博碩士論文 111324020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.15.34.208
姓名 連翊凱(Yi-Kai Lien)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Study on the Cost-Effective High-Entropy Alloys for Efficient Hydrogen Storage)
相關論文
★ High Specific Area g-C3N4 Produced by Ball Milling for On Board Hydrogen Storage★ A Study on the Relationship Between the Manufacturing Methods of Graphitic-Carbon Nitride (g-C3N4) and their Hydrogen Storage Performance
★ Research on High Entropy Alloys for Hydrogen Storage and TiZr-based Alloys with Different Microstructures★ A Study on the Hydrogen Storage of AB3-type La–Ca–Mg–Ni-based Hydrogen Storage Alloys and Composites
★ A study on the electrical and thermal dissipation properties of carbon nanotube/graphene composite papers★ Research on the hydrogen storage performance of g-C3N4 nanotubes after microwave irradiation
★ 應用於陰離子交換膜水電解器之三元非貴金屬觸媒開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 氫能被認為是最有前途的清潔和可再生替代能源,這是由於其高能量密度、低碳排放和豐富的資源。然而,實現氫能經濟的一個挑戰在於氫氣的有效儲存。與高壓氣態氫和液態氫儲存技術相比,固態氫儲存具有相對較高的儲氫容量和能源效率、較低的成本以及更高的安全性。在過去二十年中,高熵合金(HEAs)的出現為有效儲存氫氣提供了一種有前景的方法,這是由於其嚴重的晶格扭曲和混合效應。特別是合金和成分設計以及微結構工程的無限可能性,使其成為在不同應用中具有價值的儲氫候選材料。本研究探討了使用新穎高熵合金進行氫氣儲存的概念。
本研究的主要重點是研究通過氣體霧化法和真空電弧熔煉製造的Ti42Zr35Ta3Si5Co12.5Sn2.5 HEA的儲氫特性。此外,旨在通過利用鈦-釩為基礎來重新調整此HEA的成分以優化其儲氫性能。最初的HEA設計是基於熱力學考量,如混合焓(ΔHmix)、混合熵(ΔSmix)和晶格扭曲度(δ)、價電子濃度(VEC),以及元素與氫的親和力。使用電子探針顯微分析儀(EPMA)確認了表面元素分佈和表面形貌。隨後,使用X射線繞射(XRD)和穿透式電子顯微鏡(TEM)檢查了HEAs在吸氫前後的晶體結構和相變化。熱重分析(TGA)和差示掃描量熱法(DSC)用於確定材料的脫氫溫度和脫氫量。最後,使用Sieverts裝置研究了兩種HEAs的儲氫行為,包括壓力-組成-溫度(PCT)曲線和動力學曲線。此外,還在澳大利亞核子科技組織(ANSTO)進行了高解析中子粉末繞射(HRNPD),以研究氫氣儲存位置和晶格變化。
研究發現,多相Ti42Zr35Ta3Si5Co12.5Sn2.5 HEA在400°C和0.00001 bar氫充壓下達到了0.6 wt.%的儲氫容量,在45 bar達到了最大2.15 wt.%。然而,其完全脫氫溫度高達800°C,使其不適合正常操作條件。通過引入釩來降低吸氫溫度並利用鉬和鉻作為體心立方(BCC)穩定劑,成功設計出單相BCC Ti36V11Ta16Mo21Cr16 HEA。這一改進有效降低了吸氫溫度和壓力。Ti36V11Ta16Mo21Cr16在室溫下0.00001 bar壓力下儲氫容量為0.7 wt.%,在36 bar達到最大1.9 wt.%的吸氫量,其完全脫氫溫度僅為500°C。兩種材料均可在10分鐘內達到最大儲氫容量,材料成本僅為文獻中TiZrVNbHf HEA報告成本的四分之一。這項研究證實了BCC HEA結構對儲氫的有效性,並確定了一種低成本的HEA用於此目的。結果表明,合金設計可以提高儲氫性能,證實了其他研究中氫氣可以在非常低的壓力下被HEAs吸收,從而推動了作為可持續綠色能源解決方案之一的固態儲氫材料的發展,可能在未來取代化石燃料並減緩全球暖化。
摘要(英) Hydrogen energy is considered as the most promising clean and renewable alternative energy source, owing to its high energy density, low carbon emissions, and abundance. However, one of the challenges in the realization of a hydrogen economy lies upon the effective storage of hydrogen. As compared with the pressurized gaseous hydrogen and liquid hydrogen storage techniques, solid-state hydrogen storage offers advantages such as relatively higher hydrogen storage capacity and energy efficiency, lower costs, and increased safety. The emergence of high-entropy alloys (HEAs) in the past two decades has provided a promising means to store hydrogen effectively, owing to their severe lattice distortion and cocktail effects. In particular, the unlimited possibilities of the alloy and composition designs, as well as microstructure engineering, offer very attractive approaches for them to be valuable candidates for hydrogen storage in different applications. The concept of using novel high-entropy alloys for hydrogen storage is explored in this study.
The main focus of this study has been to investigate the low-pressure hydrogen storage properties of Ti42Zr35Ta3Si5Co12.5Sn2.5 HEA fabricated via atomization process and vacuum arc melting process. Additionally, it aims to optimize hydrogen storage performance by utilizing Ti-V as a base to readjust the composition of this HEA. Initially, HEA design was carried out based on thermodynamic considerations, such as mixing enthalpy (ΔHmix), mixing entropy (ΔSmix), and the degree of lattice distortion (δ), valence electron concentration (VEC), as well as the affinity of the elements with hydrogen. The surface element distribution and surface morphology were confirmed using Electron Probe Microanalyzer (EPMA). Subsequently, X-Ray Diffraction (XRD) and Transmission Electron Microscope (TEM) were employed to examine the crystalline structures and phase transformations of the HEAs before and after hydrogen absorption. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) were utilized to determine the dehydrogenation temperature and melting point of the materials. Finally, the hydrogen storage behavior of the two types of HEAs, including Pressure-Composition Temperature (PCT) curves and kinetic curves, was investigated using a Sieverts apparatus. Furthermore, High Resolution Neutron Powder Diffraction (HRNPD) testing at the Australian Nuclear Science and Technology Organization (ANSTO) was performed to study the hydrogen storage positions and lattice changes.
It was found here that the multiphase Ti42Zr35Ta3Si5Co12.5Sn2.5 HEA achieved a hydrogen storage capacity of 0.6 wt.% at 400°C and 0.00001 bar of hydrogen charging pressure, reaching a maximum of 2.15 wt.% at 45 bar. However, its complete dehydrogenation temperature was as high as 800°C, rendering it unsuitable for normal operation conditions. By introducing V to reduce hydrogen absorption temperature and utilizing Mo and Cr as BCC stabilizers, a single-phase BCC Ti36V11Ta16Mo21Cr16 HEA has been successfully designed. The modification effectively lowers both hydrogen absorption temperature and pressure. The Ti36V11Ta16Mo21Cr16 exhibited a hydrogen storage capacity of 0.7 wt.% at room temperature, under a pressure of 0.00001 bar; with a maximum of 1.9 wt.% of hydrogen uptake achieved at only 36 bar, and its complete dehydrogenation temperature is only 500°C. Both materials can reach maximum hydrogen storage capacity within 10 minutes, with material costs only about a quarter of those reported for the HEA like TiZrVNbHf in the literature. This study has confirmed that the BCC HEA structure is effective for hydrogen storage and has identified a low-cost HEA for this purpose. The results demonstrate that alloying design can enhance hydrogen storage properties, corroborating other research that hydrogen can be absorbed by HEAs at very low pressures, thus promoting a solid-state hydrogen storage material which serves as one of the sustainable green energy solutions to replace fossil fuels and potentially reduce global warming in the future.
關鍵字(中) ★ 儲氫
★ 氫能
★ 氫運輸
★ 高熵合金
關鍵字(英) ★ Hydrogen Storage
★ Hydrogen Energy
★ Hydrogen Transportation
★ High Entropy Alloy
論文目次 ACKNOWLEDGEMENT ii
ABSTRACT v
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Objectives of This Work 4
1.3 Thesis Structure 6
CHAPTER 2 LITERATURE SURVEY 8
2.1 Current Status of Hydrogen Energy 8
2.2 Category of Hydrogen Storage Technology 13
2.2.1 High Pressure Compressed Gas 13
2.2.2 Liquified Hydrogen 14
2.2.3 Materials-Based 15
2.3 Properties of High Entropy Alloys 26
2.3.1 Four Core Effects of HEAs 26
2.4 Application of High Entropy Alloys on Hydrogen Storage 36
CHAPTER 3 EXPERIMENTAL METHODOLOGY 40
3.1 Alloys Fabrication 40
3.1.1 Fabrication of Ti42Zr35Ta3Si5Co12.5Sn2.5 via Gas Atomization 40
3.1.2 Fabrication of Ti42Zr35Ta3Si5Co12.5Sn2.5 and Ti36V11Ta16Mo21Cr16 via Vacuum Arc Melting 42
3.2 Characterizations 44
3.3 Hydrogenation Analyses 48
3.3.1 Calibration of Sieverts Apparatus 48
3.3.2 Activation Process 58
3.3.3 Pressure-Composition Isotherm 59
3.3.4 High Resolution Neutron Powder Diffraction (Echidna) 62
3.4 Thermal Analyses 65
CHAPTER 4 RESULTS and DISCUSSION 66
4.1 Introduction 66
4.2 Ti42Zr35Ta3Si5Co12.5Sn2.5 68
4.2.1 Morphology and Elemental Distribution 68
4.2.2 Crystal Structure Determination 74
4.3 Ti36V11Ta16Mo21Cr16 78
4.3.1 Morphology and Elemental Distribution 78
4.3.2 Crystal Structure Determination 81
4.4 Hydrogen Storage Characterizations 82
4.4.1 Ti42Zr35Ta3Si5Co12.5Sn2.5 82
4.4.2 Ti36V11Ta16Mo21Cr16 89
Chapter 5 Conclusions and Future Works 101
5.1 Conclusions 101
5.2 Future works 102
References 103
參考文獻 [1] M.Höök andX.Tang, “Depletion of fossil fuels and anthropogenic climate change-A review,” Energy Policy, vol. 52, pp. 797–809, 2013, doi: 10.1016/j.enpol.2012.10.046.
[2] P. P.Edwards, V. L.Kuznetsov, andW. I. F.David, “Hydrogen energy,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 365, no. 1853, pp. 1043–1056, 2007, doi: 10.1098/rsta.2006.1965.
[3] K. L.Lim, H.Kazemian, Z.Yaakob, andW. R. W.Daud, “Solid-state materials and methods for hydrogen storage: A critical review,” Chem. Eng. Technol., vol. 33, no. 2, pp. 213–226, 2010, doi: 10.1002/ceat.200900376.
[4] B.Sakintuna, F.Lamari-Darkrim, andM.Hirscher, “Metal hydride materials for solid hydrogen storage: A review,” Int. J. Hydrogen Energy, vol. 32, no. 9, pp. 1121–1140, 2007, doi: 10.1016/j.ijhydene.2006.11.022.
[5] Y.Li, E.Teliz, F.Zinola, andV.Díaz, “Design of a AB5-metal hydride cylindrical tank for hydrogen storage,” Int. J. Hydrogen Energy, vol. 46, no. 68, pp. 33889–33898, Oct.2021, doi: 10.1016/J.IJHYDENE.2021.07.207.
[6] J.Liu, K.Li, H.Cheng, K.Yan, Y.Wang, Y.Liu, H.Jin, andZ.Zheng, “New insights into the hydrogen storage performance degradation and Al functioning mechanism of LaNi5-xAlx alloys,” Int. J. Hydrogen Energy, vol. 42, no. 39, pp. 24904–24914, 2017, doi: 10.1016/j.ijhydene.2017.07.213.
[7] B.Abrashev, T.Spassov, S.Bliznakov, andA.Popov, “Microstructure and electrochemical hydriding/dehydriding properties of ball-milled TiFe-based alloys,” Int. J. Hydrogen Energy, vol. 35, no. 12, pp. 6332–6337, 2010, doi: 10.1016/j.ijhydene.2010.03.129.
[8] “Hydride Materials Database.” [Online]. Available: http://hydpark.ca.sandia.gov/MaterialsFrame.html
[9] B.Wang, Y.Chen, andY.Liu, “Structure and electrochemical properties of (La1−xDyx)0.8Mg0.2Ni3.4Al0.1 (x = 0.0–0.20) hydrogen storage alloys,” Int. J. Hydrogen Energy, vol. 37, pp. 9082–9087, 2012, doi: 10.1016/j.ijhydene.2012.02.164.
[10] J. W.Yeh, S. K.Chen, S. J.Lin, J. Y.Gan, T. S.Chin, T. T.Shun, C. H.Tsau, andS. Y.Chang, “Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes,” Adv. Eng. Mater., vol. 6, no. 5, pp. 299–303, 2004, doi: 10.1002/adem.200300567.
[11] M. C. G.Jien-wei Yeh, P.K.Liaw, andY.Zhang, High-Entropy Alloys: Fundamental and Applications.
[12] Y.Zhang andQ.Xing, “High Entropy Alloys: Manufacturing Routes,” Encycl. Mater. Met. Alloy., pp. 327–338, 2021, doi: 10.1016/B978-0-12-803581-8.12123-X.
[13] J.-W.Tsai, Kun-Yo; Tsai, Ming-Hung; Yeh, “Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi,” Scr. Mater., vol. 154, pp. 273–276, 2018, [Online]. Available: https://doi.org/10.1016/j.scriptamat.2017.11.010
[14] S.Yang, F.Yang, C.Wu, Y.Chen, Y.Mao, andL.Luo, “Hydrogen storage and cyclic properties of (VFe)60(TiCrCo)40-xZrx (0 ≤ x ≤ 2) alloys,” J. Alloys Compd., vol. 663, pp. 460–465, 2016, doi: 10.1016/j.jallcom.2015.12.125.
[15] H.Xiu, W.Liu, D.Yin, N.Ding, W.Qiao, S.Zhao, L.Liang, C.Liu, S.Wang, Q.Wang, B.Chen, L.Wang, andY.Cheng, “Multidimensional regulation of Ti-Zr-Cr-Mn hydrogen storage alloys via Y partial substitution,” Nano Res., 2024, doi: 10.1007/s12274-023-6389-0.
[16] V. M.Golod andV. S.Sufiiarov, “The evolution of structural and chemical heterogeneity during rapid solidification at gas atomization,” IOP Conf. Ser. Mater. Sci. Eng., vol. 192, no. 1, 2017, doi: 10.1088/1757-899X/192/1/012009.
[17] P. R. and M. R.Hannah Ritchie, “Energy Production and Consumption.” [Online]. Available: https://ourworldindata.org/energy-production-consumption
[18] M. A.Siddik, M. T.Islam, A. K. M. M.Zaman, andM. M.Hasan, “Current Status and Correlation of Fossil Fuels Consumption and Greenhouse Gas Emissions,” vol. 28, no. 598746, 2021.
[19] M.Faizal andR.Saidur, “Comparative thermodynamics analysis of gasoline and hydrogen fuelled Internal Combustion Engines,” Int. J. Adv. Sci. Res. Manag., vol. 2, no. 3, 2017, [Online]. Available: www.ijasrm.com
[20] T. N.Veziroǧlu andS.Şahin, “21st Century’s energy: Hydrogen energy system,” Energy Convers. Manag., vol. 49, no. 7, pp. 1820–1831, 2008, doi: 10.1016/j.enconman.2007.08.015.
[21] S.Wang andS.Wang, “Impacts of wind energy on environment: A review,” Renew. Sustain. Energy Rev., vol. 49, no. 2015, pp. 437–443, 2015, doi: 10.1016/j.rser.2015.04.137.
[22] A.Ciarreta, M. P.Espinosa, andC.Pizarro-Irizar, “Is green energy expensive? Empirical evidence from the Spanish electricity market,” Energy Policy, vol. 69, pp. 205–215, 2014, doi: 10.1016/j.enpol.2014.02.025.
[23] R. R.Hernandez, S. B.Easter, M. L.Murphy-Mariscal, F. T.Maestre, M.Tavassoli, E. B.Allen, C. W.Barrows, J.Belnap, R.Ochoa-Hueso, S.Ravi, andM. F.Allen, “Environmental impacts of utility-scale solar energy,” Renew. Sustain. Energy Rev., vol. 29, pp. 766–779, 2014, doi: 10.1016/j.rser.2013.08.041.
[24] L.Barelli, G.Bidini, F.Gallorini, andS.Servili, “Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review,” Energy, vol. 33, no. 4, pp. 554–570, 2008, doi: 10.1016/j.energy.2007.10.018.
[25] C. M.Kalamaras andA. M.Efstathiou, “Hydrogen Production Technologies: Current State and Future Developments,” Conf. Pap. Energy, vol. 2013, pp. 1–9, 2013, doi: 10.1155/2013/690627.
[26] A.Ursúa, L. M.Gandía, andP.Sanchis, “Hydrogen production from water electrolysis: Current status and future trends,” Proc. IEEE, vol. 100, no. 2, pp. 410–426, 2012, doi: 10.1109/JPROC.2011.2156750.
[27] K. T.Møller, T. R.Jensen, E.Akiba, andH. wenLi, “Hydrogen - A sustainable energy carrier,” Prog. Nat. Sci. Mater. Int., vol. 27, no. 1, pp. 34–40, 2017, doi: 10.1016/j.pnsc.2016.12.014.
[28] U.Bossel, “Does a hydrogen economy make sense?,” Proc. IEEE, vol. 94, no. 10, pp. 1826–1836, 2006, doi: 10.1109/JPROC.2006.883715.
[29] “Energy density.” [Online]. Available: https://energyeducation.ca/encyclopedia/Energy_density
[30] A. M.Abdalla, S.Hossain, O. B.Nisfindy, A. T.Azad, M.Dawood, andA. K.Azad, “Hydrogen production, storage, transportation and key challenges with applications: A review,” Energy Convers. Manag., vol. 165, no. April, pp. 602–627, 2018, doi: 10.1016/j.enconman.2018.03.088.
[31] R.Yukesh Kannah, S.Kavitha, Preethi, O.Parthiba Karthikeyan, G.Kumar, N. V.Dai-Viet, andJ.Rajesh Banu, “Techno-economic assessment of various hydrogen production methods – A review,” Bioresour. Technol., vol. 319, no. September 2020, p. 124175, 2021, doi: 10.1016/j.biortech.2020.124175.
[32] M.Newborough andG.Cooley, “Developments in the global hydrogen market: The spectrum of hydrogen colours,” Fuel Cells Bull., vol. 2020, no. 11, pp. 16–22, 2020, doi: 10.1016/S1464-2859(20)30546-0.
[33] A.Ajanovic, M.Sayer, andR.Haas, “The economics and the environmental benignity of different colors of hydrogen,” Int. J. Hydrogen Energy, vol. 47, no. 57, pp. 24136–24154, 2022, doi: 10.1016/j.ijhydene.2022.02.094.
[34] R.Ramachandran andR. K.Menon, “An overview of industrial uses of hydrogen,” Int. J. Hydrogen Energy, vol. 23, no. 7, pp. 593–598, 1998, doi: 10.1016/s0360-3199(97)00112-2.
[35] A.Züttel, “Materials for hydrogen storage,” Mater. Today, vol. 6, no. 9, pp. 24–33, 2003, doi: 10.1016/S1369-7021(03)00922-2.
[36] “Toyota”, [Online]. Available: https://www.toyota.com/mirai/
[37] and N. O.Akira Yamashita, Masaaki Kondo, Sogo Goto, “Development of High-Pressure Hydrogen Storage System for the Toyota ‘Mirai,’” SAE Tech. Pap., no. 2021, 2021, doi: 10.4271/2021-01-0741.
[38] C.Hon-fai, K.Jeffrey, L.Dennis, L.Michael, C.Chris, C.Don, andF.Raymond, “Technical Review on Production, Transportation, Storage and Use of Hydrogen to Achieve Net Zero in Hong Kong,” pp. 1–66.
[39] A.Züttel, “Hydrogen storage methods,” Naturwissenschaften, vol. 91, no. 4, pp. 157–172, 2004, doi: 10.1007/s00114-004-0516-x.
[40] U. S.Department of Energy, “Hydrogen Storage.” [Online]. Available: https://www.energy.gov/eere/fuelcells/hydrogen-storage
[41] L.Schlapbach andA.Züttel, “Hydrogen-storage materials for mobile applications,” Nature, vol. 414, no. November, pp. 353–358, 2001, doi: 10.1038/35104634.
[42] E.Boateng andA.Chen, “Recent advances in nanomaterial-based solid-state hydrogen storage,” Mater. Today Adv., vol. 6, p. 100022, 2020, doi: 10.1016/j.mtadv.2019.100022.
[43] P.Prachi R., W.Mahesh M., andG.Aneesh C., “A Review on Solid State Hydrogen Storage Material,” Adv. Energy Power, vol. 4, no. 2, pp. 11–22, 2016, doi: 10.13189/aep.2016.040202.
[44] K. K.Gangu, S.Maddila, S. B.Mukkamala, andS. B.Jonnalagadda, “A review on contemporary Metal-Organic Framework materials,” Inorganica Chim. Acta, vol. 446, pp. 61–74, 2016, doi: 10.1016/j.ica.2016.02.062.
[45] K. K.Gangu, S.Maddila, andS. B.Jonnalagadda, “A review on synthesis, crystal structure and functionality of naphthalenedicarboxylate ligated metal-organic frameworks,” Inorganica Chim. Acta, vol. 466, pp. 308–323, 2017, doi: 10.1016/j.ica.2017.06.038.
[46] K. K.Gangu, S.Maddila, S. B.Mukkamala, andS. B.Jonnalagadda, “Synthesis, characterisation and catalytic activity of 4, 5-imidazoledicarboxylate ligated Co(II) and Cd(II) metal-organic coordination complexes,” J. Mol. Struct., vol. 1143, pp. 153–162, 2017, doi: 10.1016/j.molstruc.2017.04.083.
[47] Z.Zhang, Y.Wang, H.Wang, X.Xue, andQ.Lin, “Metal-Organic Frameworks Promoted Hydrogen Storage Properties of Magnesium Hydride for In-Situ Resource Utilization (ISRU) on Mars,” Front. Mater., vol. 8, no. October, pp. 1–6, 2021, doi: 10.3389/fmats.2021.766288.
[48] P.Rocío-Bautista, I.Taima-Mancera, J.Pasán, andV.Pino, “Metal-organic frameworks in green analytical chemistry,” Separations, vol. 6, no. 3, pp. 1–21, 2019, doi: 10.3390/separations6030033.
[49] D.Saha andS.Deng, “Hydrogen Adsorption on Metal-Organic Framework MOF-177,” vol. 15, no. 4, pp. 363–376, 2010.
[50] S. P.Shet, S.Shanmuga Priya, K.Sudhakar, andM.Tahir, “A review on current trends in potential use of metal-organic framework for hydrogen storage,” Int. J. Hydrogen Energy, vol. 46, no. 21, pp. 11782–11803, 2021, doi: 10.1016/j.ijhydene.2021.01.020.
[51] M.Niermann, S.Timmerberg, S.Drünert, andM.Kaltschmitt, “Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen,” Renew. Sustain. Energy Rev., vol. 135, no. August 2019, p. 110171, 2021, doi: 10.1016/j.rser.2020.110171.
[52] C.Shinohara, S.Kawakami, T.Moriga, H.Hayashi, S.Hodoshima, Y.Saito, andS.Sugiyama, “Local structure around platinum in Pt/C catalysts employed for liquid-phase dehydrogenation of decalin in the liquid-film state under reactive distillation conditions,” Appl. Catal. A Gen., vol. 266, no. 2, pp. 251–255, 2004, doi: 10.1016/j.apcata.2004.02.014.
[53] Q. L.Zhu andQ.Xu, “Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage,” Energy Environ. Sci., vol. 8, no. 2, pp. 478–512, 2015, doi: 10.1039/c4ee03690e.
[54] N.Brückner, K.Obesser, A.Bösmann, D.Teichmann, W.Arlt, J.Dungs, andP.Wasserscheid, “Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems,” ChemSusChem, vol. 7, no. 1, pp. 229–235, 2014, doi: 10.1002/cssc.201300426.
[55] K.Müller, J.Völkl, andW.Arlt, “Thermodynamic Evaluation of Potential Organic Hydrogen Carriers,” Energy Technol., vol. 1, no. 1, pp. 20–24, 2013, doi: 10.1002/ente.201200045.
[56] Y.Okada, E.Sasaki, E.Watanabe, S.Hyodo, andH.Nishijima, “Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method,” Int. J. Hydrogen Energy, vol. 31, no. 10, pp. 1348–1356, 2006, doi: 10.1016/j.ijhydene.2005.11.014.
[57] P. M.Modisha, C. N. M.Ouma, R.Garidzirai, P.Wasserscheid, andD.Bessarabov, “The Prospect of Hydrogen Storage Using Liquid Organic Hydrogen Carriers,” Energy and Fuels, vol. 33, no. 4, pp. 2778–2796, 2019, doi: 10.1021/acs.energyfuels.9b00296.
[58] K. C.Tan, Y. S.Chua, T.He, andP.Chen, “Strategies of thermodynamic alternation on organic hydrogen carriers for hydrogen storage application: A review,” Green Energy Resour., vol. 1, no. 2, p. 100020, 2023, doi: 10.1016/j.gerr.2023.100020.
[59] C.Chu, K.Wu, B.Luo, Q.Cao, andH.Zhang, “Hydrogen storage by liquid organic hydrogen carriers: Catalyst, renewable carrier, and technology – A review,” Carbon Resour. Convers., vol. 6, no. 4, pp. 334–351, 2023, doi: 10.1016/j.crcon.2023.03.007.
[60] S. I.Orimo, Y.Nakamori, J. R.Eliseo, A.Züttel, andC. M.Jensen, “Complex hydrides for hydrogen storage,” Chem. Rev., vol. 107, no. 10, pp. 4111–4132, 2007, doi: 10.1021/cr0501846.
[61] N. A.Ali andM.Ismail, “Modification of NaAlH4 properties using catalysts for solid-state hydrogen storage: A review,” Int. J. Hydrogen Energy, vol. 46, no. 1, pp. 766–782, 2021, doi: 10.1016/j.ijhydene.2020.10.011.
[62] P. Z.Li, K.Aranishi, andQ.Xu, “ZIF-8 immobilized nickel nanoparticles: Highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane,” Chem. Commun., vol. 48, no. 26, pp. 3173–3175, 2012, doi: 10.1039/c2cc17302f.
[63] T.He, H.Wu, G.Wu, J.Wang, W.Zhou, Z.Xiong, J.Chen, T.Zhang, andP.Chen, “Borohydride hydrazinates: High hydrogen content materials for hydrogen storage,” Energy Environ. Sci., vol. 5, no. 2, pp. 5686–5689, 2012, doi: 10.1039/c2ee03205h.
[64] W.Sun, X.Chen, Q.Gu, K. S.Wallwork, Y.Tan, Z.Tang, andX.Yu, “A new ammine dual-cation (Li, Mg) borohydride: Synthesis, structure, and dehydrogenation enhancement,” Chem. - A Eur. J., vol. 18, no. 22, pp. 6825–6834, 2012, doi: 10.1002/chem.201102651.
[65] T.Hügle, M. F.Kühnel, andD.Lentz, “Hydrazine borane: A promising hydrogen storage material,” J. Am. Chem. Soc., vol. 131, no. 21, pp. 7444–7446, 2009, doi: 10.1021/ja9013437.
[66] K. J.Fijałkowski andW.Grochala, “Substantial emission of NH3 during thermal decomposition of sodium amidoborane, NaNH2BH3,” J. Mater. Chem., vol. 19, no. 14, pp. 2043–2050, 2009, doi: 10.1039/b813773k.
[67] B.Peng andJ.Chen, “Ammonia borane as an efficient and lightweight hydrogen storage medium,” Energy Environ. Sci., vol. 1, no. 4, pp. 479–483, 2008, doi: 10.1039/b809243p.
[68] Y.Tan andX.Yu, “Chemical regeneration of hydrogen storage materials,” RSC Adv., vol. 3, no. 46, pp. 23879–23894, 2013, doi: 10.1039/c3ra44103b.
[69] U. B.Demirci, “Ammonia borane, a material with exceptional properties for chemical hydrogen storage,” Int. J. Hydrogen Energy, vol. 42, no. 15, pp. 9978–10013, 2017, doi: 10.1016/j.ijhydene.2017.01.154.
[70] S.Akbayrak andS.Özkar, “Ammonia borane as hydrogen storage materials,” Int. J. Hydrogen Energy, vol. 43, no. 40, pp. 18592–18606, 2018, doi: 10.1016/j.ijhydene.2018.02.190.
[71] J. J.Reilly andR. H.Wiswall, “The Reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg2NiH4,” Inorg. Chem., vol. 7, no. 11, pp. 2254–2256, 1968, doi: 10.1021/ic50069a016.
[72] J. S. H. and J.-Y.LEE, “A STUDY ON THE DEHYDRIDING KINETICS OF Mg2Ni INTERMETALLIC COMPOUND,” vol. 128, pp. 155–165, 1987.
[73] J. J.Reilly andR. H.Wiswall, “Formation and properties of iron titanium hydride,” Inorg. Chem., vol. 13, no. 1, pp. 218–222, 1974, doi: 10.1021/ic50131a042.
[74] H.Liu, J.Zhang, P.Sun, C.Zhou, Y.Liu, andZ. Z.Fang, “An overview of TiFe alloys for hydrogen storage: Structure, processes, properties, and applications,” J. Energy Storage, vol. 68, no. May, p. 107772, 2023, doi: 10.1016/j.est.2023.107772.
[75] W.Xu, Z.Tao, andJ.Chen, “Progress of research on hydrogen storage,” 2006.
[76] G.Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view,” J. Alloys Compd., vol. 293, pp. 877–888, 1999, doi: 10.1016/S0925-8388(99)00384-9.
[77] K. S.Nivedhitha, T.Beena, N. R.Banapurmath, M. A.Umarfarooq, V.Ramasamy, M. E. M.Soudagar, andÜ.Ağbulut, “Advances in hydrogen storage with metal hydrides: Mechanisms, materials, and challenges,” Int. J. Hydrogen Energy, vol. 61, no. February, pp. 1259–1273, 2024, doi: 10.1016/j.ijhydene.2024.02.335.
[78] R. J.Behm, V.Penka, M. G.Cattania, K.Christmann, andG.Ertl, “Evidence for ‘subsurface’ hydrogen on Pd(110): An intermediate between chemisorbed and dissolved species,” J. Chem. Phys., vol. 78, no. 12, pp. 7486–7490, 1982, doi: 10.1063/1.444739.
[79] L.Vitos, A.V.Ruban, H. L.Skriver, andJ.Kollár, “The surface energy of metals,” Surf. Sci., vol. 411, no. 1–2, pp. 186–202, 1998, doi: 10.1016/S0039-6028(98)00363-X.
[80] M.Hirscher, Handbook of Hydrogen Storage: New Materials for Future Energy Storage. 2010. doi: 10.1002/9783527629800.
[81] C.Lang, Y.Jia, X.Yan, L.Ouyang, M.Zhu, andX.Yao, “Molecular chemisorption: a new conceptual paradigm for hydrogen storage,” Chem. Synth., vol. 2, no. 1, pp. 1–13, 2022, doi: 10.20517/cs.2021.15.
[82] N.Klopčič, I.Grimmer, F.Winkler, M.Sartory, andA.Trattner, “A review on metal hydride materials for hydrogen storage,” J. Energy Storage, vol. 72, no. May, 2023, doi: 10.1016/j.est.2023.108456.
[83] S.Qian andD.Northwood, “Elastic and plastic accommodation effects on hysteresis during hydride formation and decomposition,” Int. J. Hydrogen Energy, vol. 15, no. 9, pp. 649–654, 1990.
[84] T. B.Flanagan andJ. D.Clewley, “Hysteresis in metal hydrides,” J. Less-Common Met., vol. 83, no. 1, pp. 127–141, 1982, doi: 10.1016/0022-5088(82)90176-X.
[85] H.Imamura, M.Kawahigashi, andS.Tsuchiya, “Exceptionally active magnesium for hydrogen storage: Solvated magnesium clusters formed in low temperature matrices,” J. Less-Common Met., vol. 95, no. 1, pp. 157–160, 1983, doi: 10.1016/0022-5088(83)90396-X.
[86] I.Haas andA.Gedanken, “Synthesis of metallic magnesium nanoparticles by sonoelectrochemistry,” Chem. Commun., no. 15, pp. 1795–1797, 2008, doi: 10.1039/b717670h.
[87] D. G.Westlake, “Site occupancies and stoichiometries in hydrides of intermetallic compounds: Geometric considerations,” J. Less-Common Met., vol. 90, no. 2, pp. 251–273, 1983, doi: 10.1016/0022-5088(83)90075-9.
[88] D. P.Shoemaker andC. B.Shoemaker, “Concerning atomic sites and capacities for hydrogen absorption in the AB2 Friauf-Laves phases,” J. Less-Common Met., vol. 68, no. 1, pp. 43–58, 1979, doi: 10.1016/0022-5088(79)90271-6.
[89] R. R.Shahi, A. K.Gupta, andP.Kumari, “Perspectives of high entropy alloys as hydrogen storage materials,” Int. J. Hydrogen Energy, Mar.2022, doi: 10.1016/J.IJHYDENE.2022.02.113.
[90] W.Hsu, C.Tsai, A.Yeh, andJ.Yeh, “Clarifying the four core effects of high-entropy materials,” Nat. Rev. Chem., 2024, doi: 10.1038/s41570-024-00602-5.
[91] R.Miedema, A.R., Boer, F.R. de &Boom, “Model predictions for the enthalpy of formation of transition metal alloys,” vol. 1, no. 4, pp. 341–359, 1977.
[92] R. F.Zhang, S. H.Zhang, Z. J.He, J.Jing, andS. H.Sheng, “Miedema Calculator : A thermodynamic platform for predicting formation enthalpies of alloys within framework of Miedema ’ s Theory,” Comput. Phys. Commun., vol. 209, pp. 58–69, 2016, doi: 10.1016/j.cpc.2016.08.013.
[93] A.Takeuchi andA.Inoue, “Classification of Bulk Metallic Glasses by Atomic Size Difference , Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element,” vol. 46, no. 12, pp. 2817–2829, 2005, doi: 10.2320/matertrans.46.2817.
[94] X.Yang andY.Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys,” Mater. Chem. Phys., vol. 132, no. 2–3, pp. 233–238, 2012, doi: 10.1016/j.matchemphys.2011.11.021.
[95] and C. T. L.Sheng Guo, Chun Ng, Jian Lu, “Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys,” J. Appl. Phys., vol. 103505, no. October, 2022, doi: 10.1063/1.3587228.
[96] U.Mizutani andT.Physical, “The Hume-Rothery Rules for Structurally Complex Alloy Phases,” pp. 323–399.
[97] J.-W.Yeh, S.-J.Lin, T.-S.Chin, J.-Y.Gan, S.-K.Chen, T.-T.Shun, C.-H.Tsau, andS.-Y.Chou, “Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic Elements,” Metall. Mater. Trans. A Vol., vol. 35, no. August 2004, pp. 2533–2536, 2010.
[98] P. K.Huang andJ. W.Yeh, “Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings,” Scr. Mater., vol. 62, no. 2, pp. 105–108, 2010, doi: 10.1016/j.scriptamat.2009.09.015.
[99] S.Guo andC. T.Liu, “Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase,” Prog. Nat. Sci. Mater. Int., vol. 21, no. 6, pp. 433–446, 2011, doi: 10.1016/S1002-0071(12)60080-X.
[100] O. N.Senkov, G. B.Wilks, D. B.Miracle, C. P.Chuang, andP. K.Liaw, “Refractory high-entropy alloys,” Intermetallics, vol. 18, no. 9, pp. 1758–1765, 2010, doi: 10.1016/j.intermet.2010.05.014.
[101] Y. F.Kao, S. K.Chen, T. J.Chen, P. C.Chu, J. W.Yeh, andS. J.Lin, “Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys,” J. Alloys Compd., vol. 509, no. 5, pp. 1607–1614, 2011, doi: 10.1016/j.jallcom.2010.10.210.
[102] X.Ma, X.Ding, R.Chen, W.Cao, andQ.Song, “Study on hydrogen storage property of (ZrTiVFe)xAly high-entropy alloys by modifying Al content,” Int. J. Hydrogen Energy, vol. 47, no. 13, pp. 8409–8418, 2022, doi: 10.1016/j.ijhydene.2021.12.172.
[103] M.Sahlberg, D.Karlsson, C.Zlotea, andU.Jansson, “Superior hydrogen storage in high entropy alloys,” Sci. Rep., vol. 6, pp. 1–7, 2016, doi: 10.1038/srep36770.
[104] F.Marques, M.Balcerzak, F.Winkelmann, G.Zepon, andM.Felderhoff, “Review and outlook on high-entropy alloys for hydrogen storage,” Energy Environ. Sci., vol. 14, no. 10, pp. 5191–5227, 2021, doi: 10.1039/d1ee01543e.
[105] X.Liu, Y.Duan, X.Yang, L.Huang, M.Gao, andT.Wang, “Enhancement of magnetic properties in FeCoNiCr0.4CuX high entropy alloys through the cocktail effect for megahertz electromagnetic wave absorption,” J. Alloys Compd., vol. 872, p. 159602, 2021, doi: 10.1016/j.jallcom.2021.159602.
[106] L.Wang, L.Zhang, X.Lu, F.Wu, X.Sun, H.Zhao, andQ.Li, “Surprising cocktail effect in high entropy alloys on catalyzing magnesium hydride for solid-state hydrogen storage,” Chem. Eng. J., vol. 465, no. March, p. 142766, 2023, doi: 10.1016/j.cej.2023.142766.
[107] L.Zhou, W.Li, H.Hu, H.Zeng, andQ.Chen, “Ce-Doped TiZrCrMn Alloys for Enhanced Hydrogen Storage,” Energy and Fuels, vol. 36, no. 7, pp. 3997–4005, 2022, doi: 10.1021/acs.energyfuels.2c00011.
[108] J.Chen, H.Huang, T.Xu, Y.Lv, B.Liu, B.Zhang, J.Yuan, andY.Wu, “Enhancement of vanadium addition on hydrogen storage properties of high entropy alloys TiZrFeMnCrVx,” Int. J. Hydrogen Energy, no. xxxx, 2023, doi: 10.1016/j.ijhydene.2023.09.121.
[109] S.Wu, Y.Chen, W.Kang, X.Cai, andL.Zhou, “Hydrogen storage properties of MgTiVZrNb high-entropy alloy and its catalytic effect upon hydrogen storage in Mg,” Int. J. Hydrogen Energy, no. xxxx, 2023, doi: 10.1016/j.ijhydene.2023.09.022.
[110] L.Luo, Y.Li, S.Liu, F.Yang, Z.Yuan, L.Li, andY.Li, “Nanoscale microstructure and hydrogen storage performance of as cast La-containing V-based multicomponent alloys,” Int. J. Hydrogen Energy, vol. 47, no. 80, pp. 34165–34182, 2022, doi: 10.1016/j.ijhydene.2022.08.021.
[111] B.Cheng, L.Kong, H.Cai, Y.Li, Y.Zhao, D.Wan, andY.Xue, “Pushing the Boundaries of solid-state hydrogen storage: A Refined study on TiVNbCrMo high-entropy alloys,” Int. J. Hydrogen Energy, vol. 60, no. February, pp. 282–292, 2024, doi: 10.1016/j.ijhydene.2024.02.192.
[112] J.Hu, J.Zhang, H.Xiao, L.Xie, G.Sun, H.Shen, P.Li, J.Zhang, andX.Zu, “A first-principles study of hydrogen storage of high entropy alloy TiZrVMoNb,” Int. J. Hydrogen Energy, vol. 46, no. 40, pp. 21050–21058, 2021, doi: 10.1016/j.ijhydene.2021.03.200.
[113] J.Hu, H.Shen, M.Jiang, H.Gong, H.Xiao, Z.Liu, G.Sun, andX.Zu, “A DFT study of hydrogen storage in high-entropy alloy TiZrHfScMo,” Nanomaterials, vol. 9, no. 3, pp. 1–12, 2019, doi: 10.3390/nano9030461.
[114] Y.Deng, J.Hu, S.Zhao, W.Wang, L.Xie, G.Sun, H.Shen, X.Zu, andH.Xiao, “Hydrogen storage properties of Mg0.10Ti0.30V0.25Zr0.10Nb0.25 lightweight high entropy alloy: A theoretical study,” Int. J. Hydrogen Energy, vol. 50, pp. 314–323, 2024, doi: 10.1016/j.ijhydene.2023.07.075.
[115] S.Kurokouchi, “Deterioration of seal reliability due to noncoaxial arrangement of ConFlat type flanges and gasket,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 26, no. 5, pp. 1293–1299, 2008, doi: 10.1116/1.2970143.
[116] K. D.Liss, B.Hunter, M.Hagen, T.Noakes, andS.Kennedy, “Echidna-the new high-resolution powder diffractometer being built at OPAL,” Phys. B Condens. Matter, vol. 385–386, pp. 1010–1012, 2006, doi: 10.1016/j.physb.2006.05.322.
[117] E.Akiba, “Hydrogen-absorbing alloys,” Curr. Opin. Solid State Mater. Sci., vol. 4, no. 3, pp. 267–272, 1999, doi: 10.1016/s1359-0286(99)00026-1.
[118] T.Kabutomori, H.Takeda, Y.Wakisaka, andK.Ohnishi, “Hydrogen absorption properties of TiCrA (A ≡ V, Mo or other transition metal) B.C.C. solid solution alloys,” J. Alloys Compd., vol. 231, no. 1–2, pp. 528–532, 1995, doi: 10.1016/0925-8388(95)01859-X.
[119] T. H.Jang, J. I.Han, andL.Jai-Young, “Effect of substitution of titanium by zirconium in TiFe on hydrogenation properties,” J. Less-Common Met., vol. 119, no. 2, pp. 237–246, 1986, doi: 10.1016/0022-5088(86)90684-3.
[120] VICTOR’S ENTERPRISE CO. LTD, “Report on raw materials acquired from HEA,” 2023.
[121] H.Figiel, O.Zogał, andV.Yartys, “Hydrogen sorption in TiZrNbHfTa high entropy alloy,” J. Alloys Compd., vol. 404–406, no. SPEC. ISS., p. 1, 2005, doi: 10.1016/j.jallcom.2005.05.002.
指導教授 陳立業(Sammy Lap Ip Chan) 審核日期 2024-8-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明