博碩士論文 111223020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.191.192.250
姓名 江晨寧(Chen-Ning Chiang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 小分子化合物誘導的 α 分泌酶 ADAM10 對抗阿茲海默症的研究
(Investigation of small compound induced α-secretase ADAM10 to against Alzheimer’s disease)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2039-7-12以後開放)
摘要(中) 阿茲海默症的主要病因是由細胞外amyloid-β (Aβ) 引起的認知障礙和神經元死亡,以及大腦中細胞內的Tau 蛋白聚集,導致其過度磷酸化。大腦中的斑塊主要由一種稱為amyloid-β (Aβ) 的胜肽組成,Aβ會透過形成β-sheet原纖維而聚集。Amyloid-β precursor protein (APP)可以透過三種蛋白水解酶進行剪裁,路徑分別為澱粉樣蛋白途徑和非澱粉樣蛋白途徑。澱粉樣蛋白形成的過程中會被β-secretase和 γ-secretase裂解以釋放β-amyloid peptides及 sAPPβ;非澱粉樣蛋白生成途徑則被 α-secretase裂解,釋放 p3 片段和 sAPPα。 由於ADAM10會透過α-secretase 位點裂解APP,進一步抑制可溶性Aβ 肽的裂解,並生成神經保護性的sAPPα來調節Aβ肽,因此 ADAM10 的分子特性是最重要的生理酵素。本研究使用promoter assay來篩選能夠活化α-secretase並促進非澱粉樣蛋白途徑的藥物候選。結果顯示了兩種藥物候選可以在相對低的EC50值下增加ADAM10表達。在細胞模型中,我使用Western blot分析發現添加化合物L和G化合物有效增加了ADAM10和sAPPα的蛋白質表現。因為Aβ40和Aβ42是阿茲海默症的主要病因,因此想知道這種藥物處理是否能夠有效減少細胞中的Aβ40和Aβ42水平。使用ELISA試劑,發現添加這兩種藥物可以顯著減少Aβ40和Aβ42,表明α-secretase的上調成功將路徑轉移到非澱粉樣蛋白路徑。ADAM10活性試劑顯示這兩種藥物不直接與ADAM10結合,而是增加α-secretase的mRNA和蛋白表達。隨後的RNA序列分析幫助解釋ADAM10活化的機制。這些實驗結果表明這兩種藥物具有改善阿茲海默症的潛力。
摘要(英) Alzheimer′s disease is caused by the death of neurons and cognitive impairment resulting from the accumulation of intracellular hyperphosphorylated Tau and extracellular amyloid-β (Aβ) in the brain. The amyloid plaques in the brain primarily consist of a peptide called amyloid-β (Aβ), which aggregates by forming β-sheet fibrils. The amyloid-β precursor protein (APP) can be processed through two proteolytic pathways. The amyloidogenic processing involves cleavage by β- and γ-Secretase, leading to the release of amyloid-β peptides and sAPPβ, while the non-amyloidogenic pathway involves cleavage by α-secretase and -secretase, resulting in the release of p3 fragments and sAPPα. It has been suggested that different metalloproteases may act as potential constitutive α-secretase. ADAM10 cleaves APP through the α-secretase site, inhibiting the production of soluble Aβ peptide and generating neuroprotective sAPPα to regulate Aβ peptide levels. Our study used a ADAM10 promoter assay to screen for potential drugs activating α-secretase and promoting the non-amyloidogenic pathway. The results showed that two drug candidates could enhance ADAM10 expression and increase ADAM10 activity at relatively low EC50 values. In a cell model, I used Western blot analysis to find that adding compounds L and G effectively increased the levels of ADAM10 and sAPPα. Since Aβ40 and Aβ42 are the main culprits in Alzheimer′s disease, the researchers wanted to determine if the drug treatment could effectively reduce the levels of Aβ40 and Aβ42 in the cells. Using ELISA kits, we observed that the addition of the two drug candidates significantly decreased the levels of Aβ40 and Aβ42, indicating that the upregulation of α-secretase was successful in shifting the pathway towards the non-amyloidogenic route. The ADAM10 activity assay kit showed that these drugs do not directly bind to ADAM10, but rather increase the mRNA and protein expression of α-secretase. Subsequent RNA sequencing analysis helped elucidate the mechanism of ADAM10 activation. These experiments collectively demonstrate that these drug candidates may help to improve Alzheimer′s disease.
關鍵字(中) ★ 阿茲海默症
★ 金屬蛋白酶結構域 10
★ 小分子藥物
關鍵字(英) ★ Alzheimer′s disease
★ metalloprotease 10 (ADAM10)
★ small compound
論文目次 摘要 viii
Abstract ix
Acknowledgements xi
Table of contents vi
List of Figures viii
List of Tables ix
Chapter I Introduction 1
1-1 Alzheimer’s disease 1
1-1-1 Basis of molecular progression of Alzheimer′s disease 1
1-1-2 Etiology of AD 1
1-1-3 Treatment Strategy 2
1-2 Amyloid Precursor Protein (APP) 3
1-2-1 Trafficking and Proteolytic Processing of APP 3
1-2-2 Proteolytic processing pathway of APP 3
1-3 α-secretase, a disintegrin and metalloprotease 10 (ADAM10) 4
1-3-1 Overview 4
1-3-2 ADAM10 synthesis and structure 6
1-3-3 Regulation of ADAM10 at the translational level 7
1-3-4 ADAM10 in aging and AD 8
1-4 Small molecule drugs for high throughput screening 8
Research aims 12
Chapter II Methods 13
2-1 Plasmid construction, cell culture and plasmid transfection 13
2-2 Promoter assay and cell viability 14
2-3 EC50 16
2-4 Western Blotting 16
2-4-1 Western blot for detecting ADAM10 16
2-4-2 Western blot for detecting sAPPα 17
2-4-3 Western blot for detecting ADAM10 protein 17
2-5 Enzyme-linked immunosorbent assay (ELISA) 18
2-6 ADAM10 protein expression and purification 18
2-7 ADAM10 activity assay 20
2-7-1 Screening ADAM10 enhancer using a purified enzyme. 21
2-7-2 Measuring ADAM10 activity in biological samples. 21
2-8 RNA-sequencing 21
2-8-1 Principal component analysis plot (PCA plot) 22
2-8-2 Volcano plot 22
2-8-3 Heat map 23
2-9 Statistical analysis 23
Chapter III Results 24
3-1 Screening drugs based on increased transcription levels of ADAM10 24
3-1-1 Using ADAM10 promoter assay for drug screening 24
3-1-2 Cell viability 25
3-1-3 EC50 of promoter assay 25
3-2 Compound efficiently enhanced translation in a cellular model 26
3-2-1 Enhanced ADAM10 translation in a cellular model 26
3-2-2 Enhanced sAPPα secretion in a cellular model 28
3-3 Small molecule drugs promote the reduction of Aβ 29
3-3-1 ELISA kit of Aβ40 29
3-3-2 ELISA kit of Aβ42 30
3-4 Protein expression and purification 31
3-5 Drugs increase ADAM10 activity 32
3-6 Interaction between drugs and ADAM10 33
3-7 RNA-sequencing for drug detection 34
Chapter IV Discussion 37
Figures 43
References 67
Appendix A: Materials 73
Appendix B: negative control 77
參考文獻 Uncategorized References
1. Hyman, B. T.; Trojanowski, J. Q., Editorial on consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. Journal of neuropathology and experimental neurology 1997, 56 (10), 1095.
2. Selkoe, D. J., Chapter 67 - Alzheimer Disease. In Rosenberg′s Molecular and Genetic Basis of Neurological and Psychiatric Disease (Fifth Edition), Rosenberg, R. N.; Pascual, J. M., Eds. Academic Press: Boston, 2015; pp 753-768.
3. De Strooper, B.; Vassar, R.; Golde, T., The secretases: enzymes with therapeutic potential in Alzheimer disease. Nature Reviews Neurology 2010, 6 (2), 99-107.
4. Ulep, M. G.; Saraon, S. K.; McLea, S., Alzheimer Disease. The Journal for Nurse Practitioners 2018, 14 (3), 129-135.
5. Rogers, S.; Farlow, M.; Doody, R.; Mohs, R.; Friedhoff, L.; Group*, D. S., A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer′s disease. Neurology 1998, 50 (1), 136-145.
6. Castellani, R. J.; Rolston, R. K.; Smith, M. A., Alzheimer disease. Disease-a-month : DM 2010, 56 (9), 484-546.
7. O′Brien, R. J.; Wong, P. C., Amyloid precursor protein processing and Alzheimer′s disease. Annual review of neuroscience 2011, 34, 185-204.
8. Zhou, Z. D.; Chan, C. H.; Ma, Q. H.; Xu, X. H.; Xiao, Z. C.; Tan, E. K., The roles of amyloid precursor protein (APP) in neurogenesis: Implications to pathogenesis and therapy of Alzheimer disease. Cell Adh Migr 2011, 5 (4), 280-92.
9. Breen, K.; Bruce, M.; Anderton, B., Beta amyloid precursor protein mediates neuronal cell‐cell and cell‐surface adhesion. Journal of neuroscience research 1991, 28 (1), 90-100.
10. Ohsawa, I.; Takamura, C.; Morimoto, T.; Ishiguro, M.; Kohsaka, S., Amino‐terminal region of secreted form of amyloid precursor protein stimulates proliferation of neural stem cells. European Journal of Neuroscience 1999, 11 (6), 1907-1913.
11. Qiu, W. Q.; Ferreira, A.; Miller, C.; Koo, E. H.; Selkoe, D. J., Cell-surface beta-amyloid precursor protein stimulates neurite outgrowth of hippocampal neurons in an isoform-dependent manner. Journal of Neuroscience 1995, 15 (3), 2157-2167.
12. Zhou, Z.-d.; Chan, C. H.-s.; Ma, Q.-h.; Xu, X.-h.; Xiao, Z.-c.; Tan, E.-K., The roles of amyloid precursor protein (APP) in neurogenesis. Cell Adhesion & Migration 2011, 5 (4), 280-292.
13. Waldhauser, F.; Steger, H., Changes in melatonin secretion with age and pubescence. Journal of Neural Transmission. Supplementum 1986, 21, 183-197.
14. Zhou, J. N.; Liu, R. Y.; Kamphorst, W.; Hofman, M. A.; Swaab, D. F., Early neuropathological Alzheimer′s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. Journal of pineal research 2003, 35 (2), 125-130.
15. Shukla, M.; Htoo, H. H.; Wintachai, P.; Hernandez, J. F.; Dubois, C.; Postina, R.; Xu, H.; Checler, F.; Smith, D. R.; Govitrapong, P., Melatonin stimulates the nonamyloidogenic processing of β APP through the positive transcriptional regulation of ADAM10 and ADAM17. Journal of pineal research 2015, 58 (2), 151-165.
16. Mukda, S.; Panmanee, J.; Boontem, P.; Govitrapong, P., Melatonin administration reverses the alteration of amyloid precursor protein-cleaving secretases expression in aged mouse hippocampus. Neuroscience Letters 2016, 621, 39-46.
17. Pedrini, S.; Carter, T. L.; Prendergast, G.; Petanceska, S.; Ehrlich, M. E.; Gandy, S., Modulation of statin-activated shedding of Alzheimer APP ectodomain by ROCK. PLoS Medicine 2005, 2 (1), e18.
18. Murphy, G., The ADAMs: signalling scissors in the tumour microenvironment. Nature Reviews Cancer 2008, 8 (12), 932-941.
19. Khezri, M. R.; Mohebalizadeh, M.; Ghasemnejad-Berenji, M., Therapeutic potential of ADAM10 modulation in Alzheimer’s disease: a review of the current evidence. Cell Communication and Signaling 2023, 21 (1), 60.
20. Huovila, A.-P. J.; Turner, A. J.; Pelto-Huikko, M.; Kärkkäinen, I.; Ortiz, R. M., Shedding light on ADAM metalloproteinases. Trends in biochemical sciences 2005, 30 (7), 413-422.
21. Lammich, S.; Kojro, E.; Postina, R.; Gilbert, S.; Pfeiffer, R.; Jasionowski, M.; Haass, C.; Fahrenholz, F., Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proceedings of the national academy of sciences 1999, 96 (7), 3922-3927.
22. Moss, M. L.; Powell, G.; Miller, M. A.; Edwards, L.; Qi, B.; Sang, Q.-X. A.; De Strooper, B.; Tesseur, I.; Lichtenthaler, S. F.; Taverna, M., ADAM9 inhibition increases membrane activity of ADAM10 and controls α-secretase processing of amyloid precursor protein. Journal of Biological Chemistry 2011, 286 (47), 40443-40451.
23. Pastore, F.; Battistoni, M.; Sollazzo, R.; Renna, P.; Paciello, F.; Li Puma, D. D.; Barone, E.; Dagliyan, O.; Ripoli, C.; Grassi, C., A bioengineering strategy to control ADAM10 activity in living cells. International Journal of Molecular Sciences 2023, 24 (2), 917.
24. Van Wart, H. E.; Birkedal-Hansen, H., The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proceedings of the National Academy of Sciences 1990, 87 (14), 5578-5582.
25. Dai, J.; Liu, Z.-Q.; Wang, X.-Q.; Lin, J.; Yao, P.-F.; Huang, S.-L.; Ou, T.-M.; Tan, J.-H.; Li, D.; Gu, L.-Q.; Huang, Z.-S., Discovery of Small Molecules for Up-Regulating the Translation of Antiamyloidogenic Secretase, a Disintegrin and Metalloproteinase 10 (ADAM10), by Binding to the G-Quadruplex-Forming Sequence in the 5′ Untranslated Region (UTR) of Its mRNA. Journal of Medicinal Chemistry 2015, 58 (9), 3875-3891.
26. Anders, A.; Gilbert, S.; Garten, W.; Postina, R.; Fahrenholz, F., Regulation of the α‐secretase ADAM10 by its prodomain and proprotein convertases. The FASEB Journal 2001, 15 (10), 1837-1839.
27. Lundgren, J. L.; Ahmed, S.; Schedin‐Weiss, S.; Gouras, G. K.; Winblad, B.; Tjernberg, L. O.; Frykman, S., ADAM10 and BACE1 are localized to synaptic vesicles. Journal of neurochemistry 2015, 135 (3), 606-615.
28. Guo, C.; Yang, Z.-H.; Zhang, S.; Chai, R.; Xue, H.; Zhang, Y.-H.; Li, J.-Y.; Wang, Z.-Y., Intranasal lactoferrin enhances α-secretase-dependent amyloid precursor protein processing via the ERK1/2-CREB and HIF-1α pathways in an Alzheimer’s disease mouse model. Neuropsychopharmacology 2017, 42 (13), 2504-2515.
29. Doberstein, K.; Pfeilschifter, J.; Gutwein, P., The transcription factor PAX2 regulates ADAM10 expression in renal cell carcinoma. Carcinogenesis 2011, 32 (11), 1713-1723.
30. Renner, S. C. Identification of ADAM10 5UTR Binding Proteins: The RNA-binding Protein Unr is Involved in ADAM10 MRNA Stability. Universitätsbibliothek der Ludwig-Maximilians-Universität, 2014.
31. Endres, K.; Deller, T., Regulation of Alpha-Secretase ADAM10 In vitro and In vivo: Genetic, Epigenetic, and Protein-Based Mechanisms. Front Mol Neurosci. 2017; 10: 56. Epub 2017/04/04. https://doi. org/10. 3389/fnmol. 2017.00056 PMID: 28367112: 2017.
32. Reinhardt, S.; Schuck, F.; Grösgen, S.; Riemenschneider, M.; Hartmann, T.; Postina, R.; Grimm, M.; Endres, K., Unfolded protein response signaling by transcription factor XBP‐1 regulates ADAM10 and is affected in Alzheimer′s disease. The FASEB Journal 2014, 28 (2), 978-997.
33. Corbett, G. T.; Gonzalez, F. J.; Pahan, K., Activation of peroxisome proliferator-activated receptor α stimulates ADAM10-mediated proteolysis of APP. Proceedings of the National Academy of Sciences 2015, 112 (27), 8445-8450.
34. Chacón, P. J.; Rodríguez-Tébar, A., Increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector. Alzheimer′s Research & Therapy 2012, 4 (4), 31.
35. Cacabelos, R.; Carril, J. C.; Cacabelos, N.; Kazantsev, A. G.; Vostrov, A. V.; Corzo, L.; Cacabelos, P.; Goldgaber, D., Sirtuins in Alzheimer’s disease: SIRT2-related genophenotypes and implications for pharmacoepigenetics. International journal of molecular sciences 2019, 20 (5), 1249.
36. Manjula, R.; Anuja, K.; Alcain, F. J., SIRT1 and SIRT2 activity control in neurodegenerative diseases. Frontiers in pharmacology 2021, 11, 585821.
37. Reinhardt, S.; Schuck, F.; Stoye, N.; Hartmann, T.; Grimm, M. O.; Pflugfelder, G.; Endres, K., Transcriptional repression of the ectodomain sheddase ADAM10 by TBX2 and potential implication for Alzheimer’s disease. Cellular and molecular life sciences 2019, 76, 1005-1025.
38. Kern, A.; Roempp, B.; Prager, K.; Walter, J.; Behl, C., Down-regulation of endogenous amyloid precursor protein processing due to cellular aging. Journal of Biological Chemistry 2006, 281 (5), 2405-2413.
39. Brummer, T.; Pigoni, M.; Rossello, A.; Wang, H.; Noy, P. J.; Tomlinson, M. G.; Blobel, C. P.; Lichtenthaler, S. F., The metalloprotease ADAM10 (a disintegrin and metalloprotease 10) undergoes rapid, postlysis autocatalytic degradation. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2018, 32 (7), 3560-3573.
40. Delvaux, E.; Bentley, K.; Stubbs, V.; Sabbagh, M.; Coleman, P. D., Differential processing of amyloid precursor protein in brain and in peripheral blood leukocytes. Neurobiology of aging 2013, 34 (6), 1680-1686.
41. Seegar, T. C. M.; Killingsworth, L. B.; Saha, N.; Meyer, P. A.; Patra, D.; Zimmerman, B.; Janes, P. W.; Rubinstein, E.; Nikolov, D. B.; Skiniotis, G.; Kruse, A. C.; Blacklow, S. C., Structural Basis for Regulated Proteolysis by the α-Secretase ADAM10. Cell 2017, 171 (7), 1638-1648.e7.
42. Sung, P.-S.; Yeh, C.-C.; Wang, L.-C.; Hung, P.-H.; Muo, C.-H.; Sung, F.-C.; Chen, C.-H.; Tsai, K.-J., Increased risk of dementia in patients with non-apnea sleep disorder. Current Alzheimer Research 2017, 14 (3), 309-316.
43. Wetzel, S.; Seipold, L.; Saftig, P., The metalloproteinase ADAM10: A useful therapeutic target? Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2017, 1864 (11, Part B), 2071-2081.
44. Chen, C.-D.; Podvin, S.; Gillespie, E.; Leeman, S. E.; Abraham, C. R., Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proceedings of the National Academy of Sciences 2007, 104 (50), 19796-19801.
45. Zheng, W.; Tian, E.; Liu, Z.; Zhou, C.; Yang, P.; Tian, K.; Liao, W.; Li, J.; Ren, C., Small molecule angiotensin converting enzyme inhibitors: A medicinal chemistry perspective. Frontiers in Pharmacology 2022, 13, 968104.
46. Ohrui, T.; Matsui, T.; Yamaya, M.; Arai, H.; Ebihara, S.; Maruyama, M.; Sasaki, H., Angiotensin‐converting enzyme inhibitors and incidence of Alzheimer′s disease in Japan. Journal of the American Geriatrics Society 2004, 52 (4), 649-650.
47. Zou, K.; Maeda, T.; Watanabe, A.; Liu, J.; Liu, S.; Oba, R.; Satoh, Y.-i.; Komano, H.; Michikawa, M., Aβ42-to-Aβ40-and angiotensin-converting activities in different domains of angiotensin-converting enzyme. Journal of Biological Chemistry 2009, 284 (46), 31914-31920.
48. Fang, M.; Zhang, Q.; Wang, X.; Su, K.; Guan, P.; Hu, X., Inhibition Mechanisms of (−)-Epigallocatechin-3-gallate and Genistein on Amyloid-beta 42 Peptide of Alzheimer’s Disease via Molecular Simulations. ACS Omega 2022, 7 (23), 19665-19675.
49. Viña, J.; Escudero, J.; Baquero, M.; Cebrián, M.; Carbonell-Asíns, J. A.; Muñoz, J. E.; Satorres, E.; Meléndez, J. C.; Ferrer-Rebolleda, J.; Cózar-Santiago, M. d. P.; Santabárbara-Gómez, J. M.; Jové, M.; Pamplona, R.; Tarazona-Santabalbina, F. J.; Borrás, C., Genistein effect on cognition in prodromal Alzheimer’s disease patients. The GENIAL clinical trial. Alzheimer′s Research & Therapy 2022, 14 (1), 164.
50. Obregon, D. F.; Rezai-Zadeh, K.; Bai, Y.; Sun, N.; Hou, H.; Ehrhart, J.; Zeng, J.; Mori, T.; Arendash, G. W.; Shytle, D., ADAM10 activation is required for green tea (–)-epigallocatechin-3-gallate-induced α-secretase cleavage of amyloid precursor protein. Journal of Biological Chemistry 2006, 281 (24), 16419-16427.
51. Viña, J.; Escudero, J.; Baquero, M.; Cebrián, M.; Carbonell-Asíns, J. A.; Muñoz, J. E.; Satorres, E.; Meléndez, J. C.; Ferrer-Rebolleda, J.; Cózar-Santiago, M. d. P., Genistein effect on cognition in prodromal Alzheimer’s disease patients. The GENIAL clinical trial. Alzheimer′s Research & Therapy 2022, 14 (1), 164.
52. Khetmalis, Y. M.; Shivani, M.; Murugesan, S.; Chandra Sekhar, K. V. G., Oxindole and its derivatives: A review on recent progress in biological activities. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2021, 141, 111842.
53. Armstrong, J.; Ruiz, M.; Boddy, A.; Redfern, C.; Pearson, A.; Veal, G., Increasing the intracellular availability of all-trans retinoic acid in neuroblastoma cells. British journal of cancer 2005, 92 (4), 696-704.
54. Tippmann, F.; Hundt, J.; Schneider, A.; Endres, K.; Fahrenholz, F., Up‐regulation of the α‐secretase ADAM10 by retinoic acid receptors and acitretin. The FASEB Journal 2009, 23 (6), 1643-1654.
55. Lammich, S.; Buell, D.; Zilow, S.; Ludwig, A.-K.; Nuscher, B.; Lichtenthaler, S. F.; Prinzen, C.; Fahrenholz, F.; Haass, C., Expression of the anti-amyloidogenic secretase ADAM10 is suppressed by its 5′-untranslated region. Journal of biological chemistry 2010, 285 (21), 15753-15760.
56. Bai, S.; Nasser, M. W.; Wang, B.; Hsu, S.-H.; Datta, J.; Kutay, H.; Yadav, A.; Nuovo, G.; Kumar, P.; Ghoshal, K., MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. Journal of Biological Chemistry 2009, 284 (46), 32015-32027.
57. Moss, M. L.; Bomar, M.; Liu, Q.; Sage, H.; Dempsey, P.; Lenhart, P. M.; Gillispie, P. A.; Stoeck, A.; Wildeboer, D.; Bartsch, J. W., The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events. Journal of Biological Chemistry 2007, 282 (49), 35712-35721.
58. Seegar, T. C.; Killingsworth, L. B.; Saha, N.; Meyer, P. A.; Patra, D.; Zimmerman, B.; Janes, P. W.; Rubinstein, E.; Nikolov, D. B.; Skiniotis, G., Structural basis for regulated proteolysis by the α-secretase ADAM10. Cell 2017, 171 (7), 1638-1648. e7.
59. Hershkovits, A. S.; Gelley, S.; Hanna, R.; Kleifeld, O.; Shulman, A.; Fishman, A., Shifting the balance: soluble ADAM10 as a potential treatment for Alzheimer′s disease. Frontiers in Aging Neuroscience 2023, 15, 1171123.
60. Thonda, S.; Puttapaka, S. N.; Kona, S. V.; Kalivendi, S. V., Extracellular-Signal-Regulated Kinase Inhibition Switches APP Processing from β-to α-Secretase under Oxidative Stress: Modulation of ADAM10 by SIRT1/NF-κB Signaling. ACS Chemical Neuroscience 2021, 12 (21), 4175-4186.
61. Zhuang, J.; Wei, Q.; Lin, Z.; Zhou, C., Effects of ADAM10 deletion on Notch-1 signaling pathway and neuronal maintenance in adult mouse brain. Gene 2015, 555 (2), 150-158.
62. Boccalini, G.; Sassoli, C.; Bani, D.; Nistri, S., Relaxin induces up-regulation of ADAM10 metalloprotease in RXFP1-expressing cells by PI3K/AKT signaling. Molecular and cellular endocrinology 2018, 472, 80-86.
63. Fernandez, J. W.; Rezai-Zadeh, K.; Obregon, D.; Tan, J., EGCG functions through estrogen receptor-mediated activation of ADAM10 in the promotion of non-amyloidogenic processing of APP. FEBS letters 2010, 584 (19), 4259-4267.
64. Lustgarten Guahmich, N.; Farber, G.; Shafiei, S.; McNally, D.; Redmond, D.; Kallinos, E.; Stuhlmann, H.; Dufort, D.; James, D.; Blobel, C. P., Endothelial deletion of ADAM10, a key regulator of Notch signaling, causes impaired decidualization and reduced fertility in female mice. Angiogenesis 2020, 23, 443-458.
65. Canet, G.; Zussy, C.; Hernandez, C.; Chevallier, N.; Marchi, N.; Desrumaux, C.; Givalois, L., Chronic glucocorticoids consumption triggers and worsens experimental Alzheimer’s disease-like pathology by detrimental immune modulations. Neuroendocrinology 2022, 112 (10), 982-997.
66. Qian, M.; Shen, X.; Wang, H., The Distinct Role of ADAM17 in APP Proteolysis and Microglial Activation Related to Alzheimer’s Disease. Cellular and Molecular Neurobiology 2016, 36 (4), 471-482.
67. Thomas, J.; Smith, H.; Smith, C. A.; Coward, L.; Gorman, G.; De Luca, M.; Jumbo-Lucioni, P., The angiotensin-converting enzyme inhibitor lisinopril mitigates memory and motor deficits in a drosophila model of alzheimer’s disease. Pathophysiology 2021, 28 (2), 307-319.
指導教授 陳韻如 李文仁(Yun-Ru Chen Wen-Ren Li) 審核日期 2024-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明