參考文獻 |
Uncategorized References
1. Hyman, B. T.; Trojanowski, J. Q., Editorial on consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. Journal of neuropathology and experimental neurology 1997, 56 (10), 1095.
2. Selkoe, D. J., Chapter 67 - Alzheimer Disease. In Rosenberg′s Molecular and Genetic Basis of Neurological and Psychiatric Disease (Fifth Edition), Rosenberg, R. N.; Pascual, J. M., Eds. Academic Press: Boston, 2015; pp 753-768.
3. De Strooper, B.; Vassar, R.; Golde, T., The secretases: enzymes with therapeutic potential in Alzheimer disease. Nature Reviews Neurology 2010, 6 (2), 99-107.
4. Ulep, M. G.; Saraon, S. K.; McLea, S., Alzheimer Disease. The Journal for Nurse Practitioners 2018, 14 (3), 129-135.
5. Rogers, S.; Farlow, M.; Doody, R.; Mohs, R.; Friedhoff, L.; Group*, D. S., A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer′s disease. Neurology 1998, 50 (1), 136-145.
6. Castellani, R. J.; Rolston, R. K.; Smith, M. A., Alzheimer disease. Disease-a-month : DM 2010, 56 (9), 484-546.
7. O′Brien, R. J.; Wong, P. C., Amyloid precursor protein processing and Alzheimer′s disease. Annual review of neuroscience 2011, 34, 185-204.
8. Zhou, Z. D.; Chan, C. H.; Ma, Q. H.; Xu, X. H.; Xiao, Z. C.; Tan, E. K., The roles of amyloid precursor protein (APP) in neurogenesis: Implications to pathogenesis and therapy of Alzheimer disease. Cell Adh Migr 2011, 5 (4), 280-92.
9. Breen, K.; Bruce, M.; Anderton, B., Beta amyloid precursor protein mediates neuronal cell‐cell and cell‐surface adhesion. Journal of neuroscience research 1991, 28 (1), 90-100.
10. Ohsawa, I.; Takamura, C.; Morimoto, T.; Ishiguro, M.; Kohsaka, S., Amino‐terminal region of secreted form of amyloid precursor protein stimulates proliferation of neural stem cells. European Journal of Neuroscience 1999, 11 (6), 1907-1913.
11. Qiu, W. Q.; Ferreira, A.; Miller, C.; Koo, E. H.; Selkoe, D. J., Cell-surface beta-amyloid precursor protein stimulates neurite outgrowth of hippocampal neurons in an isoform-dependent manner. Journal of Neuroscience 1995, 15 (3), 2157-2167.
12. Zhou, Z.-d.; Chan, C. H.-s.; Ma, Q.-h.; Xu, X.-h.; Xiao, Z.-c.; Tan, E.-K., The roles of amyloid precursor protein (APP) in neurogenesis. Cell Adhesion & Migration 2011, 5 (4), 280-292.
13. Waldhauser, F.; Steger, H., Changes in melatonin secretion with age and pubescence. Journal of Neural Transmission. Supplementum 1986, 21, 183-197.
14. Zhou, J. N.; Liu, R. Y.; Kamphorst, W.; Hofman, M. A.; Swaab, D. F., Early neuropathological Alzheimer′s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. Journal of pineal research 2003, 35 (2), 125-130.
15. Shukla, M.; Htoo, H. H.; Wintachai, P.; Hernandez, J. F.; Dubois, C.; Postina, R.; Xu, H.; Checler, F.; Smith, D. R.; Govitrapong, P., Melatonin stimulates the nonamyloidogenic processing of β APP through the positive transcriptional regulation of ADAM10 and ADAM17. Journal of pineal research 2015, 58 (2), 151-165.
16. Mukda, S.; Panmanee, J.; Boontem, P.; Govitrapong, P., Melatonin administration reverses the alteration of amyloid precursor protein-cleaving secretases expression in aged mouse hippocampus. Neuroscience Letters 2016, 621, 39-46.
17. Pedrini, S.; Carter, T. L.; Prendergast, G.; Petanceska, S.; Ehrlich, M. E.; Gandy, S., Modulation of statin-activated shedding of Alzheimer APP ectodomain by ROCK. PLoS Medicine 2005, 2 (1), e18.
18. Murphy, G., The ADAMs: signalling scissors in the tumour microenvironment. Nature Reviews Cancer 2008, 8 (12), 932-941.
19. Khezri, M. R.; Mohebalizadeh, M.; Ghasemnejad-Berenji, M., Therapeutic potential of ADAM10 modulation in Alzheimer’s disease: a review of the current evidence. Cell Communication and Signaling 2023, 21 (1), 60.
20. Huovila, A.-P. J.; Turner, A. J.; Pelto-Huikko, M.; Kärkkäinen, I.; Ortiz, R. M., Shedding light on ADAM metalloproteinases. Trends in biochemical sciences 2005, 30 (7), 413-422.
21. Lammich, S.; Kojro, E.; Postina, R.; Gilbert, S.; Pfeiffer, R.; Jasionowski, M.; Haass, C.; Fahrenholz, F., Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proceedings of the national academy of sciences 1999, 96 (7), 3922-3927.
22. Moss, M. L.; Powell, G.; Miller, M. A.; Edwards, L.; Qi, B.; Sang, Q.-X. A.; De Strooper, B.; Tesseur, I.; Lichtenthaler, S. F.; Taverna, M., ADAM9 inhibition increases membrane activity of ADAM10 and controls α-secretase processing of amyloid precursor protein. Journal of Biological Chemistry 2011, 286 (47), 40443-40451.
23. Pastore, F.; Battistoni, M.; Sollazzo, R.; Renna, P.; Paciello, F.; Li Puma, D. D.; Barone, E.; Dagliyan, O.; Ripoli, C.; Grassi, C., A bioengineering strategy to control ADAM10 activity in living cells. International Journal of Molecular Sciences 2023, 24 (2), 917.
24. Van Wart, H. E.; Birkedal-Hansen, H., The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proceedings of the National Academy of Sciences 1990, 87 (14), 5578-5582.
25. Dai, J.; Liu, Z.-Q.; Wang, X.-Q.; Lin, J.; Yao, P.-F.; Huang, S.-L.; Ou, T.-M.; Tan, J.-H.; Li, D.; Gu, L.-Q.; Huang, Z.-S., Discovery of Small Molecules for Up-Regulating the Translation of Antiamyloidogenic Secretase, a Disintegrin and Metalloproteinase 10 (ADAM10), by Binding to the G-Quadruplex-Forming Sequence in the 5′ Untranslated Region (UTR) of Its mRNA. Journal of Medicinal Chemistry 2015, 58 (9), 3875-3891.
26. Anders, A.; Gilbert, S.; Garten, W.; Postina, R.; Fahrenholz, F., Regulation of the α‐secretase ADAM10 by its prodomain and proprotein convertases. The FASEB Journal 2001, 15 (10), 1837-1839.
27. Lundgren, J. L.; Ahmed, S.; Schedin‐Weiss, S.; Gouras, G. K.; Winblad, B.; Tjernberg, L. O.; Frykman, S., ADAM10 and BACE1 are localized to synaptic vesicles. Journal of neurochemistry 2015, 135 (3), 606-615.
28. Guo, C.; Yang, Z.-H.; Zhang, S.; Chai, R.; Xue, H.; Zhang, Y.-H.; Li, J.-Y.; Wang, Z.-Y., Intranasal lactoferrin enhances α-secretase-dependent amyloid precursor protein processing via the ERK1/2-CREB and HIF-1α pathways in an Alzheimer’s disease mouse model. Neuropsychopharmacology 2017, 42 (13), 2504-2515.
29. Doberstein, K.; Pfeilschifter, J.; Gutwein, P., The transcription factor PAX2 regulates ADAM10 expression in renal cell carcinoma. Carcinogenesis 2011, 32 (11), 1713-1723.
30. Renner, S. C. Identification of ADAM10 5UTR Binding Proteins: The RNA-binding Protein Unr is Involved in ADAM10 MRNA Stability. Universitätsbibliothek der Ludwig-Maximilians-Universität, 2014.
31. Endres, K.; Deller, T., Regulation of Alpha-Secretase ADAM10 In vitro and In vivo: Genetic, Epigenetic, and Protein-Based Mechanisms. Front Mol Neurosci. 2017; 10: 56. Epub 2017/04/04. https://doi. org/10. 3389/fnmol. 2017.00056 PMID: 28367112: 2017.
32. Reinhardt, S.; Schuck, F.; Grösgen, S.; Riemenschneider, M.; Hartmann, T.; Postina, R.; Grimm, M.; Endres, K., Unfolded protein response signaling by transcription factor XBP‐1 regulates ADAM10 and is affected in Alzheimer′s disease. The FASEB Journal 2014, 28 (2), 978-997.
33. Corbett, G. T.; Gonzalez, F. J.; Pahan, K., Activation of peroxisome proliferator-activated receptor α stimulates ADAM10-mediated proteolysis of APP. Proceedings of the National Academy of Sciences 2015, 112 (27), 8445-8450.
34. Chacón, P. J.; Rodríguez-Tébar, A., Increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector. Alzheimer′s Research & Therapy 2012, 4 (4), 31.
35. Cacabelos, R.; Carril, J. C.; Cacabelos, N.; Kazantsev, A. G.; Vostrov, A. V.; Corzo, L.; Cacabelos, P.; Goldgaber, D., Sirtuins in Alzheimer’s disease: SIRT2-related genophenotypes and implications for pharmacoepigenetics. International journal of molecular sciences 2019, 20 (5), 1249.
36. Manjula, R.; Anuja, K.; Alcain, F. J., SIRT1 and SIRT2 activity control in neurodegenerative diseases. Frontiers in pharmacology 2021, 11, 585821.
37. Reinhardt, S.; Schuck, F.; Stoye, N.; Hartmann, T.; Grimm, M. O.; Pflugfelder, G.; Endres, K., Transcriptional repression of the ectodomain sheddase ADAM10 by TBX2 and potential implication for Alzheimer’s disease. Cellular and molecular life sciences 2019, 76, 1005-1025.
38. Kern, A.; Roempp, B.; Prager, K.; Walter, J.; Behl, C., Down-regulation of endogenous amyloid precursor protein processing due to cellular aging. Journal of Biological Chemistry 2006, 281 (5), 2405-2413.
39. Brummer, T.; Pigoni, M.; Rossello, A.; Wang, H.; Noy, P. J.; Tomlinson, M. G.; Blobel, C. P.; Lichtenthaler, S. F., The metalloprotease ADAM10 (a disintegrin and metalloprotease 10) undergoes rapid, postlysis autocatalytic degradation. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2018, 32 (7), 3560-3573.
40. Delvaux, E.; Bentley, K.; Stubbs, V.; Sabbagh, M.; Coleman, P. D., Differential processing of amyloid precursor protein in brain and in peripheral blood leukocytes. Neurobiology of aging 2013, 34 (6), 1680-1686.
41. Seegar, T. C. M.; Killingsworth, L. B.; Saha, N.; Meyer, P. A.; Patra, D.; Zimmerman, B.; Janes, P. W.; Rubinstein, E.; Nikolov, D. B.; Skiniotis, G.; Kruse, A. C.; Blacklow, S. C., Structural Basis for Regulated Proteolysis by the α-Secretase ADAM10. Cell 2017, 171 (7), 1638-1648.e7.
42. Sung, P.-S.; Yeh, C.-C.; Wang, L.-C.; Hung, P.-H.; Muo, C.-H.; Sung, F.-C.; Chen, C.-H.; Tsai, K.-J., Increased risk of dementia in patients with non-apnea sleep disorder. Current Alzheimer Research 2017, 14 (3), 309-316.
43. Wetzel, S.; Seipold, L.; Saftig, P., The metalloproteinase ADAM10: A useful therapeutic target? Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2017, 1864 (11, Part B), 2071-2081.
44. Chen, C.-D.; Podvin, S.; Gillespie, E.; Leeman, S. E.; Abraham, C. R., Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proceedings of the National Academy of Sciences 2007, 104 (50), 19796-19801.
45. Zheng, W.; Tian, E.; Liu, Z.; Zhou, C.; Yang, P.; Tian, K.; Liao, W.; Li, J.; Ren, C., Small molecule angiotensin converting enzyme inhibitors: A medicinal chemistry perspective. Frontiers in Pharmacology 2022, 13, 968104.
46. Ohrui, T.; Matsui, T.; Yamaya, M.; Arai, H.; Ebihara, S.; Maruyama, M.; Sasaki, H., Angiotensin‐converting enzyme inhibitors and incidence of Alzheimer′s disease in Japan. Journal of the American Geriatrics Society 2004, 52 (4), 649-650.
47. Zou, K.; Maeda, T.; Watanabe, A.; Liu, J.; Liu, S.; Oba, R.; Satoh, Y.-i.; Komano, H.; Michikawa, M., Aβ42-to-Aβ40-and angiotensin-converting activities in different domains of angiotensin-converting enzyme. Journal of Biological Chemistry 2009, 284 (46), 31914-31920.
48. Fang, M.; Zhang, Q.; Wang, X.; Su, K.; Guan, P.; Hu, X., Inhibition Mechanisms of (−)-Epigallocatechin-3-gallate and Genistein on Amyloid-beta 42 Peptide of Alzheimer’s Disease via Molecular Simulations. ACS Omega 2022, 7 (23), 19665-19675.
49. Viña, J.; Escudero, J.; Baquero, M.; Cebrián, M.; Carbonell-Asíns, J. A.; Muñoz, J. E.; Satorres, E.; Meléndez, J. C.; Ferrer-Rebolleda, J.; Cózar-Santiago, M. d. P.; Santabárbara-Gómez, J. M.; Jové, M.; Pamplona, R.; Tarazona-Santabalbina, F. J.; Borrás, C., Genistein effect on cognition in prodromal Alzheimer’s disease patients. The GENIAL clinical trial. Alzheimer′s Research & Therapy 2022, 14 (1), 164.
50. Obregon, D. F.; Rezai-Zadeh, K.; Bai, Y.; Sun, N.; Hou, H.; Ehrhart, J.; Zeng, J.; Mori, T.; Arendash, G. W.; Shytle, D., ADAM10 activation is required for green tea (–)-epigallocatechin-3-gallate-induced α-secretase cleavage of amyloid precursor protein. Journal of Biological Chemistry 2006, 281 (24), 16419-16427.
51. Viña, J.; Escudero, J.; Baquero, M.; Cebrián, M.; Carbonell-Asíns, J. A.; Muñoz, J. E.; Satorres, E.; Meléndez, J. C.; Ferrer-Rebolleda, J.; Cózar-Santiago, M. d. P., Genistein effect on cognition in prodromal Alzheimer’s disease patients. The GENIAL clinical trial. Alzheimer′s Research & Therapy 2022, 14 (1), 164.
52. Khetmalis, Y. M.; Shivani, M.; Murugesan, S.; Chandra Sekhar, K. V. G., Oxindole and its derivatives: A review on recent progress in biological activities. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2021, 141, 111842.
53. Armstrong, J.; Ruiz, M.; Boddy, A.; Redfern, C.; Pearson, A.; Veal, G., Increasing the intracellular availability of all-trans retinoic acid in neuroblastoma cells. British journal of cancer 2005, 92 (4), 696-704.
54. Tippmann, F.; Hundt, J.; Schneider, A.; Endres, K.; Fahrenholz, F., Up‐regulation of the α‐secretase ADAM10 by retinoic acid receptors and acitretin. The FASEB Journal 2009, 23 (6), 1643-1654.
55. Lammich, S.; Buell, D.; Zilow, S.; Ludwig, A.-K.; Nuscher, B.; Lichtenthaler, S. F.; Prinzen, C.; Fahrenholz, F.; Haass, C., Expression of the anti-amyloidogenic secretase ADAM10 is suppressed by its 5′-untranslated region. Journal of biological chemistry 2010, 285 (21), 15753-15760.
56. Bai, S.; Nasser, M. W.; Wang, B.; Hsu, S.-H.; Datta, J.; Kutay, H.; Yadav, A.; Nuovo, G.; Kumar, P.; Ghoshal, K., MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. Journal of Biological Chemistry 2009, 284 (46), 32015-32027.
57. Moss, M. L.; Bomar, M.; Liu, Q.; Sage, H.; Dempsey, P.; Lenhart, P. M.; Gillispie, P. A.; Stoeck, A.; Wildeboer, D.; Bartsch, J. W., The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events. Journal of Biological Chemistry 2007, 282 (49), 35712-35721.
58. Seegar, T. C.; Killingsworth, L. B.; Saha, N.; Meyer, P. A.; Patra, D.; Zimmerman, B.; Janes, P. W.; Rubinstein, E.; Nikolov, D. B.; Skiniotis, G., Structural basis for regulated proteolysis by the α-secretase ADAM10. Cell 2017, 171 (7), 1638-1648. e7.
59. Hershkovits, A. S.; Gelley, S.; Hanna, R.; Kleifeld, O.; Shulman, A.; Fishman, A., Shifting the balance: soluble ADAM10 as a potential treatment for Alzheimer′s disease. Frontiers in Aging Neuroscience 2023, 15, 1171123.
60. Thonda, S.; Puttapaka, S. N.; Kona, S. V.; Kalivendi, S. V., Extracellular-Signal-Regulated Kinase Inhibition Switches APP Processing from β-to α-Secretase under Oxidative Stress: Modulation of ADAM10 by SIRT1/NF-κB Signaling. ACS Chemical Neuroscience 2021, 12 (21), 4175-4186.
61. Zhuang, J.; Wei, Q.; Lin, Z.; Zhou, C., Effects of ADAM10 deletion on Notch-1 signaling pathway and neuronal maintenance in adult mouse brain. Gene 2015, 555 (2), 150-158.
62. Boccalini, G.; Sassoli, C.; Bani, D.; Nistri, S., Relaxin induces up-regulation of ADAM10 metalloprotease in RXFP1-expressing cells by PI3K/AKT signaling. Molecular and cellular endocrinology 2018, 472, 80-86.
63. Fernandez, J. W.; Rezai-Zadeh, K.; Obregon, D.; Tan, J., EGCG functions through estrogen receptor-mediated activation of ADAM10 in the promotion of non-amyloidogenic processing of APP. FEBS letters 2010, 584 (19), 4259-4267.
64. Lustgarten Guahmich, N.; Farber, G.; Shafiei, S.; McNally, D.; Redmond, D.; Kallinos, E.; Stuhlmann, H.; Dufort, D.; James, D.; Blobel, C. P., Endothelial deletion of ADAM10, a key regulator of Notch signaling, causes impaired decidualization and reduced fertility in female mice. Angiogenesis 2020, 23, 443-458.
65. Canet, G.; Zussy, C.; Hernandez, C.; Chevallier, N.; Marchi, N.; Desrumaux, C.; Givalois, L., Chronic glucocorticoids consumption triggers and worsens experimental Alzheimer’s disease-like pathology by detrimental immune modulations. Neuroendocrinology 2022, 112 (10), 982-997.
66. Qian, M.; Shen, X.; Wang, H., The Distinct Role of ADAM17 in APP Proteolysis and Microglial Activation Related to Alzheimer’s Disease. Cellular and Molecular Neurobiology 2016, 36 (4), 471-482.
67. Thomas, J.; Smith, H.; Smith, C. A.; Coward, L.; Gorman, G.; De Luca, M.; Jumbo-Lucioni, P., The angiotensin-converting enzyme inhibitor lisinopril mitigates memory and motor deficits in a drosophila model of alzheimer’s disease. Pathophysiology 2021, 28 (2), 307-319. |