博碩士論文 109324072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:18.191.73.166
姓名 高佑丞(Yu-Cheng Kao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以Y型沸石製備二氧化碳吸附及轉化之雙功能材料
(Preparation of Dual-Functional Materials for Carbon Dioxide Adsorption and Conversion Using Zeolite-Y)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 隨著工業化的迅速發展,化石燃料的使用量急劇增加,導致溫室氣體排放量不斷上升,其中二氧化碳引發了全球變暖和氣候變化等多種環境問題。本研究參考一種新型的雙功能材料(DFMs),該材料由擔體、吸附劑和還原觸媒組成,可以有效捕捉和轉化二氧化碳為合成天然氣(SNG)。由於這種材料的化學特性,二氧化碳可以很容易地被DFMs吸附,然後將由可再生能源生成的氫氣注入,促使吸附的二氧化碳分子溢出到觸媒位點並轉化為SNG。本研究將製備雙功能材料,利用SEM/EDS、mapping、BET、XRD及ICP探討材料之表面物理性質,並以熱重分析儀及固定床反應器/氣相分析儀瞭解材料之反應性能。以Y型沸石作為擔體含浸5%MgO後,其穩定平均二氧化碳吸附容量增至4.02*10-2 mmole CO2/g,較單純Y型沸石提高約9.83%。進一步含浸10%及20%還原觸媒後,穩定平均二氧化碳吸附容量分別提高至4.05*10-2 mmole CO2/g及4.63*10-2 mmole CO2/g,相對於5%MgO/Y型沸石含浸10%Ni還原觸媒MgO重量百分比減少至2.14%導致穩定平均二氧化碳吸附容量略增為0.75%,但隨著Ni還原觸媒含浸量增加至20%,使穩定平均二氧化碳吸附容量間接提升至15.17%。在還原甲烷化反應性能測試中,20%Ni-5%MgO/Y型沸石在320℃下具有最佳反應性能,二氧化碳轉化率為99.52%,甲烷選擇率為83.63%,甲烷產率為7.13%。而10%Ni-5%MgO/Y型沸石在相同條件下,甲烷產率提高至12.01%。以綜合性能的角度來看,20%Ni-5%MgO/Y型沸石是更具潛力的雙功能材料組合。
摘要(英) With recent industrialization, the rapid increase in fossil fuel use has led to rising greenhouse gas emissions, particularly CO2, causing global warming and climate change. This study presents a new dual-functional material (DFMs) that combines an adsorbent and a catalyst to capture and convert CO2 into synthetic natural gas (SNG). The DFMs chemical properties allow for easy CO2 adsorption. Hydrogen gas from renewable sources is introduced to convert the adsorbed CO2 into SNG.
The study focuses on preparing DFMs and analyzing their surface properties using SEM/EDS, mapping, BET, XRD, and ICP. The reaction performance is assessed using a thermogravimetric analyzer and a fixed-bed reactor/gas chromatograph. Using Zeolite-Y as a support and impregnating it with 5%MgO increased its stable average CO2 adsorption capacity to 4.02*10-2 mmole CO2/g, approximately 9.83% higher than pure Zeolite-Y. Further impregnation with 10% and 20% catalysts increased the stable average CO2 adsorption capacity to 4.05*10-2 mmole CO2/g and 4.63*10-2 mmole CO2/g, representing increases of approximately 0.75% and 15.17% compared to 5%MgO/Zeolite-Y. Specifically, the 5% MgO/Zeolite-Y with a 10%Ni catalyst showed a slight increase in adsorption capacity by 0.75%, but with a 20% Ni catalyst, the capacity significantly increased by 15.17%.
In methanation reaction tests, the 20%Ni-5%MgO/Zeolite-Y showed the best performance at 320°C, with a CO2 conversion rate of 99.52%, methane selectivity of 83.63%, and a methane yield of 7.13%. Under the same conditions, the 10%Ni-5%MgO/Zeolite-Y achieved a methane yield of 12.01%. Overall, the 20%Ni-5%MgO/Y-type zeolite is the most promising dual-functional material combination.
關鍵字(中) ★ 二氧化碳捕捉
★ 甲烷化
★ 雙功能材料
★ 沸石
關鍵字(英) ★ Cabon dioxide capture
★ Methanenation
★ Dual-functional materials
★ Zeolite
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 研究動機 8
1-3 研究目的 11
第二章 文獻回顧 12
2-1 碳捕捉途徑及技術 12
2-1-1 碳捕捉途徑 12
2-1-2 碳捕捉技術 15
2-2 碳利用轉化技術 22
2-3 吸附 23
2-3-1 吸附簡介 23
2-3-2 吸附的機制 24
2-3-3 影響吸附因素 26
2-4 沸石 27
2-4-1 沸石結構 27
2-4-2 沸石種類 29
2-4-3 沸石特性及應用 34
2-4-4 沸石為擔體之雙功能材料製備及其應用 36
2-5 還原觸媒 38
2-5-1 觸媒種類 38
2-5-2 影響觸媒活性因素 40
第三章 實驗方法 43
3-1 研究流程 43
3-2 實驗藥品及設備 44
3-2-1 實驗藥品、氣體 44
3-2-2 實驗儀器設備 45
3-3 雙功能材料製備步驟 45
3-4 DFMs物理及化學性質分析 47
3-4-1 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 47
3-4-2 能量散射光譜 (Energy Dispersive Spectrometer, EDS) 48
3-4-3 比表面積與孔隙分佈分析儀 (Specific Surface Area and Porosimetry Analyzer, BET) 48
3-4-4 熱重分析儀 (Thermogravimetric Analysis, TGA) 49
3-4-5 X光繞射儀 (X-ray Diffractometer, XRD) 49
3-4-6感應耦合電漿光學發射光譜儀 (Inductively Coupled Plasma Optical Emission Spectroscopy, ICP-OES) 49
3-4-7氣相層析儀(Gas Chromatography, GC) 49
3-5 DFMs反應性能實驗 50
3-5-1二氧化碳吸附實驗 50
3-5-2 二氧化碳還原甲烷化實驗 51
第四章 結果與討論 53
4-1 DFMs物理特性分析 53
4-1-1 BET分析 53
4-1-2 SEM/EDS、Mapping分析 55
4-1-3 XRD分析 68
4-1-4 ICP分析 73
4-2 DFMs 反應性能測試 75
4-2-1 二氧化碳吸附 75
4-2-2 二氧化碳還原甲烷化 82
第五章 結論 88
參考文獻 90
參考文獻 [1]"Global Climate Chance Vital Signs of the Planet." https://climate.nasa.gov/vital-signs/carbon-dioxide/ (accessed.
[2]經濟部能源局, "《111年度我國燃料燃燒之二氧化碳排放統計與分析》," 台北, 2023.
[3]S. Bouckaert et al., "Net Zero by 2050-A Roadmap for the Global Energy Sector," 2021.
[4]國家發展委員會、行政院環境保護署、經濟部、科技部、交通部、內政部行政院農業委員會、金融監督管理委員會, "臺灣2050淨零排放路徑及策略總說明," 台北, 2022.
[5]國科會、經濟部、環保署, "臺灣2050 淨零轉型「碳捕捉利用及封存」關鍵戰略行動計畫(核定本)," 台北, 2022.
[6]X. Wang and C. Song, "Carbon capture from flue gas and the atmosphere: A perspective," Frontiers in Energy Research, vol. 8, p. 560849, 2020.
[7]M. A. Arellano-Trevino, N. Kanani, C. W. Jeong-Potter, and R. J. Farrauto, "Bimetallic catalysts for CO2 capture and hydrogenation at simulated flue gas conditions," Chemical Engineering Journal, vol. 375, p. 121953, 2019.
[8]B. Singh, A. H. Strømman, and E. G. Hertwich, "Comparative life cycle environmental assessment of CCS technologies," International Journal of Greenhouse Gas Control, vol. 5, no. 4, pp. 911-921, 2011.
[9]I. S. Omodolor, H. O. Otor, J. A. Andonegui, B. J. Allen, and A. C. Alba-Rubio, "Dual-function materials for CO2 capture and conversion: a review," Industrial & Engineering Chemistry Research, vol. 59, no. 40, pp. 17612-17631, 2020.
[10]R. M. Cuéllar-Franca and A. Azapagic, "Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts," Journal of CO2 utilization, vol. 9, pp. 82-102, 2015.
[11]M. K. Mondal, H. K. Balsora, and P. Varshney, "Progress and trends in CO2 capture/separation technologies: A review," Energy, vol. 46, no. 1, pp. 431-441, 2012.
[12] L.-P. Merkouri, T. R. Reina, and M. S. Duyar, "Closing the carbon cycle with dual function materials," Energy & Fuels, vol. 35, no. 24, pp. 19859-19880, 2021.
[13] M. Gazzani, E. Macchi, and G. Manzolini, "CO2 capture in natural gas combined cycle with SEWGS. Part A: Thermodynamic performances," International journal of greenhouse gas control, vol. 12, pp. 493-501, 2013.
[14]J. Singh and D. W. Dhar, "Overview of carbon capture technology: microalgal biorefinery concept and state-of-the-art," Frontiers in marine science, vol. 6, p. 29, 2019.
[15]S.-i. Nakao, K. Yogo, K. Goto, T. Kai, and H. Yamada, Advanced CO2 capture technologies: absorption, adsorption, and membrane separation methods. Springer, 2019.
[16]A. Chakma, "Formulated solvents: New opportunities for energy efficient separation of acid gases," Energy Sources, vol. 21, no. 1-2, pp. 51-62, 1999.
[17]P. J. Harlick and F. H. Tezel, "An experimental adsorbent screening study for CO2 removal from N2," Microporous and Mesoporous Materials, vol. 76, no. 1-3, pp. 71-79, 2004.
[18]G. Calleja, J. Pau, and J. Calles, "Pure and multicomponent adsorption equilibrium of carbon dioxide, ethylene, and propane on ZSM-5 zeolites with different Si/Al ratios," Journal of Chemical & Engineering Data, vol. 43, no. 6, pp. 994-1003, 1998.
[19]Q. Wang, J. Luo, Z. Zhong, and A. Borgna, "CO2 capture by solid adsorbents and their applications: current status and new trends," Energy & Environmental Science, vol. 4, no. 1, pp. 42-55, 2011.
[20]G. Singh et al., "Emerging trends in porous materials for CO2 capture and conversion," Chemical Society Reviews, vol. 49, no. 13, pp. 4360-4404, 2020.
[21]F. Montagnaro et al., "Post-combustion CO2 adsorption on activated carbons with different textural properties," Microporous and Mesoporous Materials, vol. 209, pp. 157-164, 2015.
[22]A. T. Najafabadi, "Emerging applications of graphene and its derivatives in carbon capture and conversion: Current status and future prospects," Renewable and Sustainable Energy Reviews, vol. 41, pp. 1515-1545, 2015.
[23]M. Mohamedali, D. Nath, H. Ibrahim, and A. Henni, "Review of recent developments in CO2 capture using solid materials: metal organic frameworks (MOFs)," Greenhouse Gases, pp. 115-154, 2016.
[24]L. Estevez et al., "Hierarchically porous carbon materials for CO2 capture: the role of pore structure," Industrial & Engineering Chemistry Research, vol. 57, no. 4, pp. 1262-1268, 2018.
[25]D. Xu et al., "Effects of water vapour on CO2 capture with vacuum swing adsorption using activated carbon," Chemical Engineering Journal, vol. 230, pp. 64-72, 2013.
[26]S. Japip, H. Wang, Y. Xiao, and T. S. Chung, "Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation," Journal of Membrane Science, vol. 467, pp. 162-174, 2014.
[27]A. Al‐Mamoori, A. Krishnamurthy, A. A. Rownaghi, and F. Rezaei, "Carbon capture and utilization update," Energy Technology, vol. 5, no. 6, pp. 834-849, 2017.
[28]M. Songolzadeh, M. Soleimani, M. Takht Ravanchi, and R. Songolzadeh, "Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions," The Scientific World Journal, vol. 2014, no. 1, p. 828131, 2014.
[29]P. Bernardo, E. Drioli, and G. Golemme, "Membrane gas separation: a review/state of the art," Industrial & engineering chemistry research, vol. 48, no. 10, pp. 4638-4663, 2009.
[30]U. W. Siagian, A. Raksajati, N. F. Himma, K. Khoiruddin, and I. Wenten, "Membrane-based carbon capture technologies: Membrane gas separation vs. membrane contactor," Journal of Natural Gas Science and Engineering, vol. 67, pp. 172-195, 2019.
[31]L. Liu, Y. Cheng, Z. Liu, M. N. Ha, Q. Guo, and Z. Zhao, "Thermochemical conversion of CO2 into CH4 using oxygen deficient NiFe2O4− δ with unique selectivity," RSC Advances, vol. 6, no. 87, pp. 83814-83819, 2016.
[32]P. Yaashikaa, P. S. Kumar, S. J. Varjani, and A. Saravanan, "A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products," Journal of CO2 Utilization, vol. 33, pp. 131-147, 2019.
[33]A. A. Khan and M. Tahir, "Recent advancements in engineering approach towards design of photo-reactors for selective photocatalytic CO2 reduction to renewable fuels," Journal of CO2 Utilization, vol. 29, pp. 205-239, 2019.
[34]J. Li et al., "Efficient electrocatalytic CO2 reduction on a three-phase interface," Nature Catalysis, vol. 1, no. 8, pp. 592-600, 2018.
[35]P. E. Miranda, Science and engineering of hydrogen-based energy technologies: hydrogen production and practical applications in energy generation. Academic Press, 2018.
[36]S. Rönsch et al., "Review on methanation–From fundamentals to current projects," Fuel, vol. 166, pp. 276-296, 2016.
[37]C. Vogt, M. Monai, G. J. Kramer, and B. M. Weckhuysen, "The renaissance of the Sabatier reaction and its applications on Earth and in space," Nature catalysis, vol. 2, no. 3, pp. 188-197, 2019.
[38]D. I. Ferrer, Supported layered double hydroxides as CO2 adsorbents for sorption-enhanced H2 production. Springer, 2016.
[39]K. K. Kennedy, K. J. Maseka, and M. Mbulo, "Selected adsorbents for removal of contaminants from wastewater: towards engineering clay minerals," Open Journal of Applied Sciences, vol. 8, no. 8, pp. 355-369, 2018.
[40]J. Buckingham, T. R. Reina, and M. S. Duyar, "Recent advances in carbon dioxide capture for process intensification," Carbon Capture Science & Technology, vol. 2, p. 100031, 2022.
[41]A. Gupta, V. Gaur, and N. Verma, "Breakthrough analysis for adsorption of sulfur-dioxide over zeolites," Chemical Engineering and Processing: Process Intensification, vol. 43, no. 1, pp. 9-22, 2004.
[42]M. Sakuth, S. Sander, and J. Gmehling, "Comments on “Pure and Multicomponent Adsorption Equilibrium of Carbon Dioxide, Ethylene and Propane on ZSM-5 Zeolites with Different Si/Al Ratios”(Calleja, G.; Pau, J.; Callas, JAJ Chem. Eng. Data 1998, 43, 944− 1003)," Journal of Chemical & Engineering Data, vol. 44, no. 6, pp. 1427-1428, 1999.
[43]L. K. Wang, N. C. Pereira, and Y.-T. Hung, Handbook of environmental engineering. Humana Press, 2005.
[44]C. Colella and A. F. Gualtieri, "Cronstedt’s zeolite," Microporous and Mesoporous Materials, vol. 105, no. 3, pp. 213-221, 2007.
[45]G. Busca, Heterogeneous Catalytic Materials: Solid State Chemistry, Surface Chemistry and Catalytic Behaviour. Elsevier, 2014.
[46]C. Baerlocher, L. B. McCusker, and D. H. Olson, Atlas of zeolite framework types. Elsevier, 2007.
[47]H. Zhang, B. Wang, and W. Yan, "The structure-directing role of heterologous seeds in the synthesis of zeolite," Green Energy & Environment, 2023.
[48]E. Pérez-Botella, S. Valencia, and F. Rey, "Zeolites in adsorption processes: State of the art and future prospects," Chemical Reviews, vol. 122, no. 24, pp. 17647-17695, 2022.
[49]C. Vercaemst, "Isomeric olefinic periodic mesoporous organosilicas: an emerging class of versatile nanomaterials," Ghent University, 2009.
[50]D. G. Boer, J. Langerak, and P. P. Pescarmona, "Zeolites as selective adsorbents for CO2 separation," ACS Applied Energy Materials, vol. 6, no. 5, pp. 2634-2656, 2023.
[51]X. Ren et al., "Synthesis of zeolites from coal fly ash for the removal of harmful gaseous pollutants: A review," Aerosol and Air Quality Research, vol. 20, no. 5, pp. 1127-1144, 2020.
[52]J. Weitkamp, "Zeolites and catalysis," Solid state ionics, vol. 131, no. 1-2, pp. 175-188, 2000.
[53]M. M. Zagho, M. K. Hassan, M. Khraisheh, M. A. A. Al-Maadeed, and S. Nazarenko, "A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs)," Chemical Engineering Journal Advances, vol. 6, p. 100091, 2021.
[54]C. Baerlocher and L. McCusker, "Database of Zeolite Structures: http://www.iza-structure.org/databases," Google Scholar There is no corresponding record for this reference, 2021.
[55]D. M. D′Alessandro, B. Smit, and J. R. Long, "Carbon dioxide capture: prospects for new materials," Angewandte Chemie International Edition, vol. 49, no. 35, pp. 6058-6082, 2010.
[56]N. Mehio, S. Dai, and D.-e. Jiang, "Quantum mechanical basis for kinetic diameters of small gaseous molecules," The Journal of Physical Chemistry A, vol. 118, no. 6, pp. 1150-1154, 2014.
[57]F. Pinna, "Supported metal catalysts preparation," Catalysis Today, vol. 41, no. 1-3, pp. 129-137, 1998.
[58]A. Hatta et al., "A review on recent bimetallic catalyst development for synthetic natural gas production via CO methanation," international journal of hydrogen energy, vol. 47, no. 72, pp. 30981-31002, 2022.
[59]A. Erdőhelyi, "Hydrogenation of carbon dioxide on supported Rh catalysts," Catalysts, vol. 10, no. 2, p. 155, 2020.
[60]M. Younas, L. Loong Kong, M. J. Bashir, H. Nadeem, A. Shehzad, and S. Sethupathi, "Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2," Energy & Fuels, vol. 30, no. 11, pp. 8815-8831, 2016.
[61]V. Jiménez, P. Sánchez, P. Panagiotopoulou, J. L. Valverde, and A. Romero, "Methanation of CO, CO2 and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts," Applied Catalysis A: General, vol. 390, no. 1-2, pp. 35-44, 2010.
[62]C. De Vries, M. Claeys, and G. Schaub, "Chemical energy storage in gaseous hydrocarbons via iron Fischer–Tropsch synthesis from H2/CO2—Kinetics, selectivity and process considerations," Catalysis Today, vol. 242, pp. 184-192, 2015.
[63]U. Lassi, "Deactivation correlations of Pd/Rh three-way catalysts designed for Euro IV emission limits," Effect of Ageing Atmosphere, Temperature and Time. Academic Dissertation, University of Oulu, Department of Process and Environmental Engineering, Oulu, Finland, 2003.
[64] J. A. Moulijn, A. Van Diepen, and F. Kapteijn, "Catalyst deactivation: is it predictable?: What to do?," Applied Catalysis A: General, vol. 212, no. 1-2, pp. 3-16, 2001.
[65]C. H. Bartholomew, "Mechanisms of catalyst deactivation," Applied Catalysis A: General, vol. 212, no. 1-2, pp. 17-60, 2001.
[66]L. Huang, Z. Yang, and S. Wang, "Influence of calcination temperature on the structure and hydration of MgO," Construction and Building Materials, vol. 262, p. 120776, 2020.
[67]J. Chen, Y. Xu, P. Liao, H. Wang, and H. Zhou, "Recent progress in integrated CO2 capture and conversion process using dual function materials: a state-of-the-art review," Carbon Capture Science & Technology, vol. 4, p. 100052, 2022.
[68]I. Champon, A. Bengaouer, A. Chaise, S. Thomas, and A.-C. Roger, "Carbon dioxide methanation kinetic model on a commercial Ni/Al2O3 catalyst," Journal of CO2 Utilization, vol. 34, pp. 256-265, 2019.
指導教授 吳子嘉(Albert T. Wu) 審核日期 2024-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明