參考文獻 |
1. Abe, J.O., et al., Hydrogen energy, economy and storage: Review and recommendation.
2. International journal of hydrogen energy, 2019. 44(29): p. 15072-15086.
3. Roeb, M., et al., Solar thermal water splitting. Renewable Hydrogen Technologies, 2013: p. 63-86.
4. Lagioia, G., M.P. Spinelli, and V. Amicarelli, Blue and green hydrogen energy to meet European Union decarbonisation objectives. An overview of perspectives and the current state of affairs. International Journal of Hydrogen Energy, 2023. 48(4): p. 1304- 1322.
5. Wang, C., et al., Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chinese Chemical Letters, 2021. 32(7): p. 2108-2116.
6. Li, L., et al., Electrochemically modifying the electronic structure of IrO2 nanoparticles for overall electrochemical water splitting with extensive adaptability. Advanced Energy Materials, 2020. 10(30): p. 2001600.
7. Baykara, S.Z., Hydrogen: A brief overview on its sources, production and environmental impact. International Journal of Hydrogen Energy, 2018. 43(23): p. 10605-10614.
8. Panigrahy, B., K. Narayan, and B.R. Rao, Green hydrogen production by water electrolysis: A renewable energy perspective. Materials today: proceedings, 2022. 67: p. 1310-1314.
9. Le, P.-A., et al., The current status of hydrogen energy: an overview. RSC advances, 2023. 13(40): p. 28262-28287.
10. El-Shafie, M., Hydrogen production by water electrolysis technologies: a review.
11. Results in Engineering, 2023: p. 101426.
12. Wolf, S.E., et al., Solid oxide electrolysis cells–current material development and industrial application. Journal of materials chemistry A, 2023. 11(34): p. 17977-18028.
13. Hauch, A., et al., Recent advances in solid oxide cell technology for electrolysis. Science, 2020. 370(6513): p. eaba6118.
14. Kumar, S.S. and V. Himabindu, Hydrogen production by PEM water electrolysis–A review. Materials Science for Energy Technologies, 2019. 2(3): p. 442-454.
15. Liu, R.-T., et al., Recent advances in proton exchange membrane water electrolysis.
16. Chemical Society Reviews, 2023.
17. Zhang, K., et al., Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy, 2022. 1(3): p. e9120032.
18. Du, N., et al., Anion-exchange membrane water electrolyzers. Chemical reviews, 2022.
19. 122(13): p. 11830-11895.
20. Chen, N., et al., High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A cm− 2 and a durability of 1000 hours. Energy & environmental science, 2021. 14(12): p. 6338-6348.
21. Li, D., et al., Durability of anion exchange membrane water electrolyzers. Energy & Environmental Science, 2021. 14(6): p. 3393-3419.
22. Jang, D., H.-S. Cho, and S. Kang, Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system. Applied energy, 2021. 287: p. 116554.
23. Varela, C., M. Mostafa, and E. Zondervan, Modeling alkaline water electrolysis for power-to-x applications: A scheduling approach. International journal of hydrogen energy, 2021. 46(14): p. 9303-9313.
24. Nasser, M., et al., A review of water electrolysis–based systems for hydrogen production using hybrid/solar/wind energy systems. Environmental Science and Pollution Research, 2022. 29(58): p. 86994-87018.
25. Trattner, A., et al., Renewable hydrogen: modular concepts from production over storage to the consumer. Chemie Ingenieur Technik, 2021. 93(4): p. 706-716.
26. Shih, A.J., et al., Water electrolysis. Nature Reviews Methods Primers, 2022. 2(1): p. 84.
27. Feng, C., et al., Fe-based electrocatalysts for oxygen evolution reaction: progress and perspectives. Acs Catalysis, 2020. 10(7): p. 4019-4047.
28. Wang, H., et al., Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis. Journal of materials chemistry A, 2020. 8(15): p. 6926-6956.
29. Gao, L., et al., Recent advances in activating surface reconstruction for the high- efficiency oxygen evolution reaction. Chemical Society Reviews, 2021. 50(15): p. 8428- 8469.
30. Cai, Z., et al., Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019. 7(10): p. 5069-5089.
31. Karmakar, A., et al., A vast exploration of improvising synthetic strategies for enhancing the OER kinetics of LDH structures: a review. Journal of Materials Chemistry A, 2021. 9(3): p. 1314-1352.
32. Shi, D., et al., Oxygen vacancies meet partial S substitution: an effective strategy to achieve obvious synergistic effects and adjustable electrochemical behavior in NiFe- LDH for enhanced OER and capacitive performance. Inorganic Chemistry Frontiers, 2023. 10(18): p. 5391-5405.
33. Wang, L., et al., 3D nanostructured Ce-doped CoFe-LDH/NF self-supported catalyst for high-performance OER. Dalton Transactions, 2023. 52(34): p. 12038-12048.
34. Deka, S., et al., Mechanistic insights into electrocatalytically reduced OER performance in marigold-like trimetallic NiFe-based LDH: charge localisation and d-band orbital filling. Journal of Materials Chemistry A, 2024.
35. Wu, J., et al., Constructing Electrocatalysts with Composition Gradient Distribution by Solubility Product Theory: Amorphous/Crystalline CoNiFe‐LDH Hollow Nanocages. Advanced Functional Materials, 2023. 33(37): p. 2300808.
36. Wang, F., et al., Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation. Nature Communications, 2023. 14(1): p. 6019.
37. Paladugu, S., et al., Mesoporous RE0. 5Ce0. 5O2–x Fluorite Electrocatalysts for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2024.
38. Paladugu, S., et al., Tailored (La0. 2Pr0. 2Nd0. 2Tb0. 2Dy0. 2) 2Ce2O7 as a Highly Active and Stable Nanocatalyst for the Oxygen Evolution Reaction. Small, 2024: p. 2305789.
39. Li, H., et al., Surface reconstruction of perovskites for water oxidation: the role of initial oxides’ bulk chemistry. Small Science, 2022. 2(1): p. 2100048.
40. Liu, L.-B., et al., Perovskite Oxides Toward Oxygen Evolution Reaction: Intellectual Design Strategies, Properties and Perspectives. Electrochemical Energy Reviews, 2024. 7(1): p. 1-37.
41. Deeksha, et al., Transition Metal‐based Perovskite Oxides: Emerging Electrocatalysts for Oxygen Evolution Reaction. ChemCatChem, 2023. 15(6): p. e202300040.
42. Tan, T., et al., High-Performance Co-production of Electricity and Light Olefins Enabled by Exsolved NiFe Alloy Nanoparticles from a Double-Perovskite Oxide Anode in Solid Oxide-Ion-Conducting Fuel Cells. ACS nano, 2023. 17(14): p. 13985-13996.
43. Li, S.-F., et al., Facile surface defect engineering on perovskite oxides for enhanced OER performance. Dalton Transactions, 2023. 52(13): p. 4207-4213.
44. Wang, H., et al., Research progress of spinel CoFe 2 O 4 as an electrocatalyst for the oxygen evolution reaction. Catalysis Science & Technology, 2023. 13(21): p. 6102-6125.
45. Olowoyo, J.O. and R.J. Kriek, Recent progress on bimetallic‐based spinels as electrocatalysts for the oxygen evolution reaction. Small, 2022. 18(41): p. 2203125.
46. Liu, L., et al., The catalytic activity of reduced graphene aerogel anchored with CoFe2O4 spinel via self-assembly technique for enhanced oxygen evolution reaction. Carbon, 2024. 219: p. 118847.
47. Iqbal, M.Z., et al., Faradically Dominant Pseudocapacitive Manganese Cobalt Oxide Electrode Materials for Hybrid Supercapacitors and Electrochemical Water Splitting. Energy & Fuels, 2024.
48. Ruan, M., et al., Promotion of oxygen evolution through the modification of Co-O bond in spinel NiCo2O4. Journal of Physics and Chemistry of Solids, 2024: p. 111955.
49. Xu, S., et al., Engineered oxidation states in NiCo2O4@ CeO2 nanourchin architectures with abundant oxygen vacancies for enhanced oxygen evolution reaction performance. Chemical Engineering Journal, 2024. 482: p. 148787.
50. He, L., et al., Low-temperature synthesis of nano-porous high entropy spinel oxides with high grain boundary density for oxygen evolution reaction. Chemical Engineering Journal, 2023. 460: p. 141675.
51. Masood, M.T., Solution-processable compact and mesoporous titanium dioxide thin films as electron-selective layers for perovskite solar cells. 2020.
52. Chastain, J. and R.C. King Jr, Handbook of X-ray photoelectron spectroscopy. Perkin- Elmer Corporation, 1992. 40: p. 221.
53. Park, Y.S., et al., Ternary layered double hydroxide oxygen evolution reaction electrocatalyst for anion exchange membrane alkaline seawater electrolysis. Journal of Energy Chemistry, 2022. 75: p. 127-134.
54. Liao, C., et al., Constructing conductive interfaces between nickel oxide nanocrystals and polymer carbon nitride for efficient electrocatalytic oxygen evolution reaction. Advanced Functional Materials, 2019. 29(40): p. 1904020.
55. Zeng, K., et al., Optimizing d‐p Orbital Hybridization with Abundant Unfilled Antibonding Orbital in Multi‐Metal Layered Double Hydroxide: Motivating Efficient Oxygen Evolving. Advanced Functional Materials, 2024: p. 2315080. |