參考文獻 |
[1] M.Höök andX.Tang, “Depletion of fossil fuels and anthropogenic climate change-A review,” Energy Policy, vol. 52, pp. 797–809, 2013, doi: 10.1016/j.enpol.2012.10.046.
[2] P. P.Edwards, V. L.Kuznetsov, andW. I. F.David, “Hydrogen energy,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 365, no. 1853, pp. 1043–1056, 2007, doi: 10.1098/rsta.2006.1965.
[3] K. L.Lim, H.Kazemian, Z.Yaakob, andW. R. W.Daud, “Solid-state materials and methods for hydrogen storage: A critical review,” Chem. Eng. Technol., vol. 33, no. 2, pp. 213–226, 2010, doi: 10.1002/ceat.200900376.
[4] B.Sakintuna, F.Lamari-Darkrim, andM.Hirscher, “Metal hydride materials for solid hydrogen storage: A review,” Int. J. Hydrogen Energy, vol. 32, no. 9, pp. 1121–1140, 2007, doi: 10.1016/j.ijhydene.2006.11.022.
[5] Y.Li, E.Teliz, F.Zinola, andV.Díaz, “Design of a AB5-metal hydride cylindrical tank for hydrogen storage,” Int. J. Hydrogen Energy, vol. 46, no. 68, pp. 33889–33898, Oct.2021, doi: 10.1016/J.IJHYDENE.2021.07.207.
[6] J.Liu, K.Li, H.Cheng, K.Yan, Y.Wang, Y.Liu, H.Jin, andZ.Zheng, “New insights into the hydrogen storage performance degradation and Al functioning mechanism of LaNi5-xAlx alloys,” Int. J. Hydrogen Energy, vol. 42, no. 39, pp. 24904–24914, 2017, doi: 10.1016/j.ijhydene.2017.07.213.
[7] B.Abrashev, T.Spassov, S.Bliznakov, andA.Popov, “Microstructure and electrochemical hydriding/dehydriding properties of ball-milled TiFe-based alloys,” Int. J. Hydrogen Energy, vol. 35, no. 12, pp. 6332–6337, 2010, doi: 10.1016/j.ijhydene.2010.03.129.
[8] “Hydride Materials Database.” [Online]. Available: http://hydpark.ca.sandia.gov/MaterialsFrame.html
[9] B.Wang, Y.Chen, andY.Liu, “Structure and electrochemical properties of (La1−xDyx)0.8Mg0.2Ni3.4Al0.1 (x = 0.0–0.20) hydrogen storage alloys,” Int. J. Hydrogen Energy, vol. 37, pp. 9082–9087, 2012, doi: 10.1016/j.ijhydene.2012.02.164.
[10] J. W.Yeh, S. K.Chen, S. J.Lin, J. Y.Gan, T. S.Chin, T. T.Shun, C. H.Tsau, andS. Y.Chang, “Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes,” Adv. Eng. Mater., vol. 6, no. 5, pp. 299–303, 2004, doi: 10.1002/adem.200300567.
[11] M. C. G.Jien-wei Yeh, P.K.Liaw, andY.Zhang, High-Entropy Alloys: Fundamental and Applications.
[12] Y.Zhang andQ.Xing, “High Entropy Alloys: Manufacturing Routes,” Encycl. Mater. Met. Alloy., pp. 327–338, 2021, doi: 10.1016/B978-0-12-803581-8.12123-X.
[13] J.-W.Tsai, Kun-Yo; Tsai, Ming-Hung; Yeh, “Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi,” Scr. Mater., vol. 154, pp. 273–276, 2018, [Online]. Available: https://doi.org/10.1016/j.scriptamat.2017.11.010
[14] S.Yang, F.Yang, C.Wu, Y.Chen, Y.Mao, andL.Luo, “Hydrogen storage and cyclic properties of (VFe)60(TiCrCo)40-xZrx (0 ≤ x ≤ 2) alloys,” J. Alloys Compd., vol. 663, pp. 460–465, 2016, doi: 10.1016/j.jallcom.2015.12.125.
[15] H.Xiu, W.Liu, D.Yin, N.Ding, W.Qiao, S.Zhao, L.Liang, C.Liu, S.Wang, Q.Wang, B.Chen, L.Wang, andY.Cheng, “Multidimensional regulation of Ti-Zr-Cr-Mn hydrogen storage alloys via Y partial substitution,” Nano Res., 2024, doi: 10.1007/s12274-023-6389-0.
[16] V. M.Golod andV. S.Sufiiarov, “The evolution of structural and chemical heterogeneity during rapid solidification at gas atomization,” IOP Conf. Ser. Mater. Sci. Eng., vol. 192, no. 1, 2017, doi: 10.1088/1757-899X/192/1/012009.
[17] P. R. and M. R.Hannah Ritchie, “Energy Production and Consumption.” [Online]. Available: https://ourworldindata.org/energy-production-consumption
[18] M. A.Siddik, M. T.Islam, A. K. M. M.Zaman, andM. M.Hasan, “Current Status and Correlation of Fossil Fuels Consumption and Greenhouse Gas Emissions,” vol. 28, no. 598746, 2021.
[19] M.Faizal andR.Saidur, “Comparative thermodynamics analysis of gasoline and hydrogen fuelled Internal Combustion Engines,” Int. J. Adv. Sci. Res. Manag., vol. 2, no. 3, 2017, [Online]. Available: www.ijasrm.com
[20] T. N.Veziroǧlu andS.Şahin, “21st Century’s energy: Hydrogen energy system,” Energy Convers. Manag., vol. 49, no. 7, pp. 1820–1831, 2008, doi: 10.1016/j.enconman.2007.08.015.
[21] S.Wang andS.Wang, “Impacts of wind energy on environment: A review,” Renew. Sustain. Energy Rev., vol. 49, no. 2015, pp. 437–443, 2015, doi: 10.1016/j.rser.2015.04.137.
[22] A.Ciarreta, M. P.Espinosa, andC.Pizarro-Irizar, “Is green energy expensive? Empirical evidence from the Spanish electricity market,” Energy Policy, vol. 69, pp. 205–215, 2014, doi: 10.1016/j.enpol.2014.02.025.
[23] R. R.Hernandez, S. B.Easter, M. L.Murphy-Mariscal, F. T.Maestre, M.Tavassoli, E. B.Allen, C. W.Barrows, J.Belnap, R.Ochoa-Hueso, S.Ravi, andM. F.Allen, “Environmental impacts of utility-scale solar energy,” Renew. Sustain. Energy Rev., vol. 29, pp. 766–779, 2014, doi: 10.1016/j.rser.2013.08.041.
[24] L.Barelli, G.Bidini, F.Gallorini, andS.Servili, “Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review,” Energy, vol. 33, no. 4, pp. 554–570, 2008, doi: 10.1016/j.energy.2007.10.018.
[25] C. M.Kalamaras andA. M.Efstathiou, “Hydrogen Production Technologies: Current State and Future Developments,” Conf. Pap. Energy, vol. 2013, pp. 1–9, 2013, doi: 10.1155/2013/690627.
[26] A.Ursúa, L. M.Gandía, andP.Sanchis, “Hydrogen production from water electrolysis: Current status and future trends,” Proc. IEEE, vol. 100, no. 2, pp. 410–426, 2012, doi: 10.1109/JPROC.2011.2156750.
[27] K. T.Møller, T. R.Jensen, E.Akiba, andH. wenLi, “Hydrogen - A sustainable energy carrier,” Prog. Nat. Sci. Mater. Int., vol. 27, no. 1, pp. 34–40, 2017, doi: 10.1016/j.pnsc.2016.12.014.
[28] U.Bossel, “Does a hydrogen economy make sense?,” Proc. IEEE, vol. 94, no. 10, pp. 1826–1836, 2006, doi: 10.1109/JPROC.2006.883715.
[29] “Energy density.” [Online]. Available: https://energyeducation.ca/encyclopedia/Energy_density
[30] A. M.Abdalla, S.Hossain, O. B.Nisfindy, A. T.Azad, M.Dawood, andA. K.Azad, “Hydrogen production, storage, transportation and key challenges with applications: A review,” Energy Convers. Manag., vol. 165, no. April, pp. 602–627, 2018, doi: 10.1016/j.enconman.2018.03.088.
[31] R.Yukesh Kannah, S.Kavitha, Preethi, O.Parthiba Karthikeyan, G.Kumar, N. V.Dai-Viet, andJ.Rajesh Banu, “Techno-economic assessment of various hydrogen production methods – A review,” Bioresour. Technol., vol. 319, no. September 2020, p. 124175, 2021, doi: 10.1016/j.biortech.2020.124175.
[32] M.Newborough andG.Cooley, “Developments in the global hydrogen market: The spectrum of hydrogen colours,” Fuel Cells Bull., vol. 2020, no. 11, pp. 16–22, 2020, doi: 10.1016/S1464-2859(20)30546-0.
[33] A.Ajanovic, M.Sayer, andR.Haas, “The economics and the environmental benignity of different colors of hydrogen,” Int. J. Hydrogen Energy, vol. 47, no. 57, pp. 24136–24154, 2022, doi: 10.1016/j.ijhydene.2022.02.094.
[34] R.Ramachandran andR. K.Menon, “An overview of industrial uses of hydrogen,” Int. J. Hydrogen Energy, vol. 23, no. 7, pp. 593–598, 1998, doi: 10.1016/s0360-3199(97)00112-2.
[35] A.Züttel, “Materials for hydrogen storage,” Mater. Today, vol. 6, no. 9, pp. 24–33, 2003, doi: 10.1016/S1369-7021(03)00922-2.
[36] “Toyota”, [Online]. Available: https://www.toyota.com/mirai/
[37] and N. O.Akira Yamashita, Masaaki Kondo, Sogo Goto, “Development of High-Pressure Hydrogen Storage System for the Toyota ‘Mirai,’” SAE Tech. Pap., no. 2021, 2021, doi: 10.4271/2021-01-0741.
[38] C.Hon-fai, K.Jeffrey, L.Dennis, L.Michael, C.Chris, C.Don, andF.Raymond, “Technical Review on Production, Transportation, Storage and Use of Hydrogen to Achieve Net Zero in Hong Kong,” pp. 1–66.
[39] A.Züttel, “Hydrogen storage methods,” Naturwissenschaften, vol. 91, no. 4, pp. 157–172, 2004, doi: 10.1007/s00114-004-0516-x.
[40] U. S.Department of Energy, “Hydrogen Storage.” [Online]. Available: https://www.energy.gov/eere/fuelcells/hydrogen-storage
[41] L.Schlapbach andA.Züttel, “Hydrogen-storage materials for mobile applications,” Nature, vol. 414, no. November, pp. 353–358, 2001, doi: 10.1038/35104634.
[42] E.Boateng andA.Chen, “Recent advances in nanomaterial-based solid-state hydrogen storage,” Mater. Today Adv., vol. 6, p. 100022, 2020, doi: 10.1016/j.mtadv.2019.100022.
[43] P.Prachi R., W.Mahesh M., andG.Aneesh C., “A Review on Solid State Hydrogen Storage Material,” Adv. Energy Power, vol. 4, no. 2, pp. 11–22, 2016, doi: 10.13189/aep.2016.040202.
[44] K. K.Gangu, S.Maddila, S. B.Mukkamala, andS. B.Jonnalagadda, “A review on contemporary Metal-Organic Framework materials,” Inorganica Chim. Acta, vol. 446, pp. 61–74, 2016, doi: 10.1016/j.ica.2016.02.062.
[45] K. K.Gangu, S.Maddila, andS. B.Jonnalagadda, “A review on synthesis, crystal structure and functionality of naphthalenedicarboxylate ligated metal-organic frameworks,” Inorganica Chim. Acta, vol. 466, pp. 308–323, 2017, doi: 10.1016/j.ica.2017.06.038.
[46] K. K.Gangu, S.Maddila, S. B.Mukkamala, andS. B.Jonnalagadda, “Synthesis, characterisation and catalytic activity of 4, 5-imidazoledicarboxylate ligated Co(II) and Cd(II) metal-organic coordination complexes,” J. Mol. Struct., vol. 1143, pp. 153–162, 2017, doi: 10.1016/j.molstruc.2017.04.083.
[47] Z.Zhang, Y.Wang, H.Wang, X.Xue, andQ.Lin, “Metal-Organic Frameworks Promoted Hydrogen Storage Properties of Magnesium Hydride for In-Situ Resource Utilization (ISRU) on Mars,” Front. Mater., vol. 8, no. October, pp. 1–6, 2021, doi: 10.3389/fmats.2021.766288.
[48] P.Rocío-Bautista, I.Taima-Mancera, J.Pasán, andV.Pino, “Metal-organic frameworks in green analytical chemistry,” Separations, vol. 6, no. 3, pp. 1–21, 2019, doi: 10.3390/separations6030033.
[49] D.Saha andS.Deng, “Hydrogen Adsorption on Metal-Organic Framework MOF-177,” vol. 15, no. 4, pp. 363–376, 2010.
[50] S. P.Shet, S.Shanmuga Priya, K.Sudhakar, andM.Tahir, “A review on current trends in potential use of metal-organic framework for hydrogen storage,” Int. J. Hydrogen Energy, vol. 46, no. 21, pp. 11782–11803, 2021, doi: 10.1016/j.ijhydene.2021.01.020.
[51] M.Niermann, S.Timmerberg, S.Drünert, andM.Kaltschmitt, “Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen,” Renew. Sustain. Energy Rev., vol. 135, no. August 2019, p. 110171, 2021, doi: 10.1016/j.rser.2020.110171.
[52] C.Shinohara, S.Kawakami, T.Moriga, H.Hayashi, S.Hodoshima, Y.Saito, andS.Sugiyama, “Local structure around platinum in Pt/C catalysts employed for liquid-phase dehydrogenation of decalin in the liquid-film state under reactive distillation conditions,” Appl. Catal. A Gen., vol. 266, no. 2, pp. 251–255, 2004, doi: 10.1016/j.apcata.2004.02.014.
[53] Q. L.Zhu andQ.Xu, “Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage,” Energy Environ. Sci., vol. 8, no. 2, pp. 478–512, 2015, doi: 10.1039/c4ee03690e.
[54] N.Brückner, K.Obesser, A.Bösmann, D.Teichmann, W.Arlt, J.Dungs, andP.Wasserscheid, “Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems,” ChemSusChem, vol. 7, no. 1, pp. 229–235, 2014, doi: 10.1002/cssc.201300426.
[55] K.Müller, J.Völkl, andW.Arlt, “Thermodynamic Evaluation of Potential Organic Hydrogen Carriers,” Energy Technol., vol. 1, no. 1, pp. 20–24, 2013, doi: 10.1002/ente.201200045.
[56] Y.Okada, E.Sasaki, E.Watanabe, S.Hyodo, andH.Nishijima, “Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method,” Int. J. Hydrogen Energy, vol. 31, no. 10, pp. 1348–1356, 2006, doi: 10.1016/j.ijhydene.2005.11.014.
[57] P. M.Modisha, C. N. M.Ouma, R.Garidzirai, P.Wasserscheid, andD.Bessarabov, “The Prospect of Hydrogen Storage Using Liquid Organic Hydrogen Carriers,” Energy and Fuels, vol. 33, no. 4, pp. 2778–2796, 2019, doi: 10.1021/acs.energyfuels.9b00296.
[58] K. C.Tan, Y. S.Chua, T.He, andP.Chen, “Strategies of thermodynamic alternation on organic hydrogen carriers for hydrogen storage application: A review,” Green Energy Resour., vol. 1, no. 2, p. 100020, 2023, doi: 10.1016/j.gerr.2023.100020.
[59] C.Chu, K.Wu, B.Luo, Q.Cao, andH.Zhang, “Hydrogen storage by liquid organic hydrogen carriers: Catalyst, renewable carrier, and technology – A review,” Carbon Resour. Convers., vol. 6, no. 4, pp. 334–351, 2023, doi: 10.1016/j.crcon.2023.03.007.
[60] S. I.Orimo, Y.Nakamori, J. R.Eliseo, A.Züttel, andC. M.Jensen, “Complex hydrides for hydrogen storage,” Chem. Rev., vol. 107, no. 10, pp. 4111–4132, 2007, doi: 10.1021/cr0501846.
[61] N. A.Ali andM.Ismail, “Modification of NaAlH4 properties using catalysts for solid-state hydrogen storage: A review,” Int. J. Hydrogen Energy, vol. 46, no. 1, pp. 766–782, 2021, doi: 10.1016/j.ijhydene.2020.10.011.
[62] P. Z.Li, K.Aranishi, andQ.Xu, “ZIF-8 immobilized nickel nanoparticles: Highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane,” Chem. Commun., vol. 48, no. 26, pp. 3173–3175, 2012, doi: 10.1039/c2cc17302f.
[63] T.He, H.Wu, G.Wu, J.Wang, W.Zhou, Z.Xiong, J.Chen, T.Zhang, andP.Chen, “Borohydride hydrazinates: High hydrogen content materials for hydrogen storage,” Energy Environ. Sci., vol. 5, no. 2, pp. 5686–5689, 2012, doi: 10.1039/c2ee03205h.
[64] W.Sun, X.Chen, Q.Gu, K. S.Wallwork, Y.Tan, Z.Tang, andX.Yu, “A new ammine dual-cation (Li, Mg) borohydride: Synthesis, structure, and dehydrogenation enhancement,” Chem. - A Eur. J., vol. 18, no. 22, pp. 6825–6834, 2012, doi: 10.1002/chem.201102651.
[65] T.Hügle, M. F.Kühnel, andD.Lentz, “Hydrazine borane: A promising hydrogen storage material,” J. Am. Chem. Soc., vol. 131, no. 21, pp. 7444–7446, 2009, doi: 10.1021/ja9013437.
[66] K. J.Fijałkowski andW.Grochala, “Substantial emission of NH3 during thermal decomposition of sodium amidoborane, NaNH2BH3,” J. Mater. Chem., vol. 19, no. 14, pp. 2043–2050, 2009, doi: 10.1039/b813773k.
[67] B.Peng andJ.Chen, “Ammonia borane as an efficient and lightweight hydrogen storage medium,” Energy Environ. Sci., vol. 1, no. 4, pp. 479–483, 2008, doi: 10.1039/b809243p.
[68] Y.Tan andX.Yu, “Chemical regeneration of hydrogen storage materials,” RSC Adv., vol. 3, no. 46, pp. 23879–23894, 2013, doi: 10.1039/c3ra44103b.
[69] U. B.Demirci, “Ammonia borane, a material with exceptional properties for chemical hydrogen storage,” Int. J. Hydrogen Energy, vol. 42, no. 15, pp. 9978–10013, 2017, doi: 10.1016/j.ijhydene.2017.01.154.
[70] S.Akbayrak andS.Özkar, “Ammonia borane as hydrogen storage materials,” Int. J. Hydrogen Energy, vol. 43, no. 40, pp. 18592–18606, 2018, doi: 10.1016/j.ijhydene.2018.02.190.
[71] J. J.Reilly andR. H.Wiswall, “The Reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg2NiH4,” Inorg. Chem., vol. 7, no. 11, pp. 2254–2256, 1968, doi: 10.1021/ic50069a016.
[72] J. S. H. and J.-Y.LEE, “A STUDY ON THE DEHYDRIDING KINETICS OF Mg2Ni INTERMETALLIC COMPOUND,” vol. 128, pp. 155–165, 1987.
[73] J. J.Reilly andR. H.Wiswall, “Formation and properties of iron titanium hydride,” Inorg. Chem., vol. 13, no. 1, pp. 218–222, 1974, doi: 10.1021/ic50131a042.
[74] H.Liu, J.Zhang, P.Sun, C.Zhou, Y.Liu, andZ. Z.Fang, “An overview of TiFe alloys for hydrogen storage: Structure, processes, properties, and applications,” J. Energy Storage, vol. 68, no. May, p. 107772, 2023, doi: 10.1016/j.est.2023.107772.
[75] W.Xu, Z.Tao, andJ.Chen, “Progress of research on hydrogen storage,” 2006.
[76] G.Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view,” J. Alloys Compd., vol. 293, pp. 877–888, 1999, doi: 10.1016/S0925-8388(99)00384-9.
[77] K. S.Nivedhitha, T.Beena, N. R.Banapurmath, M. A.Umarfarooq, V.Ramasamy, M. E. M.Soudagar, andÜ.Ağbulut, “Advances in hydrogen storage with metal hydrides: Mechanisms, materials, and challenges,” Int. J. Hydrogen Energy, vol. 61, no. February, pp. 1259–1273, 2024, doi: 10.1016/j.ijhydene.2024.02.335.
[78] R. J.Behm, V.Penka, M. G.Cattania, K.Christmann, andG.Ertl, “Evidence for ‘subsurface’ hydrogen on Pd(110): An intermediate between chemisorbed and dissolved species,” J. Chem. Phys., vol. 78, no. 12, pp. 7486–7490, 1982, doi: 10.1063/1.444739.
[79] L.Vitos, A.V.Ruban, H. L.Skriver, andJ.Kollár, “The surface energy of metals,” Surf. Sci., vol. 411, no. 1–2, pp. 186–202, 1998, doi: 10.1016/S0039-6028(98)00363-X.
[80] M.Hirscher, Handbook of Hydrogen Storage: New Materials for Future Energy Storage. 2010. doi: 10.1002/9783527629800.
[81] C.Lang, Y.Jia, X.Yan, L.Ouyang, M.Zhu, andX.Yao, “Molecular chemisorption: a new conceptual paradigm for hydrogen storage,” Chem. Synth., vol. 2, no. 1, pp. 1–13, 2022, doi: 10.20517/cs.2021.15.
[82] N.Klopčič, I.Grimmer, F.Winkler, M.Sartory, andA.Trattner, “A review on metal hydride materials for hydrogen storage,” J. Energy Storage, vol. 72, no. May, 2023, doi: 10.1016/j.est.2023.108456.
[83] S.Qian andD.Northwood, “Elastic and plastic accommodation effects on hysteresis during hydride formation and decomposition,” Int. J. Hydrogen Energy, vol. 15, no. 9, pp. 649–654, 1990.
[84] T. B.Flanagan andJ. D.Clewley, “Hysteresis in metal hydrides,” J. Less-Common Met., vol. 83, no. 1, pp. 127–141, 1982, doi: 10.1016/0022-5088(82)90176-X.
[85] H.Imamura, M.Kawahigashi, andS.Tsuchiya, “Exceptionally active magnesium for hydrogen storage: Solvated magnesium clusters formed in low temperature matrices,” J. Less-Common Met., vol. 95, no. 1, pp. 157–160, 1983, doi: 10.1016/0022-5088(83)90396-X.
[86] I.Haas andA.Gedanken, “Synthesis of metallic magnesium nanoparticles by sonoelectrochemistry,” Chem. Commun., no. 15, pp. 1795–1797, 2008, doi: 10.1039/b717670h.
[87] D. G.Westlake, “Site occupancies and stoichiometries in hydrides of intermetallic compounds: Geometric considerations,” J. Less-Common Met., vol. 90, no. 2, pp. 251–273, 1983, doi: 10.1016/0022-5088(83)90075-9.
[88] D. P.Shoemaker andC. B.Shoemaker, “Concerning atomic sites and capacities for hydrogen absorption in the AB2 Friauf-Laves phases,” J. Less-Common Met., vol. 68, no. 1, pp. 43–58, 1979, doi: 10.1016/0022-5088(79)90271-6.
[89] R. R.Shahi, A. K.Gupta, andP.Kumari, “Perspectives of high entropy alloys as hydrogen storage materials,” Int. J. Hydrogen Energy, Mar.2022, doi: 10.1016/J.IJHYDENE.2022.02.113.
[90] W.Hsu, C.Tsai, A.Yeh, andJ.Yeh, “Clarifying the four core effects of high-entropy materials,” Nat. Rev. Chem., 2024, doi: 10.1038/s41570-024-00602-5.
[91] R.Miedema, A.R., Boer, F.R. de &Boom, “Model predictions for the enthalpy of formation of transition metal alloys,” vol. 1, no. 4, pp. 341–359, 1977.
[92] R. F.Zhang, S. H.Zhang, Z. J.He, J.Jing, andS. H.Sheng, “Miedema Calculator : A thermodynamic platform for predicting formation enthalpies of alloys within framework of Miedema ’ s Theory,” Comput. Phys. Commun., vol. 209, pp. 58–69, 2016, doi: 10.1016/j.cpc.2016.08.013.
[93] A.Takeuchi andA.Inoue, “Classification of Bulk Metallic Glasses by Atomic Size Difference , Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element,” vol. 46, no. 12, pp. 2817–2829, 2005, doi: 10.2320/matertrans.46.2817.
[94] X.Yang andY.Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys,” Mater. Chem. Phys., vol. 132, no. 2–3, pp. 233–238, 2012, doi: 10.1016/j.matchemphys.2011.11.021.
[95] and C. T. L.Sheng Guo, Chun Ng, Jian Lu, “Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys,” J. Appl. Phys., vol. 103505, no. October, 2022, doi: 10.1063/1.3587228.
[96] U.Mizutani andT.Physical, “The Hume-Rothery Rules for Structurally Complex Alloy Phases,” pp. 323–399.
[97] J.-W.Yeh, S.-J.Lin, T.-S.Chin, J.-Y.Gan, S.-K.Chen, T.-T.Shun, C.-H.Tsau, andS.-Y.Chou, “Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic Elements,” Metall. Mater. Trans. A Vol., vol. 35, no. August 2004, pp. 2533–2536, 2010.
[98] P. K.Huang andJ. W.Yeh, “Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings,” Scr. Mater., vol. 62, no. 2, pp. 105–108, 2010, doi: 10.1016/j.scriptamat.2009.09.015.
[99] S.Guo andC. T.Liu, “Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase,” Prog. Nat. Sci. Mater. Int., vol. 21, no. 6, pp. 433–446, 2011, doi: 10.1016/S1002-0071(12)60080-X.
[100] O. N.Senkov, G. B.Wilks, D. B.Miracle, C. P.Chuang, andP. K.Liaw, “Refractory high-entropy alloys,” Intermetallics, vol. 18, no. 9, pp. 1758–1765, 2010, doi: 10.1016/j.intermet.2010.05.014.
[101] Y. F.Kao, S. K.Chen, T. J.Chen, P. C.Chu, J. W.Yeh, andS. J.Lin, “Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys,” J. Alloys Compd., vol. 509, no. 5, pp. 1607–1614, 2011, doi: 10.1016/j.jallcom.2010.10.210.
[102] X.Ma, X.Ding, R.Chen, W.Cao, andQ.Song, “Study on hydrogen storage property of (ZrTiVFe)xAly high-entropy alloys by modifying Al content,” Int. J. Hydrogen Energy, vol. 47, no. 13, pp. 8409–8418, 2022, doi: 10.1016/j.ijhydene.2021.12.172.
[103] M.Sahlberg, D.Karlsson, C.Zlotea, andU.Jansson, “Superior hydrogen storage in high entropy alloys,” Sci. Rep., vol. 6, pp. 1–7, 2016, doi: 10.1038/srep36770.
[104] F.Marques, M.Balcerzak, F.Winkelmann, G.Zepon, andM.Felderhoff, “Review and outlook on high-entropy alloys for hydrogen storage,” Energy Environ. Sci., vol. 14, no. 10, pp. 5191–5227, 2021, doi: 10.1039/d1ee01543e.
[105] X.Liu, Y.Duan, X.Yang, L.Huang, M.Gao, andT.Wang, “Enhancement of magnetic properties in FeCoNiCr0.4CuX high entropy alloys through the cocktail effect for megahertz electromagnetic wave absorption,” J. Alloys Compd., vol. 872, p. 159602, 2021, doi: 10.1016/j.jallcom.2021.159602.
[106] L.Wang, L.Zhang, X.Lu, F.Wu, X.Sun, H.Zhao, andQ.Li, “Surprising cocktail effect in high entropy alloys on catalyzing magnesium hydride for solid-state hydrogen storage,” Chem. Eng. J., vol. 465, no. March, p. 142766, 2023, doi: 10.1016/j.cej.2023.142766.
[107] L.Zhou, W.Li, H.Hu, H.Zeng, andQ.Chen, “Ce-Doped TiZrCrMn Alloys for Enhanced Hydrogen Storage,” Energy and Fuels, vol. 36, no. 7, pp. 3997–4005, 2022, doi: 10.1021/acs.energyfuels.2c00011.
[108] J.Chen, H.Huang, T.Xu, Y.Lv, B.Liu, B.Zhang, J.Yuan, andY.Wu, “Enhancement of vanadium addition on hydrogen storage properties of high entropy alloys TiZrFeMnCrVx,” Int. J. Hydrogen Energy, no. xxxx, 2023, doi: 10.1016/j.ijhydene.2023.09.121.
[109] S.Wu, Y.Chen, W.Kang, X.Cai, andL.Zhou, “Hydrogen storage properties of MgTiVZrNb high-entropy alloy and its catalytic effect upon hydrogen storage in Mg,” Int. J. Hydrogen Energy, no. xxxx, 2023, doi: 10.1016/j.ijhydene.2023.09.022.
[110] L.Luo, Y.Li, S.Liu, F.Yang, Z.Yuan, L.Li, andY.Li, “Nanoscale microstructure and hydrogen storage performance of as cast La-containing V-based multicomponent alloys,” Int. J. Hydrogen Energy, vol. 47, no. 80, pp. 34165–34182, 2022, doi: 10.1016/j.ijhydene.2022.08.021.
[111] B.Cheng, L.Kong, H.Cai, Y.Li, Y.Zhao, D.Wan, andY.Xue, “Pushing the Boundaries of solid-state hydrogen storage: A Refined study on TiVNbCrMo high-entropy alloys,” Int. J. Hydrogen Energy, vol. 60, no. February, pp. 282–292, 2024, doi: 10.1016/j.ijhydene.2024.02.192.
[112] J.Hu, J.Zhang, H.Xiao, L.Xie, G.Sun, H.Shen, P.Li, J.Zhang, andX.Zu, “A first-principles study of hydrogen storage of high entropy alloy TiZrVMoNb,” Int. J. Hydrogen Energy, vol. 46, no. 40, pp. 21050–21058, 2021, doi: 10.1016/j.ijhydene.2021.03.200.
[113] J.Hu, H.Shen, M.Jiang, H.Gong, H.Xiao, Z.Liu, G.Sun, andX.Zu, “A DFT study of hydrogen storage in high-entropy alloy TiZrHfScMo,” Nanomaterials, vol. 9, no. 3, pp. 1–12, 2019, doi: 10.3390/nano9030461.
[114] Y.Deng, J.Hu, S.Zhao, W.Wang, L.Xie, G.Sun, H.Shen, X.Zu, andH.Xiao, “Hydrogen storage properties of Mg0.10Ti0.30V0.25Zr0.10Nb0.25 lightweight high entropy alloy: A theoretical study,” Int. J. Hydrogen Energy, vol. 50, pp. 314–323, 2024, doi: 10.1016/j.ijhydene.2023.07.075.
[115] S.Kurokouchi, “Deterioration of seal reliability due to noncoaxial arrangement of ConFlat type flanges and gasket,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 26, no. 5, pp. 1293–1299, 2008, doi: 10.1116/1.2970143.
[116] K. D.Liss, B.Hunter, M.Hagen, T.Noakes, andS.Kennedy, “Echidna-the new high-resolution powder diffractometer being built at OPAL,” Phys. B Condens. Matter, vol. 385–386, pp. 1010–1012, 2006, doi: 10.1016/j.physb.2006.05.322.
[117] E.Akiba, “Hydrogen-absorbing alloys,” Curr. Opin. Solid State Mater. Sci., vol. 4, no. 3, pp. 267–272, 1999, doi: 10.1016/s1359-0286(99)00026-1.
[118] T.Kabutomori, H.Takeda, Y.Wakisaka, andK.Ohnishi, “Hydrogen absorption properties of TiCrA (A ≡ V, Mo or other transition metal) B.C.C. solid solution alloys,” J. Alloys Compd., vol. 231, no. 1–2, pp. 528–532, 1995, doi: 10.1016/0925-8388(95)01859-X.
[119] T. H.Jang, J. I.Han, andL.Jai-Young, “Effect of substitution of titanium by zirconium in TiFe on hydrogenation properties,” J. Less-Common Met., vol. 119, no. 2, pp. 237–246, 1986, doi: 10.1016/0022-5088(86)90684-3.
[120] VICTOR’S ENTERPRISE CO. LTD, “Report on raw materials acquired from HEA,” 2023.
[121] H.Figiel, O.Zogał, andV.Yartys, “Hydrogen sorption in TiZrNbHfTa high entropy alloy,” J. Alloys Compd., vol. 404–406, no. SPEC. ISS., p. 1, 2005, doi: 10.1016/j.jallcom.2005.05.002. |