博碩士論文 110223027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.118.19.247
姓名 邱其楓(Chi-Feng Chiu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 優化含氯元素之多聯吡啶釕錯合物敏化太陽能電池與元件特性探討
相關論文
★ 含3,4-乙烯二氧噻吩輔助配位基之鋨、釕金屬錯合物合成與其在染料敏化太陽能電池的應用★ 應用於染料敏化太陽能電池之釕金屬錯合物合成與其性質探討
★ 含共軛配位基之釕錯合物合成與其在染料敏化太陽能電池的應用★ 新型三吡啶釕錯合物光敏化染料的合成與性質探討
★ 釕錯合物敏化太陽能電池元件優化與光伏特性探討★ 金屬錯合物染料敏化太陽能電池的元件優化
★ 新型三吡啶鋨錯合物染料 合成與配位基效應之探討★ 含高度共軛芳香雜環之釕錯合物的合成以應用於染料敏化太陽能電池
★ 多聯吡啶釕錯合物光敏化染料的合成與性質探討★ 釕與鋨錯合物染料敏化太陽能電池性能優化與特性探討
★ 有機共吸附染料的合成與性質探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 染料敏化太陽能電池(Dye-sensitized Solar Cells,DSCs)具有可透光性、多彩性及低製造成本,可應用於建築物玻璃帷幕、天窗等,它們可透過吸附在多孔隙二氧化鈦(TiO2)薄膜表面的光敏化劑,搭配液態電解質將光能轉換為電能,且可透過調整敏化劑分子結構、氧化還原介質和元件結構提高元件的光電轉換效率(Power Conversion Efficiency,PCE)。為了使元件能展現最佳性能,本研究針對本實驗室所開發的新型含氯元素之多聯吡啶釕錯合物染料(CYC-42Cl與CYC-43Cl)進行元件優化,除了透過使用鵝去氧膽酸(Chenodeoxycholic Acid,CDCA)作為共吸附劑,也嘗試導入丁苯羥酸(2-(4-Butoxyphenyl)-N-hydroxyacetamide,BPHA),以期望共吸附劑能減少染料在二氧化鈦薄膜上的聚集程度,進而增加元件的短路電流密度,若能一併鈍化裸露的二氧化鈦表面,則可抑制電荷再結合,以增加元件的開路電壓與填充因子。經優化後,在標準測試條件下(AM 1.5G,25 oC),未添加共吸附劑的CYC-42Cl與CYC-43Cl染料敏化元件效率分別為6.67%和8.06%,添加CDCA的敏化元件則為7.49%及8.15%,而添加BPHA的敏化元件具有最高的光電轉換效率達7.99%與8.52%。透過比較CYC-42Cl及CYC-43Cl染料敏化元件發現,於多聯吡啶釕錯合物固著配位基上使用不同推(叔丁基-CYC-42Cl)、拉(氯原子-CYC-43Cl)電子基,會造成元件性能差異,其歸因於CYC-43Cl染料具有更強的抗聚集能力,且ATR-FTIR光譜數據顯示CYC-43Cl染料可於TiO2表面形成更強的架橋式鍵結。另外,IMPS、IMVS及CE測量結果表明,CYC-43Cl染料會使TiO2導電帶位能降低,此有助於提高電子注入驅動力,從而增加元件的短路電流密度,且對比而言,CYC-43Cl (BPHA)敏化元件具有更長的電荷再結合生命期與最高的電荷收集效率,因此本研究展現於固著配位基導入氯原子是設計高效能多聯吡啶釕錯合物的新方向。
摘要(英) Dye-sensitized solar cells (DSCs) offer transparency, color variety, and low manufacturing costs, making them suitable for various building-integrated applications. This study optimizes devices using new chlorine-containing polypyridine ruthenium complex dyes (CYC-42Cl and CYC-43Cl), focusing on the role of co-adsorbents chenodeoxycholic acid (CDCA) and 2-(4-butoxyphenyl)-N-hydroxyacetamide (BPHA). These co-adsorbents aim to reduce dye aggregation, increase short-circuit current density (Jsc), and suppress charge recombination while improving open-circuit voltage (Voc) and fill factor (FF). Under standard testing conditions (AM 1.5G, 25 oC), devices without co-adsorbents showed efficiencies of 6.67% (CYC-42Cl) and 8.06% (CYC-43Cl). CDCA addition improved these to 7.49% and 8.15%, while BPHA yielded the highest efficiencies of 7.99% and 8.52%. The study revealed performance differences are due to the electron-donating group (tert-butyl: CYC-42Cl) and the electron-withdrawing group (chloro: CYC-43Cl) on the ruthenium complexes. This is attributed to the stronger anti-aggregation ability of CYC-43Cl. ATR-FTIR spectral data also shows that CYC-43Cl forms stronger bidentate bridging bonds on the TiO2 surface. Moreover, IMPS, IMVS, and CE measurements indicate that devices sensitized with CYC-43Cl exhibit a lower TiO2 conduction band potential. This characteristic is associated with an increased driving force for electron injection, which may contribute to these devices′ higher short-circuit current density. In contrast, the CYC-43Cl (BPHA) sensitized device has a longer charge recombination lifetime and the highest charge collection efficiency. Therefore, this study demonstrates that introducing chlorine atoms to the anchoring ligand is a new direction for designing high-performance polypyridine ruthenium complexes.
關鍵字(中) ★ 染料敏化太陽能電池
★ 多聯吡啶釕錯合物
關鍵字(英)
論文目次 中文摘要 I
Abstract II
目錄 IV
圖目錄 VIII
表目錄 XIV
第一章、緒論 1
1.1 前言 1
1.2 太陽光譜的介紹 2
1.3 太陽能電池光伏參數的介紹 3
1.4 染料敏化太陽能電池的工作原理與元件架構 6
1.5影響染料敏化太陽能電池效率的因素 8
1.5-1光電極 9
1.5-2染料分子的結構設計 13
1.5-3電解質的類型及作用 23
1.5-4電解質組成所使用的添加劑 25
1.6改善染料在TiO2上的聚集程度 31
1.6-1導入共吸附劑鵝去氧膽酸 31
1.6-2導入預吸附劑丁苯羥酸 34
1.7研究動機 38
第二章、實驗方法 39
2.1實驗藥品、材料與儀器 39
2.1-1實驗藥品 39
2.1-2實驗材料 40
2.1-3實驗儀器 41
2.2合成與製備二氧化鈦球珠漿料 42
2.2-1二氧化鈦球珠漿料的合成步驟 42
2.2-2製備塗布於網印機之二氧化鈦奈米球珠漿料 43
2.3 配製染料溶液 44
2.4 配製最佳組成的電解質 44
2.5 製備TiO2光電極的流程 45
2.6 製備Pt對電極 47
2.7 染料敏化太陽能電池的元件組裝與光伏參數量測 47
2.8 量測儀器分析與所需樣品製備 48
2.8-1太陽光模擬器與光電轉換效率量測 48
2.8-2太陽能電池外部量子效率量測系統 49
2.8-3紫外光/可見光/近紅外光吸收光譜 51
2.8-4交流阻抗分析儀 53
2.8-5光強度調制光電流/光電壓分析儀;電荷萃取 55
2.8-6衰減全反射式傅立葉轉換紅外光譜 57
第三章、結果與討論 58
3.1 TiO2自製層漿料應用於Black dye染料敏化元件的優化與分析 58
3.2 CYC-42Cl染料敏化元件的共吸附劑條件優化 61
3.2-1搭配不同濃度的共吸附劑CDCA 61
3.2-2搭配不同濃度的共吸附劑BPHA 62
3.3 CYC-43Cl染料敏化元件的共吸附劑條件優化 65
3.3-1搭配不同濃度的共吸附劑CDCA 65
3.3-2搭配不同濃度的共吸附劑BPHA 66
3.4 CYC-42Cl、CYC-43Cl染料敏化元件的條件優化 69
3.4-1使用不同染料濃度對CYC-42Cl、CYC-43Cl敏化元件的影響 69
3.4-2調整TiO2透明層厚度對CYC-42Cl、CYC-43Cl染料敏化元件的影響 73
3.4-3改變浸泡時間對CYC-42Cl、CYC-43Cl染料敏化元件的影響 76
3.4-4調整TiO2散射層厚度對CYC-42Cl、CYC-43Cl染料敏化元件的影響 79
3.5電解質組成變化影響CYC-43Cl染料敏化元件的光伏參數 82
3.5-1添加不同濃度BMII的電解質對元件光伏參數的影響 82
3.5-2添加不同濃度LiI的電解質對元件光伏參數的影響 85
3.5-3添加不同濃度I2的電解質對元件光伏參數的影響 87
3.5-4添加不同濃度GuSCN的電解質對元件光伏參數的影響 90
3.6採用最佳優化條件所組裝元件之光伏參數 92
3.6-1使用最佳化條件的CYC-42Cl與CYC-43Cl敏化元件光伏參數 92

3.6-2使用最佳化條件下CYC-42Cl、CYC-43Cl及Black dye敏化元件的光伏參數再現性測試:有無添加BPHA 96
3.7染料的光物理及元件電荷轉移性質探討 99
3.7-1 CYC-42Cl、CYC-43Cl及Black dye染料的UV/Vis吸收光譜圖 99
3.7-2 CYC-42Cl、CYC-43Cl及Black dye染料的ATR-FTIR光譜圖 106
3.7-3電子在TiO2薄膜上的電荷再結合生命期影響因素 108
3.7-4電子在TiO2薄膜上的有效擴散係數 110
3.7-5電子在TiO2薄膜上的電子擴散長度及電子收集率 112
3.7-6影響填充因子的因素 114
3.8元件長時間穩定性測試結果 115
第四章、結論 116
參考文獻 119
附錄 130
附圖1不同光強度下有無導入BPHA的CYC-42Cl與CYC-43Cl染料敏化元件的IMVS-Nyquist阻抗電路圖,及對應Bode頻率圖譜 130
附圖2不同光強度下有無導入BPHA的CYC-42Cl與CYC-43Cl染料敏化元件的IMPS-Nyquist阻抗電路圖,及對應Bode頻率圖譜 131
附1.1 CYC-42Cl、CYC-43Cl染料敏化元件的優化條件 132
附1.1-1有無添加NBB的電解質對CYC-43Cl染料敏化元件光伏參數的影響 133
附1.1-2搭配不同溶劑對CYC-43Cl染料敏化元件光伏參數的影響 134
附1.1-3 TiCl4後處理次數或H2PtCl6多寡對CYC-43Cl染料敏化元件的影響 136
附1.1-4使用不同批次染料對CYC-42Cl、CYC-43Cl染料敏化元件光伏參數的影響 138
附2.1 Ligand-65與CYC-65染料敏化元件的優化條件 141
附2.1-1 Ligand-65染料敏化元件的染料濃度與共吸附劑條件優化 141
附2.1-2 CYC-65染料敏化元件使用不同溶劑並搭配不同電解質組成的條件優化 145
附2.1-3 CYC-65染料敏化元件的TiO2透明層層數與共吸附劑條件優化 147
附2.1-4 Ligand-65與CYC-65染料敏化元件的吸附溫度條件優化 150
參考文獻 [1] 陳祉雲,李玉郎,關鍵自主的綠色能源材料,科學發展2019年12月第564期。
[2] M. A. Green, E. D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe, G. Siefer and X. Hao, Solar cell efficiency tables (version 63), Prog Photovolt Res Appl. 2024, 32, 3–13.
[3] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J. E. Moser, M. Grätzel and A. Hagfeldt, Dye-sensitized solar cells for efficient power generation under ambient lighting, Nat. Photon. 2017, 11, 372–378.
[4] C. A. Gueymard, D. Myers and K. Emery, Proposed reference irradiance spectra for solar energy systems testing, Solar Energy 2002, 73, 443–467.
[5] T. Pavlovic, Solar energy, the sun and photovoltaic technologies, Springer 2020.
[6] K. Sharma, V. Sharma and S. S. Sharma, Dye-sensitized solar cells: Fundamentals and current status, Nanoscale Res. Lett. 2018, 13, 381.
[7] N. T. R. N. Kumara, A. Lim, C. M. Lim, M. I. Petra, P. Ekanayake, Recent progress and utilization of natural pigments in dye sensitized solar cells: A review, Renew. Sustain. Energy Rev. 2017, 78, 301–317.
[8] M. S. Kim, B. G. Kim and J. Kim, Effective variables to control the fill factor of organic photovoltaic cells, ACS Appl. Mater. Interfaces 2009, 1, 1264–1269.
[9] A. Atia, F. Anayi and M. Gao, Influence of shading on solar cell parameters and modelling accuracy improvement of PV modules with reverse biased solar cells, Energies 2022, 15, 1–19.
[10] V. Thavasi, V. Renugopalakrishnan, R. Jose and S. Ramakrishna, Controlled electron injection and transport at materials interfaces in dye sensitized solar cells, Mater. Sci. Eng. R. 2009, 63, 81–99.
[11] K. Park, Q. Zhang, D. Myers and G. Cao, Charge transport properties in TiO2 network with diferent particle sizes for dye sensitized solar cells, ACS Appl. Mater. Interfaces 2013, 3, 1044–1052.
[12] M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nanowire dye-sensitized solar cells, Nature 2005, 4, 455–459.
[13] L. Song, Y. Zhou, Y. Guan, P. Du, J. Xiong and F. Ko, Branched open-ended TiO2 nanotubes for improved efficiency of flexible dye-sensitized solar cells, J. Alloys Compd. 2017, 724, 1124–1133.
[14] X. Miao, K. Pan, Y. Liao, W. Zhou, Q. Pan and G. Wang, Controlled synthesis of mesoporous anatase TiO2 microspheres as a scattering layer to enhance the photoelectrical conversion efficiency, J. Mater. Chem. A 2013, 1, 9860–9861.
[15] X. Wu, G. Q. Lu and L. Wang, Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application, Energy Environ Sci. 2011, 4, 3565–3570.
[16] D. Chen, F. Huang, Y. B. Cheng and R. A. Caruso, Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells, Adv. Mater. 2009, 21, 2206–2210.
[17] D. Chen, L. Cao, F. Huang, P. Imperia, Y. B. Cheng and R. A. Caruso, Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm), J. Am. Chem. Soc. 2010, 132, 4438–4444.
[18] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Dye-sensitized solar cells, Chem. Rev. 2010, 110, 6595–6663.
[19] M. Grätzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C 2003, 4, 145–153.
[20] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Grätzel, Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. 1993, 115, 6382–6390.
[21] M. K. Nazeeruddin, R. H. Baker, P. Liska and M. Grätzel, Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell, J. Phys. Chem. B. 2003, 707, 8981–8987.
[22] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, Combined experimental and DFT-TDDFT computational study of photo-electrochemical cell ruthenium sensitizers, J. Am. Chem. Soc. 2005, 727, 16835–16847.
[23] M. Grätzel, Recent advances in sensitized mesoscopic solar cells, Acc. Chem. Res. 2009, 42, 1788–1798.
[24] M. K. Nazeeruddin, P. Péchy, T. Renouard. S. M. Zakeeruddin, R. H. Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Grätzel, Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells, J. Am. Chem. Soc. 2001, 123, 1613–1624.
[25] K. L. Wu, W. P. Ku, J. N. Clifford, E. Palomares, S. T. Ho, Y. Chi, S. H Liu, P. T Chou, M. K. Nazeeruddin and M. Grätzel, Harnessing the open-circuit voltage via a new series of Ru(II) sensitizers bearing (iso-)quinolinyl pyrazolate ancillaries, Energy Environ. Sci. 2013, 6, 859–870.
[26] Q. Wang, M. Li, X. Zhang, Y. Qin, J. Wang, J. Zhang, J. Hou, R. A. J. Janssen and Y. Geng, Carboxylate-substituted polythiophenes for efficient fullerene-free polymer solar cells: The effect of chlorination on their properties, Macromolecules 2019, 52, 4464–4474.
[27] M. L. Tang, J. H. Oh, A. D. Reichardt and Z. Bao, Chlorination: A general route toward electron transport in organic semiconductors, J. Am. Chem. Soc. 2009, 131, 3733–3740.
[28] G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati and G. Terraneo, The halogen bond, Chem. Rev. 2016, 116, 2478–2601.
[29] K. C. D. Robson, K. Hu, G. J. Meyer and C. P. Berlinguette, Atomic level resolution of dye regeneration in the dye-sensitized solar cell, J. Am. Chem. Soc. 2013, 135, 1961–1971.
[30] S. J. C. Simon, F. G. L. Parlane, W. B. Swords, C. W. Kellett, C. Du, B. Lam, R. K. Dean, K. Hu, G. J. Meyer and C. P. Berlinguette, Halogen bonding promotes higher dye-sensitized solar cell photovoltages, J. Am. Chem. Soc. 2016, 138, 10406–10409.
[31] F. G. L. Parlane, C. Mustoe, C. W. Kellett, S. J. Simon, W. B. Swords, G. J. Meyer, P. Kennepohl and C. P. Berlinguette, Spectroscopic detection of halogen bonding resolves dye regeneration in the dye-sensitized solar cell, Nat. Commun. 2017, 8, 1761.
[32] B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991, 353, 737–739.
[33] J. Cong, X. Yang, L. Kloo and L. Sun, Iodine iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells, Energy Environ. Sci. 2012, 5, 9180–9194.
[34] H. Tian and L. Sun, Iodine-free redox couples for dye-sensitized solar cells, J. Mater. Chem. 2011, 21, 10592–10601.
[35] W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada and S. Yanagida, Quasi-solid-state dye-sensitized TiO2 solar cells: Effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine, J. Phys. Chem. B 2001, 105, 12809–12815.
[36] B. Li, L. Wang, B. Kang, P. Wang and Y. Qiu, Review of recent progress in solid-state dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells 2006, 90, 549–573.
[37] K. Fredin, J. Nissfolk, G. Boschloo and A. Hagfeldt, The influence of cations on charge accumulation in dye-sensitized solar cells, J. Electroanal. Chem. 2007, 609,55–60.
[38] X. Wang, S. A. Kulkarni, B. I. Ito, S. K. Batabyal, K. Nonomura, C. C. Wong, M. Grätzel, S. G. Mhaisalkar and S. Uchida, Nanoclay gelation approach toward improved dye-sensitized solar cell efficiencies: An investigation of charge transport and shift in the TiO2 conduction band, ACS Appl. Mater. Interfaces 2013, 5, 444–450.
[39] K. M. Son, M. G. Kang, R. Vittal, J. Lee and K. J. Kim, Effects of substituents of imidazolium cations on the performance of dye-sensitized TiO2 solar cells, J. Appl. Electrochem. 2008, 38, 1647–1652.
[40] Y. Liu, A. Hagfeldt, X. R. Xiao and S. E. Lindquist, Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell, Sol. Energy Mater. Sol. Cells 1998, 55, 267–281.
[41] Y. Shi, Y. Wang, M. Zhang and X. Dong, Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: lithium, sodium, potassium, and dimethylimidazolium, Phys. Chem. Chem. Phys. 2011, 13, 14590–14597.
[42] C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Da, Photoelectrochemical effects of guanidinium thiocyanate on dye sensitized solar cell performance and stability, J. Phys. Chem. C 2009, 113, 21779–21783.
[43] N. Kopidakis, N. R. Neale and A. J. Frank, Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: Evidence for surface passivation, J. Phys. Chem. B 2006, 110, 12485–12489.
[44] A. Kay and M. Grätzel, Artificial photosynthesis. 1. Photosensitization of TiO2 solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 1993, 97, 6272–6277.
[45] M. K. Nazeeruddin, R. H. Baker, M. Grätzel, D. Wöhrle, G. Schnurpfeil, G. Schneider, A. Hirth and N. Trombach, Efficient near-IR sensitization of nanocrystalline TiO2 films by zinc and aluminum phthalocyanines, J. Porphyr. Phthalocyanines 1999, 3, 230–237.
[46] J. J. He, G. Benkö, F. Korodi, T. Polívka, R. Lomoth, B. Åkermark, L. C. Sun, A. Hagfeldt and V. Sundström, Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode, J. Am. Chem. Soc. 2002, 124, 4922–4932.
[47] K. M. Lee, S. J. Wu, C. Y. Chen, C. G. Wu, M. Ikegami, K. Miyoshi, T. Miyasaka and K. C. Ho, Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer, J. Mater. Chem. 2009, 19, 5009–5015.
[48] D. V. Pogozhev, M. J. Bezdek, P. A. Schauer and C. P. Berlinguette, Ruthenium(II) complexes bearing a naphthalimide fragment: A modular dye platform for the dye-sensitized solar cell, Inorg. Chem. 2013, 52, 3001–3006.
[49] S. H. Aung, Y. Hao, T. Z. Oo and G. Boschloo, 2‑(4-Butoxyphenyl)‑ N‑hydroxyacetamide: An efficient preadsorber for dye-sensitized solar cells, ACS Omega 2017, 2, 1820–1825.
[50] Y. Ren, D. Zhang, J. Suo, Y. Cao, F. T. Eickemeyer, N. Vlachopoulos, S. M. Zakeeruddin, A. Hagfeldt and M. Grätzel, Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells, Nature 2023, 613, 60–65.
[51] A. Hauch and A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochimica Acta. 2001, 46, 3457–3466.
[52] Q. Wang, J. E. Moser and M. Grätzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells, J. Phys. Chem. B 2005, 109, 14945–14953.
[53] C. Longo, A. F. Nogueira and M. A. D. Paoli, Solid-state and flexible dye-sensitized TiO2 solar cells: A study by electrochemical impedance spectroscopy, J. Phys. Chem. B 2002, 106, 5925–5930.
[54] K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays, Nano Lett. 2007, 7, 69–74.
[55] N. Kopidakis, K. D. Benkstein, J. Lagemaat and A. J. Frank, Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B 2003, 107, 11307–11315.
[56] P. R. F. Barnes, A. Y. Anderson, M. Juozapavicius, L. Liu, X. Li, E. Palomares, A. Forneli and B. C. O′Regan, Factors controlling charge recombination under dark and light conditions in dye sensitised solar cells, Phys. Chem. Chem. Phys. 2011, 13, 3547–3558.
[57] A. Tricoli, A. S. Wallerand and M. Righettoni, Highly porous TiO2 films for dye sensitized solar cells, J. Mater. Chem. 2012, 22, 14254–14261.
[58] R. Y. Huang, Y. H. Chiu, Y. H. Chang, K. Y. Chen, P. T. Huang, T. H. Chiang and Y. J. Chang, Influence of a D-π-A system through a linked unit of double and triple bonds in a triarylene bridge for dye-sensitised solar cells, New J. Chem. 2017, 41, 8016–8025.
[59] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara and H. Arakawa, Highly effcient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells, Solar. Energ. Mat. Solar. C 2000, 64, 115–134.
[60] 崔順鈞,2024,國立中央大學化學研究所碩士學位論文(多聯吡啶釕錯合物光敏化染料的合成與性質探討)。
[61] S. Yanagida, Y. Yu and K. Manseki, Iodine/iodide-free dye-sensitized solar cells, Acc. Chem. Res. 2009, 42, 1827–1838.
[62] Z. Yu, M. Gorlov, J. Nissfolk, G. Boschloo and L. Kloo, Investigation of iodine concentration effects in electrolytes for dye-sensitized solar cells, J. Phys. Chem. C 2010, 114, 10612–10620.
[63] C. Y. Chen, Y. M. Feng, T. Y. Wu, Y. C. Liu, S. Y. Chen, T. Y. Lin, H. H. Tsai and C. G. Wu, Terpyridyl ruthenium complexes functionalized with conjugated heterocycles for panchromatic dye-sensitized solar cells, ACS Appl. Energy Mater. 2021, 4, 13461–13470.
[64] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf, Dynamic response of dye-sensitized nanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy, J. Phys. Chem. B 1997, 101, 10281–10289.
[65] J. Kruger, R. Plass, M. Grätzel, P. J. Cameron and L. M. Peter, Charge transport and back reaction in solid-state dye-sensitized solar cells: A study using intensity-modulated photovoltage and photocurrent spectroscopy, J. Phys. Chem. B 2003, 107, 7536–7539.
[66] G. Schlichthorl, N. G. Park and A. J. Frank, Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B 1999, 103, 782–791.
[67] A. K. Chandiran, F. d. Sauvage, M. C. Cabanas, P. Comte, S. M. Zakeeruddin and M. Grätzel, Doping a TiO2 photoanode with Nb5+ to enhance transparency and charge collection efficiency in dye-sensitized solar cells, J. Phys. Chem. C 2010, 114, 15849–15856.
[68] L. Y. Lin, C. H. Tsai, K. T. Wong, T. W. Huang, L. Hsieh, S. H. Liu, H. W. Lin, C. C. Wu, S. H. Chou, S. H. Chen and A. I. Tsai, Organic dyes containing coplanar diphenyl-substituted dithienosilole core for efficient dye-sensitized solar cells, J. Org. Chem. 2010, 75, 4778–4785.
[69] S. G. Adhikari, J. R. Gascooke, A. S. Alotabi and G. G. Andersson, Anchoring modes of Ru-based N719 dye onto titania substrates, J. Phys. Chem. C 2024, 128, 3136–3147.
[70] H. Kusama and H. Arakawa, Influence of benzimidazole additives in electrolytic solution on dye-sensitized solar cell performance, J. Photochem. Photobiol. A 2004, 162, 441–448.
[71] H. L. Lu, Y. H. Lee, S. T. Huang, C. Su and T. C. K. Yang, Influences of water in bis-benzimidazole-derivative electrolyte additives to the degradation of the dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells 2011, 95, 158–162.
[72] F. Xu, T. T. Testoff, L. Wang and X. Zhou, Cause, regulation and utilization of dye aggregation in dye-sensitized solar cells, Molecules 2020, 25, 4478.
指導教授 陳家原(Chia-Yuan Chen) 審核日期 2024-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明