參考文獻 |
Ahern, K., & Rajagopal, I. (2013). Biochemistry free & easy.
2. Ahn, K., & Kornberg, A. (1990). Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. Journal of Biological Chemistry, 265(20), 11734-11739.
3. Ault-Riché, D., Fraley, C. D., Tzeng, C.-M., & Kornberg, A. (1998). Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli. Journal of bacteriology, 180(7), 1841-1847.
4. Banfalvi, G. (2021). Prebiotic pathway from ribose to RNA formation. International journal of molecular sciences, 22(8), 3857.
5. Bonora, M., Patergnani, S., Rimessi, A., De Marchi, E., Suski, J. M., Bononi, A., Giorgi, C., Marchi, S., Missiroli, S., Poletti, F., Wieckowski, M. R., & Pinton, P. (2012). ATP synthesis and storage. Purinergic Signalling, 8(3), 343-357.
6. Boyer, P. D. (1998). Energy, life, and ATP (Nobel lecture). Angewandte Chemie International Edition, 37(17), 2296-2307.
7. Cammarota, M., Teixeira, G., & Freire, D. (2001). Enzymatic pre-hydrolysis and anaerobic degradation of wastewaters with high fat contents. Biotechnology Letters, 23, 1591-1595.
8. Cecerska-Heryć, E., Surowska, O., Heryć, R., Serwin, N., Napiontek-Balińska, S., & Dołęgowska, B. (2021). Are antioxidant enzymes essential markers in the diagnosis and monitoring of cancer patients–a review. Clinical Biochemistry, 93, 1-8.
9. Chang. (2005). Map: Physical Chemistry for the Biosciences.
10. Chhetri, G., Kalita, P., & Tripathi, T. (2015). An efficient protocol to enhance recombinant protein expression using ethanol in Escherichia coli. MethodsX, 2, 385–391. In.
11. Cooke, R., & Pate, E. (1985). The effects of ADP and phosphate on the contraction of muscle fibers. Biophysical journal, 48(5), 789-798.
12. Dahiya, S., Bajaj, B. K., Kumar, A., Tiwari, S. K., & Singh, B. (2020). A review on biotechnological potential of multifarious enzymes in bread making. Process Biochemistry, 99, 290-306.
13. Das, A., Sinclair, D., Bonkowski, M., Johnston, I., & Wu, L. (2017). Extension of physical endurance and protection against physical, chemical and radiological trauma by NAD+ precursors. Journal of Science and Medicine in Sport, 20, S165-S166.
14. Fox, P., & Stepaniak, L. (1993). Enzymes in cheese technology. International Dairy Journal, 3(4-6), 509-530.
15. Froesch, E. R., Renold, A. E., & McWilliams, B. (1956). Specific enzymatic determination of glucose in blood and urine using glucose oxidase. Diabetes, 5(1), 1-6.
16. Fukamizu, Y., Uchida, Y., Shigekawa, A., Sato, T., Kosaka, H., & Sakurai, T. (2022). Safety evaluation of β-nicotinamide mononucleotide oral administration in healthy adult men and women. Scientific Reports, 12(1), 14442.
17. Ge, T., Yang, J., Zhou, S., Wang, Y., Li, Y., & Tong, X. (2020). The role of the pentose phosphate pathway in diabetes and cancer. Frontiers in Endocrinology, 11, 507678.
18. Ghosh, B. C., Prasad, L., & Saha, N. (2017). Enzymatic hydrolysis of whey and its analysis. Journal of food science and technology, 54, 1476-1483.
19. Grahame, D. A. S., Bryksa, B. C., & Yada, R. Y. (2015). 2 - Factors affecting enzyme activity. In R. Y. Yada (Ed.), Improving and Tailoring Enzymes for Food Quality and Functionality (pp. 11-55). Woodhead Publishing.
20. Gross, A., Abril, O., Lewis, J. M., Geresh, S., & Whitesides, G. M. (1983). Practical synthesis of 5-phospho-D-ribosyl. alpha.-1-pyrophosphate (PRPP): enzymatic routes from ribose 5-phosphate or ribose. Journal of the American Chemical Society, 105(25), 7428-7435.
21. Gunjal, A., Waghmode, M., Patil, N., & Nawani, N. (2019). Significance of soil enzymes in agriculture. In Smart bioremediation technologies (pp. 159-168). Elsevier.
22. Hildenbrand, J. C., Teleki, A., & Jendrossek, D. (2020). A universal polyphosphate kinase: PPK2c of Ralstonia eutropha accepts purine and pyrimidine nucleotides including uridine diphosphate. Applied microbiology and biotechnology, 104, 6659-6667.
23. Hirakawa, Y., Kakegawa, T., & Furukawa, Y. (2022). Borate-guided ribose phosphorylation for prebiotic nucleotide synthesis. Scientific Reports, 12(1), 11828.
24. Hope, J. N., Bell, A. W., Hermodson, M. A., & Groarke, J. M. (1986). Ribokinase from Escherichia coli K12. Nucleotide sequence and overexpression of the rbsK gene and purification of ribokinase. Journal of Biological Chemistry, 261(17), 7663-7668.
25. Igarashi, M., & Yamauchi, T. (2023). Insight into the application of nicotinamide mononucleotide (NMN) to age-related disorders. Journal of Cellular and Molecular, 2(1), 9-13.
26. Khakh, B. S., & Burnstock, G. (2009). The double life of ATP. Scientific American, 301(6), 84.
27. Kiss, T., Nyúl-Tóth, Á., Balasubramanian, P., Tarantini, S., Ahire, C., Yabluchanskiy, A., Csipo, T., Farkas, E., Wren, J. D., & Garman, L. (2020). Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: transcriptional footprint of SIRT1 activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects. Geroscience, 42, 527-546.
28. Law, B., & Goodenough, P. (1995). Enzymes in milk and cheese production. In Enzymes in food processing (pp. 114-143). Springer.
29. Lehninger, A. (1950). Role of metal ions in enzyme systems. Physiological reviews, 30(3), 393-429.
30. Li, J., King, N. C., & Sinoway, L. I. (2003). ATP concentrations and muscle tension increase linearly with muscle contraction. Journal of Applied Physiology, 95(2), 577-583.
31. Liao, B., Zhao, Y., Wang, D., Zhang, X., Hao, X., & Hu, M. (2021). Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: a randomized, double-blind study. Journal of the International Society of Sports Nutrition, 18, 1-9.
32. Lin, Y.-H., Nishikawa, S., Jia, T. Z., Yeh, F.-I., Khusnutdinova, A., Yakunin, A. F., Fujishima, K., & Wang, P.-H. (2023). One-pot chemo-enzymatic synthesis and one-step recovery of length-variable long-chain polyphosphates from microalgal biomass. Green Chemistry, 25(23), 9896-9907.
33. Maharjan, A., Singhvi, M., & Kim, B. S. (2021). Biosynthesis of a Therapeutically Important Nicotinamide Mononucleotide through a Phosphoribosyl Pyrophosphate Synthetase 1 and 2 Engineered Strain of Escherichia coli. ACS Synthetic Biology, 10(11), 3055-3065.
34. Mahoney, D. E., Hiebert, J. B., Thimmesch, A., Pierce, J. T., Vacek, J. L., Clancy, R. L., Sauer, A. J., & Pierce, J. D. (2018). Understanding D-ribose and mitochondrial function. Advances in bioscience and clinical medicine, 6(1), 1.
35. Marini, M., Zunica, G., & Franceschi, C. (1985). Inhibition of cell proliferation by D-ribose and deoxy-D-ribose. Proceedings of the Society for Experimental Biology and Medicine, 180(2), 246-257.
36. McCall, K. A., Huang, C.-c., & Fierke, C. A. (2000). Function and mechanism of zinc metalloenzymes. The Journal of nutrition, 130(5), 1437S-1446S.
37. Ming, W., Hu, S., Liu, Y., Li, Q.-A.-W., Zhu, Y.-Y., & Gu, S.-X. (2022). Recent Advances in the Chemical Synthesis of β-Nicotinamide Mononucleotide. Current Organic Chemistry, 26(24), 2151-2159.
38. Motomura, K., Hirota, R., Okada, M., Ikeda, T., Ishida, T., & Kuroda, A. (2014). A New Subfamily of Polyphosphate Kinase 2 (Class III PPK2) Catalyzes both Nucleoside Monophosphate Phosphorylation and Nucleoside Diphosphate Phosphorylation. Applied and Environmental Microbiology, 80(8), 2602-2608.
39. Murugappa, S., & Kunapuli, S. P. (2006). The role of ADP receptors in platelet function. Front Biosci, 11(1), 1977.
40. Nadeeshani, H., Li, J., Ying, T., Zhang, B., & Lu, J. (2022). Nicotinamide mononucleotide (NMN) as an anti-aging health product–promises and safety concerns. Journal of advanced research, 37, 267-278.
41. Neville, N., Roberge, N., & Jia, Z. (2022). Polyphosphate kinase 2 (PPK2) enzymes: structure, function, and roles in bacterial physiology and virulence. International journal of molecular sciences, 23(2), 670.
42. Nocek, B., Khusnutdinova, A., Ruszkowski, M., Flick, R., Burda, M., Batyrova, K., Brown, G., Mucha, A., Joachimiak, A., & Berlicki, Ł. (2018). Structural insights into substrate selectivity and activity of bacterial polyphosphate kinases. ACS Catal 8: 10746–10760. In.
43. Ohtomo, R., Sekiguchi, Y., Mimura, T., Saito, M., & Ezawa, T. (2004). Quantification of polyphosphate: different sensitivities to short-chain polyphosphate using enzymatic and colorimetric methods as revealed by ion chromatography. Analytical biochemistry, 328(2), 139-146.
44. Park, J., & Gupta, R. S. (2008). Adenosine kinase and ribokinase – the RK family of proteins. Cellular and Molecular Life Sciences, 65(18), 2875-2896.
45. Parnell, A. E., Mordhorst, S., Kemper, F., Giurrandino, M., Prince, J. P., Schwarzer, N. J., Hofer, A., Wohlwend, D., Jessen, H. J., & Gerhardt, S. (2018). Substrate recognition and mechanism revealed by ligand-bound polyphosphate kinase 2 structures. Proceedings of the National Academy of Sciences, 115(13), 3350-3355.
46. Plácido, J., & Capareda, S. (2015). Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresources and Bioprocessing, 2, 1-12.
47. Poddar, S. K., Sifat, A. E., Haque, S., Nahid, N. A., Chowdhury, S., & Mehedi, I. (2019). Nicotinamide mononucleotide: exploration of diverse therapeutic applications of a potential molecule. Biomolecules, 9(1), 34.
48. Preiss, J., & Handler, P. (1957). Enzymatic synthesis of nicotinamide mononucleotide. Journal of Biological Chemistry, 225(2), 759-770.
49. Ray, K., & Mukherjee, C. (2015). An improved method for extraction and quantification of polyphosphate granules from microbial cells.
50. Riordan, J. (1977). The role of metals in enzyme activity. Annals of Clinical & Laboratory Science, 7(2), 119-129.
51. SDGs, U. (2015). https://www.un.org/sustainabledevelopment/
52. Sigrell, J. A., Cameron, A. D., Jones, T. A., & Mowbray, S. L. (1998). Structure of Escherichia coli ribokinase in complex with ribose and dinucleotide determined to 1.8 Å resolution: insights into a new family of kinase structures. Structure, 6(2), 183-193.
53. Sigrell, J. A., Cameron, A. D., & Mowbray, S. L. (1999). Induced fit on sugar binding activates ribokinase11Edited by A. R. Fersht. Journal of Molecular Biology, 290(5), 1009-1018.
54. Soma, M., & Lalam, S. K. (2022). The role of nicotinamide mononucleotide (NMN) in anti-aging, longevity, and its potential for treating chronic conditions. Molecular Biology Reports, 49(10), 9737-9748.
55. Tai, Y., Zhang, Z., Liu, Z., Li, X., Yang, Z., Wang, Z., An, L., Ma, Q., & Su, Y. (2024). D-ribose metabolic disorder and diabetes mellitus. Molecular Biology Reports, 51(1), 220.
56. Torres, E., Bustos-Jaimes, I., & Le Borgne, S. (2003). Potential use of oxidative enzymes for the detoxification of organic pollutants. Applied Catalysis B: Environmental, 46(1), 1-15.
57. Tumlirsch, T., Sznajder, A., & Jendrossek, D. (2015). Formation of polyphosphate by polyphosphate kinases and its relationship to poly (3-hydroxybutyrate) accumulation in Ralstonia eutropha strain H16. Applied and Environmental Microbiology, 81(24), 8277-8293.
58. Uddin, G. M., Youngson, N. A., Sinclair, D. A., & Morris, M. J. (2016). Head to head comparison of short-term treatment with the NAD+ precursor nicotinamide mononucleotide (NMN) and 6 weeks of exercise in obese female mice. Frontiers in pharmacology, 7, 208755.
59. UNDESA. (2019). World Population Ageing. chrome-extension://bocbaocobfecmglnmeaeppambideimao/pdf/viewer.html?file=https%3A%2F%2F
60. Wadkins, C. L., & Lehninger, A. L. (1958). The Adenosine Triphosphate-Adenosine Diphosphate Exchange Reaction of Oxidative Phosphorylation. Journal of Biological Chemistry, 233(6), 1589-1597.
61. Wang, P.-H., Fujishima, K., Berhanu, S., Kuruma, Y., Jia, T. Z., Khusnutdinova, A. N., Yakunin, A. F., & McGlynn, S. E. (2019). A bifunctional polyphosphate kinase driving the regeneration of nucleoside triphosphate and reconstituted cell-free protein synthesis. ACS Synthetic Biology, 9(1), 36-42.
62. Wei, Y., Han, C. S., Zhou, J., Liu, Y., Chen, L., & He, R. Q. (2012). D-ribose in glycation and protein aggregation. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820(4), 488-494.
63. Wu, W., Yuan, S., Tang, Y., Meng, X., Peng, M., Hu, Z., & Liu, W. (2023). Effect of Exercise and Oral Niacinamide Mononucleotide on Improving Mitochondrial Autophagy in Alzheimer’s Disease. Nutrients, 15(13), 2851.
64. Zavilopulo, A., Shpenik, O., Mylymko, A., & Shpenik, V. Y. (2019). Mass spectrometry of d-ribose molecules. International Journal of Mass Spectrometry, 441, 1-7.
65. Zhang, N., & Sauve, A. A. (2018). Regulatory effects of NAD+ metabolic pathways on sirtuin activity. Progress in molecular biology and translational science, 154, 71-104.
66. Zhang, R., Shen, Y., Zhou, L., Sangwung, P., Fujioka, H., Zhang, L., & Liao, X. (2017). Short-term administration of Nicotinamide Mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure. Journal of molecular and cellular cardiology, 112, 64-73.
67. Zhang, Y., Zhu, W., Wang, M., Xi, P., Wang, H., & Tian, D. (2023). Nicotinamide mononucleotide alters body composition and ameliorates metabolic disorders induced by a high‐fat diet. IUBMB life, 75(6), 548-562. |