博碩士論文 109881601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:91 、訪客IP:18.117.156.26
姓名 左瑞塔(Rida Zohra)  查詢紙本館藏   畢業系所 生命科學系
論文名稱
(Production of functional plant farnesylated proteins in Escherichia coli)
相關論文
★ 阿拉伯芥突變種(hit1)之位址定位★ 阿拉伯芥之HIT1蛋白質為酵母菌Vps53p之對應物且能影響植物對高溫及水份逆境之耐受性
★ 阿拉伯芥繫鏈同源蛋白質HIT1對頂端生長之影響及熱耐受基因HIT2之遺傳定位★ 阿拉伯芥hit3遺傳位址定位與HIT1啟動子分析
★ 利用基因功能活化法研究阿拉伯芥乙烯生合成之調控機制★ 阿拉伯芥突變種hit2之位址定位
★ 利用化學遺傳法研究阿拉伯芥 revert to eto1 41 (ret41) 之功能研究★ 阿拉伯芥hit3和et突變種之生理定性及其基因定位
★ 阿拉伯芥囊泡繫鏈因子HIT1在逆境下維持內膜完整性之探討與ret8之基因定位★ 阿拉伯芥HS29之基因定位及ET參與植物耐熱機轉之探究
★ 阿拉伯芥中藉由核運輸接受器HIT2/XPO1A進行核質間運輸以促使植物耐受高溫逆境之專一分子的探索研究★ 阿拉伯芥hs49與78hs突變株之生理定性及其耐熱基因定位
★ 阿拉伯芥HIT4為不同於MOM1的新調節方式調控熱誘導染色質重組並在各個植物生長發育轉換時期表現★ 阿拉伯芥熱誘導性狀突變株R45之基因定位及HSP40參與植物耐熱機轉之探究
★ 阿拉伯芥hit4逆轉株r13及r34之基因定位與r34耐熱機轉之探究★ 蛋白質法尼脂化修飾參與植株耐熱反應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 蛋白質法尼脂化是將一個含有15個碳的不飽和法尼脂肪基團,以共價鍵的方式添加到C-端以CaaX序列結束的蛋白質上。這是轉譯後蛋白質修飾的一種形式,由蛋白質法尼脂轉移酶(Protein farnesyltransferase, PFT)催化進行。完整的PFT由α和β兩個次單元所組成。蛋白質法尼脂化在植物生長過程中扮演非常重要的角色,它在調節植物發育、對抗環境逆境,抵禦病原體感染方面發揮重要作用。傳統上,用於檢驗某候選蛋白質是否被法尼脂化的方法,需要先製備該候選蛋白質的專一性抗體,並使用到同位素標記金合歡焦磷酸 (farnesol, 為蛋白質法尼脂化反應中法尼脂焦磷酸 farnesyl pyrophosphate的前驅物),無疑是一個費時費力且存具有安全風險的程序。由於蛋白質法尼脂化不發生在原核細胞中,本研究目的即是在大腸桿菌中,建立一個可以快速鑑別植物候選蛋白質被法尼脂化與否的系統。該系統在大腸桿菌中同時殖入一帶有ColE1複製起始點(Ori),攜帶阿拉伯芥PFT的α和β次單元基因的質體 (plasmid),及一帶有RSF1031複製起始點,攜帶被6xHis序列標記之待檢驗蛋白質基因的質體。本研究選用一已知為阿拉伯芥PFT受質的蛋白質AtJ3,作為待檢驗基因。結果顯示,三個阿拉伯芥基因在大腸桿菌細胞內可同時表達,所製造出之At3J經過簡單的親和性純化後,藉由SDS-PAGE測其泳動速率,即可辨識出AtJ3轉譯後有被修飾,且質譜分析確認該修飾為C端接上法尼脂分子。AtJ3是熱休克蛋白40家族的成員,與HSP70相互作用,以保護植物蛋白質免於高溫造成的變性傷害。基於螢光素酶 (luciferase)活性分析實驗,本研究也證明從大腸桿菌中分離出的法尼脂化AtJ3,保有其分子伴侶功能。有趣的是,在大腸桿菌製造出的法尼脂化AtJ3,也能與大腸桿菌HSP70相互作用,並提升大腸桿菌的耐熱能力。此外,使用相同的策略共同在大腸桿菌細胞內表達水稻PFTα和β次單元及一個潛在的水稻PFT受質OsDjA4,結果也顯示OsDjA4有被法尼脂化。綜上述,本研究成功開發了一種利用大腸桿菌鑑識蛋白質是否有被法尼脂化修飾的系統,該系統適用於單子與雙子葉植物,且所產生之法尼脂化蛋白質,保有其在真核細胞內的原有功能,可應用於研究法尼脂化蛋白質分子與生化功能。
摘要(英) Farnesylation of proteins involves the covalent attachment of a 15-carbon unsaturated farnesyl lipid group to a protein ending with a CaaX sequence at the C-terminus. This post-translational modification is catalyzed by the protein farnesyltransferase (PFT), which comprises α and β subunits. Protein farnesylation is pivotal in plant growth, regulating plant development, combating environmental stresses, and defending against pathogen infections. Traditionally, assessing whether a candidate protein is farnesylated involves laborious and potentially hazardous processes, such as preparing specific antibodies for the candidate protein and utilizing isotopically labeled farnesol, a precursor of farnesyl pyrophosphate in the farnesylation reaction. Given that protein farnesylation does not occur in prokaryotic cells, this study aims to establish a system in E. coli for rapidly identifying whether plant candidate proteins are farnesylated. This system involves introducing into E. coli a plasmid carrying the ColE1 replication origin, the α and β subunit genes of Arabidopsis PFT, and a plasmid carrying the candidate protein gene labeled with a 6xHis sequence, along with the RSF1031 replication origin. This study selected a known substrate of Arabidopsis PFT, AtJ3, as the candidate protein. The results demonstrate that all three Arabidopsis genes can be expressed simultaneously in E. coli cells. The produced AtJ3, after simple affinity purification, can be identified as post-translationally modified by its mobility on SDS-PAGE, with mass spectrometry confirming the modification as farnesylation at the C-terminus. AtJ3 belongs to the heat shock protein 40 family, interacts with HSP70, and protects plant proteins from denaturation damage caused by high temperatures. Based on luciferase activity analysis experiments, this study also demonstrates that farnesylated AtJ3 isolated from E. coli retains its molecular chaperone function. Interestingly, farnesylated AtJ3 produced in E. coli can also interact with E. coli HSP70 and enhance the thermotolerance of E. coli. Furthermore, using the same strategy to co-express rice PFTα and β subunits along with a potential rice PFT substrate, OsDjA4, in E. coli cells also showed OsDjA4 to be farnesylated. In summary, this study successfully developed a system using E. coli to identify protein farnesylation modifications, applicable to both monocot and dicot plants. The farnesylated proteins produced in E. coli retain their original functions in eukaryotic cells and can be utilized to study the molecular and biochemical functions of farnesylated proteins.
關鍵字(中) ★ 法尼基化 關鍵字(英) ★ Farnesylation
論文目次 Table of contents i
Chinese abstract iii
English abstract iv
Abbreviations v
Chapter I. Introduction 1
1.1 Overview of post-translational modifications (PTMs) 1
1.2 Types of lipidation 1
1.3 The impact of farnesylation and geranylgeranylation on plant physiology and functionality 2
1.4 Methods for studying protein modification 4
1.5 Research Aim 5
Chapter II. Methodology and Materials 8
2.1 Generating complementary DNA of Arabidopsis/Rice J and PFT proteins through molecular duplication 8
2.2 Initiating the expression of recombinant PFT and J proteins within E. coli 9
2.3 Determining the expression of PFT and J proteins 10
2.4 Extraction of J protein from singular and co-modified cell cultures 11
2.5 Examination of farnesylation in J proteins produced by E. coli 12
2.6 Creation of Arabidopsis j3 employing ProLeHsp23.8-induced firefly luciferase Genenetic insertion 12
2.7 Examination of E. coli cell heat tolerance 13
2.8 Construction of BiFC vectors for protein interaction analysis 13
2.9 Cloning of cDNA of Arabidopsis AtJ3CGGL, 6xHis-AtGGPPS2, and PGGT 14
2.10 Induction of recombinant 3xFlag-AtJ3CGGL and PGGT proteins 15
2.11 Determination of the formation of engineered 3xFlag-AtJ3CGGL & PGGT substances 15
2.12 Purification of 3xFlag-AtJ3CGGL from singular and co-modified cells 15
2.13 Verification of 3xFlag-AtJ3CGGL protein gernylgeranylation in E. coli 16
2.14 Cloning of cDNA of 02: GFP 16
2.15 Protoplast isolation 21
2.16 Protoplast transformation 22
2.17 Reagents 22
Chapter III. Results 25
3.1 Simultaneous production of AtPFTα, AtPFTβ, and AtJ3 inside E. coli 25
3.2 Farnesylation of Arabidopsis J3 & FP3 proteins by AtPFT inside E. coli 25
3.3 Farnesylation of OsDjA4 by OsPFT in E. coli 27
3.4 Farnesylated Arabidopsis J3 obtained from E. coli preserves luciferase enzyme functionality during thermal denaturation 28
3.5 Enhanced heat resistance in E. coli through farnesylated Arabidopsis J3 29
3.6 Simultaneous production of 6xHis-AtPGGTα, AtPGGTβ, 3xFlag-AtJ3CGGL and 6xHis-AtGGPPS2 inside E. coli 30
3.7 Geranylgeranylation of 3xFlagAtJ3CGGL by PGGT inside E. coli 30
3.8 HSP70-4 mediated degradation of 02: GFP in wild-type protoplasts 31
Chapter IV. Discussion 32
Chapter V. Figures 35
Figure 1. A figure depicting the configuration of the vectors employed in the E. coli-based platform for farnesylating plant proteins 35
Figure 2. Simultaneous expression of AtJ3, AtPFTα, and AtPFTβ proteins within E. coli 36
Figure 3. Farnesylation of AtJ3 occurred within E. coli producing AtPFT 37
Figure 4. Simultaneous expression of OsDjA4, OsPFTα, and OsPFTβ within E. coli 39
Figure 5. Farnesylation of OsDjA4 occurred within E. coli cells producing OsPFT 40
Figure 6. The AtJ3 synthesized and farnesylated within E. coli protects luciferase produced by plants during thermal denaturation 42
Figure 7. The increased resistance to high temperatures observed in E. coli is attributed to the existence of farnesylated AtJ3 44
Figure 8. Co-expression of AtPGGTα, AtPGGTβ, 3xFLAG-AtJ3CGGL and 6xHis-GGPPS2 witin E. coli 45
Figure 9. The illustration depicts the geranylgeranylation of 3xFLAG-AtJ3CGGL in E. coli cells expressing AtPGGT 47
Figure 10. Degradation of 02: GFP by HSP70-4 48
Figure 11. Examining farnesylated AtFP3 produced within and obtained out of E. coli for detailed analysis 49
Chapter VI. References 50
Chapter VII. Appendix 54
Table S1: Primers used in this study. Restriction enzyme sites are underlined 54
參考文獻 Andrews, M., Huizinga, D. H., & Crowell, D. N. (2010). The CaaX specificities of Arabidopsis protein prenyltransferases explain era1 and ggb phenotypes. BMC plant biology, 10, 1-11.
Barghetti, A., Sjögren, L., Floris, M., Paredes, E. B., Wenkel, S., & Brodersen, P. (2017). Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance. Genes & development, 31(22), 2282-2295.
Barja, M. V., Ezquerro, M., Beretta, S., Diretto, G., Florez‐Sarasa, I., Feixes, E., Fiore, A., Karlova, R., Fernie, A. R., & Beekwilder, J. (2021). Several geranylgeranyl diphosphate synthase isoforms supply metabolic substrates for carotenoid biosynthesis in tomato. New Phytologist, 231(1), 255-272.
Bellenger, L., Ducos, E., Dutilleul, C., & Pichon, O. (2023). The Arabidopsis protein farnesylation era1 mutant displays an altered hormonal-dependent nitrate regulation of root architecture. Plant Growth Regulation, 99(2), 283-298.
Berndt, N., & Sebti, S. M. (2011). Measurement of protein farnesylation and geranylgeranylation in vitro, in cultured cells and in biopsies, and the effects of prenyl transferase inhibitors. Nature protocols, 6(11), 1775-1791.
Bonetta, D., Bayliss, P., Sun, S., Sage, T., & McCourt, P. (2000). Farnesylation is involved in meristem organization in Arabidopsis. Planta, 211, 182-190.
Caldelari, D., Sternberg, H., Rodrıguez-Concepción, M., Gruissem, W., & Yalovsky, S. (2001). Efficient prenylation by a plant geranylgeranyltransferase-I requires a functional CaaL box motif and a proximal polybasic domain. Plant physiology, 126(4), 1416-1429.
Charron, G., Tsou, L. K., Maguire, W., Yount, J. S., & Hang, H. C. (2011). Alkynyl-farnesol reporters for detection of protein S-prenylation in cells. Molecular BioSystems, 7(1), 67-73.
Creasy, D. M., & Cottrell, J. S. (2004). Unimod: Protein modifications for mass spectrometry. Proteomics, 4(6), 1534-1536.
Cutler, S., Ghassemian, M., Bonetta, D., Cooney, S., & McCourt, P. (1996). A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science, 273(5279), 1239-1241.
Dods, R., & Dods, R. (2019). Posttranslational Modifications (PTMs): Alteration of the Three-Dimensional Structure of Proteins. Concepts in Bioscience Engineering, 151-179.
Dursina, B., Reents, R., Delon, C., Wu, Y., Kulharia, M., Thutewohl, M., Veligodsky, A., Kalinin, A., Evstifeev, V., & Ciobanu, D. (2006). Identification and specificity profiling of protein prenyltransferase inhibitors using new fluorescent phosphoisoprenoids. Journal of the American Chemical Society, 128(9), 2822-2835.
Dykema, P. E., Sipes, P. R., Marie, A., Biermann, B. J., Crowell, D. N., & Randall, S. K. (1999). A new class of proteins capable of binding transition metals. Plant molecular biology, 41, 139-150.
Fang, C., Zhang, X., Zhang, L., Gao, X., Yang, P., & Lu, H. (2016). Identification of palmitoylated transitional endoplasmic reticulum ATPase by proteomic technique and pan antipalmitoylation antibody. Journal of Proteome Research, 15(3), 956-962.
Fields, T. A., & Casey, P. J. (1997). Signalling functions and biochemical properties of pertussis toxin-resistant G-proteins. Biochemical Journal, 321(3), 561-571.
Fres, J. M., Müller, S., & Praefcke, G. J. (2010). Purification of the CaaX-modified, dynamin-related large GTPase hGBP1 by coexpression with farnesyltransferase [S]. Journal of lipid research, 51(8), 2454-2459.
Friso, G., & van Wijk, K. J. (2015). Posttranslational Protein Modifications in Plant Metabolism. Plant Physiol, 169(3), 1469-1487. doi:10.1104/pp.15.01378
Fu, C., Zhang, J., Liu, X., Yang, W., Yu, H., & Liu, J. (2015). AtFes1A is essential for highly efficient molecular chaperone function in Arabidopsis. Journal Of Plant Biology, 58, 366-373.
Galichet, A., & Gruissem, W. (2006). Developmentally controlled farnesylation modulates AtNAP1; 1 function in cell proliferation and cell expansion during Arabidopsis leaf development. Plant physiology, 142(4), 1412-1426.
Galichet, A., Hoyerová, K., Kamínek, M., & Gruissem, W. (2008). Farnesylation directs AtIPT3 subcellular localization and modulates cytokinin biosynthesis in Arabidopsis. Plant physiology, 146(3), 1155-1164.
George, J., Soares, C., Montersino, A., Beique, J.-C., & Thomas, G. M. (2015). Palmitoylation of LIM Kinase-1 ensures spine-specific actin polymerization and morphological plasticity. Elife, 4, e06327.
González-García, M. P., Rodríguez, D., Nicolás, C., Rodríguez, P. L., Nicolás, G., & Lorenzo, O. (2003). Negative Regulation of Abscisic Acid Signaling by the Fagus sylvatica FsPP2C1 Plays A Role in Seed Dormancy Regulation and Promotion of Seed Germination. Plant Physiology, 133(1), 135-144. Retrieved from https://doi.org/10.1104/pp.103.025569. doi:10.1104/pp.103.025569
Goritschnig, S., Weihmann, T., Zhang, Y., Fobert, P., McCourt, P., & Li, X. (2008). A novel role for protein farnesylation in plant innate immunity. Plant physiology, 148(1), 348-357.
Grefen, C., & Blatt, M. R. (2012). A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). Biotechniques, 53(5), 311-314.
Hála, M., & Žárský, V. (2019). Protein prenylation in plant stress responses. Molecules, 24(21), 3906.
Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. International Journal of Molecular Sciences, 14(5), 9643-9684. Retrieved from https://www.mdpi.com/1422-0067/14/5/9643.
Hong, X., Li, N., Lv, J., Zhang, Y., Li, J., Zhang, J., & Chen, H.-F. (2023). PTMint database of experimentally verified PTM regulation on protein–protein interaction. Bioinformatics, 39(1), btac823.
Houde, V. P., Ritorto, M. S., Gourlay, R., Varghese, J., Davies, P., Shpiro, N., Sakamoto, K., & Alessi, D. R. (2014). Investigation of LKB1 Ser431 phosphorylation and Cys433 farnesylation using mouse knockin analysis reveals an unexpected role of prenylation in regulating AMPK activity. Biochemical Journal, 458(1), 41-56.
Jiang, H., Zhang, X., Chen, X., Aramsangtienchai, P., Tong, Z., & Lin, H. (2018). Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chemical reviews, 118(3), 919-988.
Johnson, C. D., Chary, S. N., Chernoff, E. A., Zeng, Q., Running, M. P., & Crowell, D. N. (2005). Protein geranylgeranyltransferase I is involved in specific aspects of abscisic acid and auxin signaling in Arabidopsis. Plant physiology, 139(2), 722-733.
Lane, K. T., & Beese, L. S. (2006). Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. Journal of lipid research, 47(4), 681.
Lee, S., Lee, D. W., Lee, Y., Mayer, U., Stierhof, Y.-D., Lee, S., Jurgens, G., & Hwang, I. (2009). Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. The Plant Cell, 21(12), 3984-4001.
Liu, X.-h., & Prestwich, G. D. (2002). Didehydrogeranylgeranyl (ΔΔGG): a fluorescent probe for protein prenylation. Journal of the American Chemical Society, 124(1), 20-21.
Maurer-Stroh, S., Eisenhaber, B., & Eisenhaber, F. (2002). N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. Journal of molecular biology, 317(4), 541-557.
Moores, S. L., Schaber, M., Mosser, S., Rands, E., O′hara, M., Garsky, V., Marshall, M., Pompliano, D., & Gibbs, J. (1991). Sequence dependence of protein isoprenylation. Journal of Biological Chemistry, 266(22), 14603-14610.
Northey, J. G. B., Liang, S., Jamshed, M., Deb, S., Foo, E., Reid, J. B., McCourt, P., & Samuel, M. A. (2016). Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nature Plants, 2(8), 16114. Retrieved from https://doi.org/10.1038/nplants.2016.114. doi:10.1038/nplants.2016.114
Park, C. J., & Seo, Y. S. (2015). Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity. Plant Pathol J, 31(4), 323-333. doi:10.5423/ppj.Rw.08.2015.0150
Parker, C. G., & Pratt, M. R. (2020). Click chemistry in proteomic investigations. Cell, 180(4), 605-632.
Pei, Z.-M., Ghassemian, M., Kwak, C. M., McCourt, P., & Schroeder, J. I. (1998). Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science, 282(5387), 287-290.
Qi, H., Xia, F.-N., & Xiao, S. (2021). Autophagy in plants: Physiological roles and post-translational regulation. Journal of Integrative Plant Biology, 63(1), 161-179. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/jipb.12941. doi:https://doi.org/10.1111/jipb.12941
Ruiz-Sola, M. Á., Barja, M. V., Manzano, D., Llorente, B., Schipper, B., Beekwilder, J., & Rodriguez-Concepcion, M. (2016). A single Arabidopsis gene encodes two differentially targeted geranylgeranyl diphosphate synthase isoforms. Plant physiology, 172(3), 1393-1402.
Song, C., Ye, M., Liu, Z., Cheng, H., Jiang, X., Han, G., Songyang, Z., Tan, Y., Wang, H., & Ren, J. (2012). Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Molecular & Cellular Proteomics, 11(10), 1070-1083.
Suazo, K. F., Park, K.-Y., & Distefano, M. D. (2021). A not-so-ancient grease history: click chemistry and protein lipid modifications. Chemical reviews, 121(12), 7178-7248.
Terry, K. L., Casey, P. J., & Beese, L. S. (2006). Conversion of protein farnesyltransferase to a geranylgeranyltransferase. Biochemistry, 45(32), 9746-9755.
Troutman, J. M., Roberts, M. J., Andres, D. A., & Spielmann, H. P. (2005). Tools to analyze protein farnesylation in cells. Bioconjugate chemistry, 16(5), 1209-1217.
Venne, A. S., Kollipara, L., & Zahedi, R. P. (2014). The next level of complexity: crosstalk of posttranslational modifications. Proteomics, 14(4-5), 513-524.
Vergès, V., Dutilleul, C., Godin, B., Collet, B., Lecureuil, A., Rajjou, L., Guimaraes, C., Pinault, M., Chevalier, S., & Giglioli-Guivarc’h, N. (2021). Protein farnesylation takes part in Arabidopsis seed development. Frontiers in plant science, 12, 620325.
Wang, L. C., Lin, Y. R., Weng, C. P., Yeh, C. H., & Wu, S. J. (2017). The Arabidopsis heat‐intolerant 5 (hit5)/enhanced response to aba 1 (era1) mutant reveals the crucial role of protein farnesylation in plant responses to heat stress. New Phytologist, 213(3), 1181-1193.
Wang, R., & Chen, Y. Q. (2022). Protein lipidation types: current strategies for enrichment and characterization. International Journal of Molecular Sciences, 23(4), 2365.
Wang, T.-Y., Wu, J.-R., Duong, N. K. T., Lu, C.-A., Yeh, C.-H., & Wu, S.-J. (2021). HSP70-4 and farnesylated AtJ3 constitute a specific HSP70/HSP40-based chaperone machinery essential for prolonged heat stress tolerance in Arabidopsis. Journal of Plant Physiology, 261, 153430.
Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in plant science, 9(5), 244-252.
Wang, Y.-C., Peterson, S. E., & Loring, J. F. (2014). Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell research, 24(2), 143-160.
Wu, J.-R., Wang, L.-C., Lin, Y.-R., Weng, C.-P., Yeh, C.-H., & Wu, S.-J. (2017). The Arabidopsis heat-intolerant 5 (hit5)/enhanced response to aba 1 (era1) mutant reveals the crucial role of protein farnesylation in plant responses to heat stress. New phytologist, 213(3), 1181-1193. Retrieved from https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.14212. doi:https://doi.org/10.1111/nph.14212
Wu, J.-R., Wang, T.-Y., Weng, C.-P., Duong, N. K. T., & Wu, S.-J. (2019). AtJ3, a specific HSP40 protein, mediates protein farnesylation-dependent response to heat stress in Arabidopsis. Planta, 250, 1449-1460.
Xu, X., Li, A., Zou, L., Shen, Y., Fan, W., & Wang, M. (2014). Improving the performance of protein kinase identification via high dimensional protein–protein interactions and substrate structure data. Molecular BioSystems, 10(3), 694-702.
Yalovsky, S., Kulukian, A., Rodríguez-Concepción, M., Young, C. A., & Gruissem, W. (2000). Functional requirement of plant farnesyltransferase during development in Arabidopsis. The Plant Cell, 12(8), 1267-1278.
Yi, S.-Y., Sun, A.-Q., Sun, Y., Yang, J.-Y., Zhao, C.-M., & Liu, J. (2006). Differential regulation of Lehsp23. 8 in tomato plants: analysis of a multiple stress-inducible promoter. Plant science, 171(3), 398-407.
Yu, K., Wang, Y., Zheng, Y., Liu, Z., Zhang, Q., Wang, S., Zhao, Q., Zhang, X., Li, X., & Xu, R.-H. (2023). qPTM: an updated database for PTM dynamics in human, mouse, rat and yeast. Nucleic Acids Research, 51(D1), D479-D487.
Zhang, F. L., & Casey, P. J. (1996). Protein prenylation: molecular mechanisms and functional consequences. Annual review of biochemistry, 65(1), 241-269.
Zhou, F., Wang, C.-Y., Gutensohn, M., Jiang, L., Zhang, P., Zhang, D., Dudareva, N., & Lu, S. (2017). A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice. Proceedings of the National Academy of Sciences, 114(26), 6866-6871.
Zhu, L., & Li, N. (2013). Quantitation, networking, and function of protein phosphorylation in plant cell. Frontiers in plant science, 3, 302.
Ziegelhoffer, E. C., Medrano, L. J., & Meyerowitz, E. M. (2000). Cloning of the Arabidopsis WIGGUM gene identifies a role for farnesylation in meristem development. Proceedings of the National Academy of Sciences, 97(13), 7633-7638.
指導教授 吳少傑(Dr. Shaw-Jye Wu) 審核日期 2024-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明