博碩士論文 111324051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:178 、訪客IP:3.14.129.236
姓名 張欣雅(Hsin-Ya Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 應用於陰離子交換膜水電解器之三元非貴金屬觸媒開發
(Non-Noble Metal Catalyst NiFeMn for Anion Exchange Membrane Water Electrolyze)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-1以後開放)
摘要(中) 鑒於對化石燃料高度依賴導致環境問題日益嚴重的時代,探索乾淨且可再生的能源勢在必行。由於氫能具有可持續性、轉換的效率高、能量密高度等優點,近年來受到廣泛的關注。目前,以水為豐富資源的電催化水分解是一種無碳、高純度且可持續的產氫策略。然而設計一個地球上儲存量豐富且具有高活性及穩定性的電觸媒對於工業級大規模水分解氫氣體至關重要。本研究中,透過快速雷射脈衝鹽類合成法生產出低成本和高性能的NiFeMn 三元陶瓷觸媒,此製程有效且快速地設計出尖晶石結構,並透過錳的摻雜,顯著地降低了析氧反應 (OER) 的能階。此外,在研究中進一步的研究了三元觸媒之最佳比例,在錳的比例達到鎳及鐵的兩倍時,擁有較低的起始電位及過電勢,根據循環伏安法 (CV)測試啟始電位為 1.495V (對比可逆氫電極,RHE),並在三電極的測試中,我們所獲得的NiFeMn/NF 在電流密度 10 mA/cm2 下只須 282 mV 的低過電位,並於恆流充電的測試方式在 100 mA/cm2 下穩定運行超過 1500 小時。綜上所述,NiFeMn 三元陶瓷觸媒展現了在電催化水分解中的優勢。其優異的性能具有潛在的應用前景,為未來的工業化提供了新的可能性。
摘要(英) Hydrogen energy has attracted widespread attention in recent years due to its sustainability, high conversion efficiency, and high energy density. Currently, electrocatalytic water splitting is a carbon-free, high-purity, and sustainable hydrogen production strategy. However, the design of an earth-abundant electrocatalyst with high activity and stability is crucial for industrial-scale hydrogen gas production via water electrolysis.
In this study, a low-cost and high-performance NiFeMn ternary ceramic catalyst was produced by rapid laser pulse salt synthesis method (PLMS). This process effectively and rapidly produced a spinel structure, which significantly reduced the energy levels of the oxygen evolution reaction (OER) through manganese doping. Furthermore, the optimal ratio of the ternary catalyst was further investigated in the study. When the manganese ratio reached twice that of nickel and iron, it exhibited lower onset voltage and overpotential. According to cyclic voltammetry tests, the on-set potential was 1.495V (vs. reversible hydrogen electrode, RHE) of NiFeMn. In a conventional three-electrode setup tests, the NiFeMn@NF obtained a low overpotential of only 282 mV at a current density of 10 mA/cm². Moreover, it operated for over 1500 hours at a constant current density of 100 mA/cm² in chronoamperometry tests. In summary, the NiFeMn ternary ceramic catalyst demonstrates advantages in electrocatalytic water splitting. Its excellent performance provides new possibilities for future industrialization.
關鍵字(中) ★ 氫能
★ 非貴金屬觸媒
★ 電觸媒
★ 尖晶石結構
★ 陰離子交換模水電解器
★ 產氫產氧反應
關鍵字(英)
論文目次 摘要........................................................................................................................I
ABSTRACT ........................................................................................................ II
誌謝.................................................................................................................... III
圖目錄..............................................................................................................VIII
表目錄.................................................................................................................. X
第一章 前言......................................................................................................... 1
第二章 文獻回顧................................................................................................. 3
2.1 氫能發展......................................................................................................... 3
2.2 ESG 指標........................................................................................................ 4
2.3 電解水產氫應用現況概述............................................................................. 5
2.3.1 固體氧化物電解技術 .............................................................................. 6
2.3.2 質子交換膜電解水 .................................................................................. 7
2.3.3 陰離子交換膜電解水 .............................................................................. 8
2.3.4 鹼性水電解 .............................................................................................. 9
2.3.5四種水電解器比較................................................................................10
2.4電解水產氫之基本原理...............................................................................11
2.4.1水電解理論電壓....................................................................................13
2.4.2析氫反應................................................................................................14
2.4.3析氧反應................................................................................................15
2.5析氧反應常用觸媒回顧...............................................................................16
2.5.1層狀雙氫氧化物(Layered double hydroxide, LDH) ...........................16
2.5.2螢石(Fluorite) .......................................................................................18
2.5.3鈣鈦礦氧化物(Perovskite oxide) .........................................................19
2.5.4尖晶石氧化物(Spinel oxide)................................................................20
2.5.5四種常用析氧反應觸媒結構比較........................................................21
第三章實驗.......................................................................................................23
3-1實驗架構.......................................................................................................23
3.2實驗藥品.......................................................................................................24
3.3電極製作方法...............................................................................................24
3.4分析儀器.......................................................................................................26
3.4.1感應耦合電漿放射光譜儀(ICP-OES) ................................................26
3.4.2場發射掃描式電子顯微鏡(FE-SEM) .................................................26
3.4.3高解析穿透式電子顯微鏡(HR-TEM) ................................................27
3.4.4 X光繞射分析儀(XRD) .......................................................................28
3.4.5 X-ray 光電子光譜儀(XPS) .................................................................29
3.4.6電化學量測系統(CHI) .........................................................................29
第四章結果與討論...........................................................................................31
4.1不同雷射參數下之NiFeMn三元觸媒......................................................31
4.1.1感應耦合電漿放射光譜儀分析(ICP-OES) ........................................31
4.1.2掃描式電子顯微鏡表面結構分析(SEM) ...........................................32
4.1.3 X-ray 繞射分析儀分析(XRD) ............................................................36
4.1.4 X-ray 光電子光譜分析(XPS) .............................................................37
4.1.5電化學性能分析....................................................................................40
4.2不同元素比例之NiFeMn三元觸媒..........................................................43
4.2.1不同元素比例之NiFeMn三元觸媒電化學性能分析.........................43
4.2.2感應耦合電漿放射光譜儀分析(ICP-OES) ........................................47
4.2.3掃描式電子顯微鏡表面結構分析(SEM) ...........................................48
4.2.4 X-ray 繞射分析儀分析(XRD) ............................................................50
4.2.5高解析穿透式電子顯微鏡分析(HR-TEM) ........................................51
4.2.6 X-ray 光電子光譜分析(XPS) .............................................................52
4.2.7 Ni1Fe1Mn2之三元觸媒電化學性能比較及應用..................................55
第五章結論與未來工作.................................................................................58
5.1結論...............................................................................................................58
5.2未來工作.......................................................................................................59
參考文獻.............................................................................................................60
參考文獻 1. Abe, J.O., et al., Hydrogen energy, economy and storage: Review and recommendation.
2. International journal of hydrogen energy, 2019. 44(29): p. 15072-15086.
3. Roeb, M., et al., Solar thermal water splitting. Renewable Hydrogen Technologies, 2013: p. 63-86.
4. Lagioia, G., M.P. Spinelli, and V. Amicarelli, Blue and green hydrogen energy to meet European Union decarbonisation objectives. An overview of perspectives and the current state of affairs. International Journal of Hydrogen Energy, 2023. 48(4): p. 1304- 1322.
5. Wang, C., et al., Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chinese Chemical Letters, 2021. 32(7): p. 2108-2116.
6. Li, L., et al., Electrochemically modifying the electronic structure of IrO2 nanoparticles for overall electrochemical water splitting with extensive adaptability. Advanced Energy Materials, 2020. 10(30): p. 2001600.
7. Baykara, S.Z., Hydrogen: A brief overview on its sources, production and environmental impact. International Journal of Hydrogen Energy, 2018. 43(23): p. 10605-10614.
8. Panigrahy, B., K. Narayan, and B.R. Rao, Green hydrogen production by water electrolysis: A renewable energy perspective. Materials today: proceedings, 2022. 67: p. 1310-1314.
9. Le, P.-A., et al., The current status of hydrogen energy: an overview. RSC advances, 2023. 13(40): p. 28262-28287.
10. El-Shafie, M., Hydrogen production by water electrolysis technologies: a review.
11. Results in Engineering, 2023: p. 101426.
12. Wolf, S.E., et al., Solid oxide electrolysis cells–current material development and industrial application. Journal of materials chemistry A, 2023. 11(34): p. 17977-18028.
13. Hauch, A., et al., Recent advances in solid oxide cell technology for electrolysis. Science, 2020. 370(6513): p. eaba6118.
14. Kumar, S.S. and V. Himabindu, Hydrogen production by PEM water electrolysis–A review. Materials Science for Energy Technologies, 2019. 2(3): p. 442-454.
15. Liu, R.-T., et al., Recent advances in proton exchange membrane water electrolysis.
16. Chemical Society Reviews, 2023.
17. Zhang, K., et al., Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy, 2022. 1(3): p. e9120032.
18. Du, N., et al., Anion-exchange membrane water electrolyzers. Chemical reviews, 2022.
19. 122(13): p. 11830-11895.

20. Chen, N., et al., High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A cm− 2 and a durability of 1000 hours. Energy & environmental science, 2021. 14(12): p. 6338-6348.
21. Li, D., et al., Durability of anion exchange membrane water electrolyzers. Energy & Environmental Science, 2021. 14(6): p. 3393-3419.
22. Jang, D., H.-S. Cho, and S. Kang, Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system. Applied energy, 2021. 287: p. 116554.
23. Varela, C., M. Mostafa, and E. Zondervan, Modeling alkaline water electrolysis for power-to-x applications: A scheduling approach. International journal of hydrogen energy, 2021. 46(14): p. 9303-9313.
24. Nasser, M., et al., A review of water electrolysis–based systems for hydrogen production using hybrid/solar/wind energy systems. Environmental Science and Pollution Research, 2022. 29(58): p. 86994-87018.
25. Trattner, A., et al., Renewable hydrogen: modular concepts from production over storage to the consumer. Chemie Ingenieur Technik, 2021. 93(4): p. 706-716.
26. Shih, A.J., et al., Water electrolysis. Nature Reviews Methods Primers, 2022. 2(1): p. 84.
27. Feng, C., et al., Fe-based electrocatalysts for oxygen evolution reaction: progress and perspectives. Acs Catalysis, 2020. 10(7): p. 4019-4047.
28. Wang, H., et al., Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis. Journal of materials chemistry A, 2020. 8(15): p. 6926-6956.
29. Gao, L., et al., Recent advances in activating surface reconstruction for the high- efficiency oxygen evolution reaction. Chemical Society Reviews, 2021. 50(15): p. 8428- 8469.
30. Cai, Z., et al., Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019. 7(10): p. 5069-5089.
31. Karmakar, A., et al., A vast exploration of improvising synthetic strategies for enhancing the OER kinetics of LDH structures: a review. Journal of Materials Chemistry A, 2021. 9(3): p. 1314-1352.
32. Shi, D., et al., Oxygen vacancies meet partial S substitution: an effective strategy to achieve obvious synergistic effects and adjustable electrochemical behavior in NiFe- LDH for enhanced OER and capacitive performance. Inorganic Chemistry Frontiers, 2023. 10(18): p. 5391-5405.
33. Wang, L., et al., 3D nanostructured Ce-doped CoFe-LDH/NF self-supported catalyst for high-performance OER. Dalton Transactions, 2023. 52(34): p. 12038-12048.
34. Deka, S., et al., Mechanistic insights into electrocatalytically reduced OER performance in marigold-like trimetallic NiFe-based LDH: charge localisation and d-band orbital filling. Journal of Materials Chemistry A, 2024.
35. Wu, J., et al., Constructing Electrocatalysts with Composition Gradient Distribution by Solubility Product Theory: Amorphous/Crystalline CoNiFe‐LDH Hollow Nanocages. Advanced Functional Materials, 2023. 33(37): p. 2300808.
36. Wang, F., et al., Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation. Nature Communications, 2023. 14(1): p. 6019.
37. Paladugu, S., et al., Mesoporous RE0. 5Ce0. 5O2–x Fluorite Electrocatalysts for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2024.
38. Paladugu, S., et al., Tailored (La0. 2Pr0. 2Nd0. 2Tb0. 2Dy0. 2) 2Ce2O7 as a Highly Active and Stable Nanocatalyst for the Oxygen Evolution Reaction. Small, 2024: p. 2305789.
39. Li, H., et al., Surface reconstruction of perovskites for water oxidation: the role of initial oxides’ bulk chemistry. Small Science, 2022. 2(1): p. 2100048.
40. Liu, L.-B., et al., Perovskite Oxides Toward Oxygen Evolution Reaction: Intellectual Design Strategies, Properties and Perspectives. Electrochemical Energy Reviews, 2024. 7(1): p. 1-37.
41. Deeksha, et al., Transition Metal‐based Perovskite Oxides: Emerging Electrocatalysts for Oxygen Evolution Reaction. ChemCatChem, 2023. 15(6): p. e202300040.
42. Tan, T., et al., High-Performance Co-production of Electricity and Light Olefins Enabled by Exsolved NiFe Alloy Nanoparticles from a Double-Perovskite Oxide Anode in Solid Oxide-Ion-Conducting Fuel Cells. ACS nano, 2023. 17(14): p. 13985-13996.
43. Li, S.-F., et al., Facile surface defect engineering on perovskite oxides for enhanced OER performance. Dalton Transactions, 2023. 52(13): p. 4207-4213.
44. Wang, H., et al., Research progress of spinel CoFe 2 O 4 as an electrocatalyst for the oxygen evolution reaction. Catalysis Science & Technology, 2023. 13(21): p. 6102-6125.
45. Olowoyo, J.O. and R.J. Kriek, Recent progress on bimetallic‐based spinels as electrocatalysts for the oxygen evolution reaction. Small, 2022. 18(41): p. 2203125.
46. Liu, L., et al., The catalytic activity of reduced graphene aerogel anchored with CoFe2O4 spinel via self-assembly technique for enhanced oxygen evolution reaction. Carbon, 2024. 219: p. 118847.
47. Iqbal, M.Z., et al., Faradically Dominant Pseudocapacitive Manganese Cobalt Oxide Electrode Materials for Hybrid Supercapacitors and Electrochemical Water Splitting. Energy & Fuels, 2024.
48. Ruan, M., et al., Promotion of oxygen evolution through the modification of Co-O bond in spinel NiCo2O4. Journal of Physics and Chemistry of Solids, 2024: p. 111955.
49. Xu, S., et al., Engineered oxidation states in NiCo2O4@ CeO2 nanourchin architectures with abundant oxygen vacancies for enhanced oxygen evolution reaction performance. Chemical Engineering Journal, 2024. 482: p. 148787.
50. He, L., et al., Low-temperature synthesis of nano-porous high entropy spinel oxides with high grain boundary density for oxygen evolution reaction. Chemical Engineering Journal, 2023. 460: p. 141675.
51. Masood, M.T., Solution-processable compact and mesoporous titanium dioxide thin films as electron-selective layers for perovskite solar cells. 2020.
52. Chastain, J. and R.C. King Jr, Handbook of X-ray photoelectron spectroscopy. Perkin- Elmer Corporation, 1992. 40: p. 221.
53. Park, Y.S., et al., Ternary layered double hydroxide oxygen evolution reaction electrocatalyst for anion exchange membrane alkaline seawater electrolysis. Journal of Energy Chemistry, 2022. 75: p. 127-134.
54. Liao, C., et al., Constructing conductive interfaces between nickel oxide nanocrystals and polymer carbon nitride for efficient electrocatalytic oxygen evolution reaction. Advanced Functional Materials, 2019. 29(40): p. 1904020.
55. Zeng, K., et al., Optimizing d‐p Orbital Hybridization with Abundant Unfilled Antibonding Orbital in Multi‐Metal Layered Double Hydroxide: Motivating Efficient Oxygen Evolving. Advanced Functional Materials, 2024: p. 2315080.
指導教授 陳立業 洪緯璿(Sammy Lap Ip Chan Wei-Hsuan Hung) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明