37. Jang, J.; Hur, H. G.; Sadowsky, M. J.; Byappanahalli, M. N.; Yan, T.; Ishii, S. Environmental Escherichia coli: ecology and public health implications—a review. Journal of Applied Microbiology 2017, 123 (3), 570-581.
38. Liu, T.; Khosla, C. Genetic Engineering of Escherichia coli for Biofuel Production. Annual Review of Genetics 2010, 44 (1), 53-69.
39. Fierfort, N.; Samain, E. Genetic engineering of Escherichia coli for the economical production of sialylated oligosaccharides. Journal of Biotechnology 2008, 134 (3), 261-265.
40. Ingram, L. O.; Conway, T.; Clark, D. P.; Sewell, G. W.; Preston, J. F. Genetic engineering of ethanol production in Escherichia coli. Applied and Environmental Microbiology 1987, 53 (10), 2420-2425.
41. Chen, H.; Lei, P.; Ji, H.; Yang, Q.; Peng, B.; Ma, J.; Fang, Y.; Qu, L.; Li, H.; Wu, W.; et al. Advances in Escherichia coli Nissle 1917 as a customizable drug delivery system for disease treatment and diagnosis strategies. Materials Today Bio 2023, 18, 100543.
42. Mamat, U.; Woodard, R. W.; Wilke, K.; Souvignier, C.; Mead, D.; Steinmetz, E.; Terry, K.; Kovacich, C.; Zegers, A.; Knox, C. Endotoxin-free protein production—ClearColi™ technology. Nature Methods 2013, 10 (9), 916-916.
43. Karen Seff. Microbial Top Facts: E. coli. Biolabtest 2022.
44. Raetz, C. R.; Whitfield, C. Lipopolysaccharide Endotoxins. Annual review of biochemistry 2002, 71, 635-700.
45. Lu, Y. C.; Yeh, W. C.; Ohashi, P. S. LPS/TLR4 signal transduction pathway. Cytokine 2008, 42 (2), 145-151.
46. Lawen, A. Apoptosis—an introduction. Bioessays 2003, 25 (9), 888-896.
47. Hengartner, M. The biochemistry of apoptosis. Nature 2000, 407, 770–776.
48. D’Souza, C. A.; Heitman, J. Dismantling the Cryptococcus coat. Trends Microbiol 2001, 9 (3), 112–113.
49. Broz, P.; Ruby, T.; Belhocine, K.; Bouley, D. M.; Kayagaki, N.; Dixit, V. M.; Monack, D. M. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 2012, 490 (7419), 288-291.
50. Chen, X.; He, W.-t.; Hu, L.; Li, J.; Fang, Y.; Wang, X.; Xu, X.; Wang, Z.; Huang, K.; Han, J. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Research 2016, 26 (9), 1007-1020.
51. Liu, X.; Zhang, Z.; Ruan, J.; Pan, Y.; Magupalli, V. G.; Wu, H.; Lieberman, J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 2016, 535 (7610), 153-158.
52. 111年國人死因統計結果. 衛生福利部統計處 Ministry of Health and Welfare 2023.
53. Liang, K.; Richardson, J. J.; Cui, J.; Caruso, F.; Doonan, C. J.; Falcaro, P. Metal–Organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells. Advanced Materials 2016, 28 (36), 7910-7914.
54. Riccò, R.; Liang, W.; Li, S.; Gassensmith, J. J.; Caruso, F.; Doonan, C.; Falcaro, P. Metal–Organic Frameworks for Cell and Virus Biology: A Perspective. ACS Nano 2018, 12 (1), 13-23.
55. Unmasking Microabsorption: Why Fluorescence Suppression in Powder XRD Does More Harm Than Good. AZO MATERIALS 2021.
56. Cellular Fluorescence Microscopy Troubleshooting & Best Practices. AAT Bioquest 2024.
57. IF Imaging: Widefield versus Confocal Microscopy. Proteintech.
58. Pomary, P. Exploring differences in protein metabolites in cerebrospinal fluid from patients with Alzheimer′s disease, frontotemporal dementia or amyotrophic lateral sclerosis : a pilot study. Medicine 2016.
59. Cell Counting Kit-8: Cell Proliferation Assay and Cytotoxicity Assay. Dojindo 2013.
60. Sezonov, G.; Joseleau-Petit, D.; D′Ari, R. Escherichia coli Physiology in Luria-Bertani Broth. Journal of Bacteriology 2007, 189 (23), 8746-8749
61. Tisoncik, J. R.; Korth, M. J.; Simmons, C. P.; Farrar, J.; Martin, T. R.; Katze, M. G. Into the eye of the cytokine storm. Microbiol Mol Biol Rev 2012, 76 (1), 16-32.
62. Cavaillon, J. M.; Adib-Conquy, M.; Fitting, C.; Adrie, C.; Payen, D., Cytokine cascade in sepsis. Scand J Infect Dis 2003, 35 (9), 535-44.
63. Kumar, V.; Weng, Y. C.; Wu, Y. C.; Huang, Y. T.; Liu, T. H.; Kristian, T.; Liu, Y. L.; Tsou, H. H.; Chou, W. H. Genetic inhibition of PKCε attenuates neurodegeneration after global cerebral ischemia in male mice. Journal of Neuroscience Research 2019, 97 (4), 444-455.
64. Ding, X.; Yang, X.; Zhao, Y.; Wang, Y.; Fei, J.; Niu, Z.; Dong, X.; Wang, X.; Liu, B.; Li, H.; et al. Identification of active natural products that induce lysosomal biogenesis by lysosome-based screening and biological evaluation. Heliyon 2022, 8 (10), e11179.
65. Yang, J.; Zhao, Y.; Shao, F. Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. Curr Opin Immunol 2015, 32, 78-83.
66. Shi, J.; Zhao, Y.; Wang, Y.; Gao, W.; Ding, J.; Li, P.; Hu, L.; Shao, F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014, 514 (7521), 187-92.
67. Qiu, S.; Liu, J.; Xing, F. ‘Hints’ in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death. Cell Death & Differentiation 2017, 24 (4), 588-596.
68. Gabarin, R. S.; Li, M.; Zimmel, P. A.; Marshall, J. C.; Li, Y.; Zhang, H. Intracellular and Extracellular Lipopolysaccharide Signaling in Sepsis: Avenues for Novel Therapeutic Strategies. J Innate Immun 2021, 13 (6), 323-332.
69. Li, H.; Guo, Z.; Chen, J.; Du, Z.; Lu, H.; Wang, Z.; Xi, J.; Bai, Y. Computational research of Belnacasan and new caspase-1 inhibitor on cerebral ischemia reperfusion injury. Aging 2022, 14, 1848–1864.
70. Wei S., Feng M., Zhang S. Molecular characteristics of cell pyroptosis and its inhibitors: a review of activation, regulation, and inhibitors. Int J Mol Sci. 2022, 23 (24), 16115.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2024-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明