博碩士論文 111223035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.149.249.52
姓名 蔡宗佑(Tsung-Yu Tsai)  查詢紙本館藏   畢業系所 化學學系
論文名稱 高品質鉛鈣鈦礦膜的製備及其光電性能之研究
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-23以後開放)
摘要(中) 鉛鈣鈦礦太陽能電池(PSCs),元件中的鈣鈦礦膜與載子傳遞層之間的界面缺陷會使鈣鈦礦膜吸光產生的電子電洞再結合無法順利傳遞到外線路,而鈣鈦礦膜的晶界處易被水降解,導致PSCs元件的光電轉換效率降低及穩定性變差。本研究透過在鉛鈣鈦礦前驅溶液中添加非富勒烯小分子材料(TIIQ-b16或DPPQ-b16)並透過旋轉塗佈法來製備含添加劑之鈣鈦礦膜,含TIIQ-b16和DPPQ-b16之鈣鈦礦膜分別稱T-PSK和D-PSK,而將PDTON加入在反溶劑中所製備的鈣鈦礦膜稱T-PSK@PD和D-PSK@PD,未添加任何添加劑的鈣鈦礦膜稱PSK,將上述五種鈣鈦礦膜稱為(PSK-TD)。FT-IR穿透光譜顯示TIIQ-b16和DPPQ-b16與PbI2混合後其氰基吸收峰分別往低波數位移10 cm-1和8 cm-1,表示這兩個分子中的氰基上未鍵結的電子會與鈣鈦礦膜中配位未飽和的Pb2+配位。從SEM表面形貌圖看到以T-PSK@PD膜最為平整且晶粒最大,PL強度以T-PSK@PD最強,(100)晶面的繞射峰強度也是T-PSK@PD最強,顯示T-PSK@PD膜品質最好。在PSK-TD上沉積Spiro-OMeTAD膜的TRPL圖所測得的激子半生期以Spiro-OMeTAD沉積在T-PSK@PD最短,表示添加TIIQ-b16和PDTON的鈣鈦礦膜較能順利的將電洞傳遞至電洞傳遞層。以PSK、T-PSK、D-PSK、T-PSK@PD和D-PSK@PD作為吸收層所組裝的元件最高光電轉換效率分別為20.89%、21.39%、21.23%、22.01%和21.70%。以T-PSK@PD和D-PSK@PD作為吸光層所組裝的元件在未封裝且放置在手套箱中,經1920小時後,效率仍維持原始效率的95%和94%,在相同測試環境下,以PSK作為吸收層所組裝的元件僅剩原始效率的82%,以T-PSK和D-PSK做為吸收層所組裝的元件經960小時維持原效率的95%和93%。
摘要(英) The interface defects between perovskite absorber and hole transport layer (HTL) of perovskite solar cells (PSCs) will cause electrons and holes recombination, decreasing the power conversion efficiency and long-term stability of PSCs. In this study, non-fullerene small molecules (TIIQ-b16 and DPPQ-b16) were used as additives for perovskite precursor solutions and the resulting perovskite films were called T-PSK and D-PSK, respectively. Furthermore, when PDTON was used as an additive of antisolvent (CB) to crystallize perovskite films, the resulting films were called T-PSK@PD and D-PSK@PD. The perovskite film prepared without any additive was called PSK. FT-IR transmission spectra indicate that the cyano absorption peaks of TIIQ-b16 and DPPQ-b16 have a shift 10 cm⁻¹ and 8 cm⁻¹ to lower wavenumbers respectively when they were mixed with PbI₂, suggesting a coordination interaction between the lone pair electrons on the cyano groups and the unsaturated Pb²⁺ sites in perovskite film. SEM images show that T-PSK@PD is the smoothest film with the largest grains. PL intensity and XRD data suggested that T-PSK@PD is the best quality film. TRPL curve also show that Spiro-OMeTAD-coated on PSK-TD film has the shortest exciton half-life, these data reveal that perovskite film prepared with TIIQ-b16 (in precursor solution) and PDTON (in anti-solvent) additives has the highest quality. Devices based on PSK, T-PSK, D-PSK, T-PSK@PD, and D-PSK@PD absorbers achieve the maximum PCEs of 20.89%, 21.39%, 21.23%, 22.01%, and 21.70% respectively. Devices using T-PSK@PD and D-PSK@PD as the absorption layers maintained 95% and 94%, respectively of their initial efficiency after 1920 hours of storing in a glove box without encapsulation, while device used PSK as absorber retained only 82% of their initial efficiency under the same conditions, while device used T-PSK and D-PSK as the absorber retained 95% and 93%, respectively of their initial efficiency after 960 hours
關鍵字(中) ★ 鈣鈦礦
★ 添加劑
關鍵字(英) ★ Pervoskite
論文目次 摘要 V
Abstract VI
Graphical Abstract VIII
謝誌 IX
目錄 X
圖目錄 XVI
表目錄 XXI
第一章、緒論 1
1-1、 前言 1
1-2、 鈣鈦礦太陽能電池 3
1-2-1. 鈣鈦礦太陽能電池結構 3
1-2-2. 鈣鈦礦太陽能電池(PSCs)的架構 4
1-2-3. 一般式鉛鈣鈦礦太陽能電池的工作原理 4
1-2-4. 第一篇將鈣鈦礦材料應用於太陽能電池之研究 6
1-2-5. 將固態電解質應用於鉛鈣鈦礦太陽能電池 8
1-2-6. 文獻中一般式鉛鈣鈦礦太陽能電池的最高光電轉換效率 9
1-3、 製備鈣鈦礦膜的方法 10
1-3-1. 一步驟合成法 (Single-step method) 11
1-3-2. 兩步驟合成法 (Two-step method) 12
1-3-3. 一步驟反溶劑處理法(one-step anti-solvent engineering method) 13
1-4、 一般式鉛鈣鈦礦太陽能電池面臨的考驗 14
1-4-1. 一般式鉛鈣鈦礦太陽能電池中鈣鈦礦層的晶界問題 14
1-4-2. 一般式鉛鈣鈦礦太陽能電池的鈣鈦礦膜的缺陷 15
1-5、 一般式PSC中鈣鈦礦膜的修飾方法 16
1-5-1. 在鉛鈣鈦礦膜上沉積一層修飾膜 16
1-5-2. 在鉛鈣鈦礦前驅溶液中加入添加劑 22
1-5-3. 在反溶劑中加入添加劑製備高品質的鈣鈦礦膜 31
1-6、 TIIQ-b16有良好的平面性增加?–?堆積,誘導有更好的分子排列 36
1-7、 研究動機 37
第二章、實驗部分 41
2-1、 實驗藥品及儀器設備 41
2-1-1. 藥品 41
2-1-2. 儀器設備 42
2-2、 一般式鈣鈦礦太陽能電池之電池組裝步驟 43
2-2-1. 藥品配製 43
2-2-2. 元件組裝步驟 45
2-3、 儀器原理、樣品製備及量測 48
2-3-1. 熱蒸鍍系統(Thermal evaporation system) 48
2-3-2. 太陽光模擬器及光電轉換效率量測(Solar Simulator, DENSO KXL-500F及Keithley 2400 ) 48
2-3-3. 太陽能電池外部量子效率量測系統 (Incident Photon to Current Conversion Efficiency (IPCE), Enlitech PVCS-I) 49
2-3-4. 接觸角量測儀(Contact angle, Grandhand Ctag01) 50
2-3-5. 超高解析場發射掃描式電子顯微鏡 (Ultra-High Resolution FE-SEM,Nova NanoSEM-230) 51
2-3-6. X-ray繞射光譜儀(X-Ray Diffractometer, BRUKER D8 Discover) 52
2-3-7. 化學分析電子能譜儀(Electron Spectroscopy for Chemical Analysis,ESCA) 53
2-3-8. 光激發螢光光譜儀(Photoluminescence Spectrometer, Uni think Uni-RAM) 54
2-3-9. 空間電荷限制電流量測 56
2-3-10. 傅立葉轉換紅外光光譜儀(Fourier transform infrared spectrometer, Jasco 4100) 57
2-3-11. 恆電位儀(Potentiostat, Metrohm Autolab PGSTAT30 ) 58
第三章、結果與討論 59
3-1、 將TIIQ-b16或DPPQ-b16分子加入鈣鈦礦前驅溶液中製備鈣鈦礦膜作為吸光層組裝成元件的光伏表現 59
3-1-1. 篩選不同濃度TIIQ-b16(DMF:DMSO)作為鈣鈦礦前驅溶液的添加劑所製備的鈣鈦礦膜所組裝之元件的光伏表現 59
3-1-2. 篩選不同濃度PDTON作為氯苯反溶劑的添加劑所製備的鈣鈦礦膜之光伏表現 61
3-1-3. 添加TIIQ-b16作為鈣鈦礦前驅溶液的添加劑,篩選滴反溶劑的轉速 62
3-1-4. 添加TIIQ-b16作為鈣鈦礦前驅溶液的添加劑,篩選界面修飾層BHT塗佈轉速 64
3-1-5. 以DPPQ-b16添加在鈣鈦礦前驅溶液,篩選反溶劑中的PDTON(CB)溶液濃度 65
3-1-6. PSK-TD作為鈣鈦礦吸收層,篩選未使用BHT做為界面修飾層,組裝成元件的光伏表現 67
3-1-7. PSK-TD作為鈣鈦礦吸收層,組裝成元件的最佳光伏表現 68
3-2、 PSK-TD做為鈣鈦礦吸光層組裝成元件的IPCE表現 70
3-3、 PSK-TD作為吸光層組裝之元件的遲滯因子 72
3-4、 PSK-TD作為吸收層所組裝之元件的最大功率點輸出 73
3-5、 PSK-TD作為吸收層所組裝之元件的暗電流 76
3-6、 PSK-TD作為吸光層所組裝之元件在黑暗條件下的電阻 77
3-7、 PSK-TD作為吸光層所組裝之元件的在大氣下及手套箱中的長時間穩定性 79
3-8、 PSK-TD沉積在SnO2膜上的SEM表面形貌圖及剖面形貌圖 81
3-9、 T-PSK@PD沉積在SnO2膜上的表面EDS元素Mapping圖 84
3-10、 PSK-TD沉積在SnO2上的XRD圖 85
3-11、 PSK-TD作為吸光層的前置軌域能階圖 86
3-12、 PSK-TD沉積在SnO2上的水接觸角圖 90
3-13、 PSK-TD的光致螢光光譜圖及時間解析螢光曲線 92
3-14、 PSK、TPSK@PD及DPSK@PD的導電度 99
3-15、 PSK-TD的電洞遷移率、電子遷移率及缺陷密度 101
3-16、 PbI2、TIIQ-b16、TIIQ-b16+PbI2、DPPQ-b16和DPPQ-b16+PbI2的IR光譜圖 105
3-17、 PSK-TD之XPS能譜圖 107
第四章、結論 109
參考文獻 110
附錄 115
附錄1.以TIIQ-b16或DPPQ-b16作為電洞傳遞層組裝之元件的光伏參數 115
參考文獻 (1) Park, J.; Kim, J.; Yun, H.-S.; Paik, M. J.; Noh, E.; Mun, H. J.; Kim, M. G.; Shin, T. J.; Seok, S. I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023, 616 (7958), 724-730.
(2) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the american chemical society 2009, 131 (17), 6050-6051.
(3) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports 2012, 2 (1), 591.
(4) Chiang, C.-H.; Lin, J.-W.; Wu, C.-G. One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module. Journal of materials chemistry A 2016, 4 (35), 13525-13533.
(5) Chiang, C.-H.; Tseng, Z.-L.; Wu, C.-G. Planar heterojunction perovskite/PC 71 BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. Journal of Materials Chemistry A 2014, 2 (38), 15897-15903.
(6) Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials 2014, 13 (9), 897-903.
(7) Wang, Q.; Chen, B.; Liu, Y.; Deng, Y.; Bai, Y.; Dong, Q.; Huang, J. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy & Environmental Science 2017, 10 (2), 516-522.
(8) Ni, Z.; Bao, C.; Liu, Y.; Jiang, Q.; Wu, W.-Q.; Chen, S.; Dai, X.; Chen, B.; Hartweg, B.; Yu, Z. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 2020, 367 (6484), 1352-1358.
(9) Zhao, R.; Xie, L.; Zhuang, R.; Wu, T.; Zhao, R.; Wang, L.; Sun, L.; Hua, Y. Interfacial defect passivation and charge carrier management for efficient perovskite solar cells via a highly crystalline small molecule. ACS Energy Letters 2021, 6 (12), 4209-4219.
(10) Sandhu, S.; Yadagiri, B.; Muthu, S.; Kaliamurthy, A. K.; Park, J.; Kang, H. C.; Ryu, J.; Lee, J.-J. Defect Passivation by a Donor–Acceptor–Donor‐Structured Small Molecule via Bidentate Anchoring for Efficient and Stable Perovskite Solar Cells. Solar RRL 2022, 6 (12), 2200786.
(11) Bi, H.; Han, G.; Guo, M.; Ding, C.; Hayase, S.; Zou, H.; Shen, Q.; Guo, Y.; Hou, W. Top‐contacts‐interface engineering for high‐performance perovskite solar cell with reducing lead leakage. Solar RRL 2022, 6 (9), 2200352.
(12) Long, J.; Sheng, W.; Dai, R.; Huang, Z.; Yang, J.; Zhang, J.; Li, X.; Tan, L.; Chen, Y. Understanding the mechanism between antisolvent dripping and additive doping strategies on the passivation effects in perovskite solar cells. ACS Applied Materials & Interfaces 2020, 12 (50), 56151-56160.
(13) Tao, J.; Wang, Z.; Wang, H.; Shen, J.; Liu, X.; Xue, J.; Guo, H.; Fu, G.; Kong, W.; Yang, S. Additive engineering for efficient and stable MAPbI3-Perovskite solar cells with an efficiency of over 21%. ACS Applied Materials & Interfaces 2021, 13 (37), 44451-44459.
(14) Xie, Y.; Feng, J.; Chen, M.; Zhu, X.; Zhou, Y.; Li, Z.; Yang, D.; Frank Liu, S. Balanced-Strength Additive for High-Efficiency Stable Perovskite Solar Cells. ACS Applied Energy Materials 2022, 5 (7), 8034-8041.
(15) Zhao, W.; Lin, H.; Li, Y.; Wang, D.; Wang, J.; Liu, Z.; Yuan, N.; Ding, J.; Wang, Q.; Liu, S. Symmetrical acceptor–donor–acceptor molecule as a versatile defect passivation agent toward efficient FA0. 85MA0. 15PbI3 perovskite solar cells. Advanced Functional Materials 2022, 32 (19), 2112032.
(16) Yu, R.; Wu, G.; Shi, R.; Ma, Z.; Dang, Q.; Qing, Y.; Zhang, C.; Xu, K.; Tan, Z. a. Multidentate coordination induced crystal growth regulation and trap passivation enables over 24% efficiency in perovskite solar cells. Advanced Energy Materials 2023, 13 (1), 2203127.
(17) Yang, C.; Wang, H.; Miao, Y.; Chen, C.; Zhai, M.; Bao, Q.; Ding, X.; Yang, X.; Cheng, M. Interfacial molecular doping and energy level alignment regulation for perovskite solar cells with efficiency exceeding 23%. ACS Energy Letters 2021, 6 (8), 2690-2696.
(18) Alagumalai, A.; Venu Rajendran, M.; Ganesan, S.; Sudhakaran Menon, V.; Raman, R. K.; Chelli, S. M.; Muthukumar Vijayasayee, S.; Gurusamy Thangavelu, S. A.; Krishnamoorthy, A. Interface Modification with Holistically Designed Push–Pull D–π–A Organic Small Molecule Facilitates Band Alignment Engineering, Efficient Defect Passivation, and Enhanced Hydrophobicity in Mixed Cation Planar Perovskite Solar Cells. ACS Applied Energy Materials 2022, 5 (6), 6783-6796.
(19) Ding, X.; Wang, H.; Miao, Y.; Chen, C.; Zhai, M.; Yang, C.; Wang, B.; Tian, Y.; Cheng, M. Bi (trifluoromethyl) benzoic acid-assisted shallow defect passivation for perovskite solar cells with an efficiency exceeding 21%. ACS Applied Materials & Interfaces 2022, 14 (3), 3930-3938.
(20) Velusamy, A.; Yu, C. H.; Afraj, S. N.; Lin, C. C.; Lo, W. Y.; Yeh, C. J.; Wu, Y. W.; Hsieh, H. C.; Chen, J.; Lee, G. H. Thienoisoindigo (TII)‐Based Quinoidal Small Molecules for High‐Performance n‐Type Organic Field Effect Transistors. Advanced Science 2021, 8 (1), 2002930.
(21) Xia, J.; Sohail, M.; Nazeeruddin, M. K. Efficient and stable perovskite solar cells by tailoring of interfaces. Advanced Materials 2023, 35 (31), 2211324.
(22) Vasilopoulou, M.; Fakharuddin, A.; Coutsolelos, A. G.; Falaras, P.; Argitis, P.; bin Mohd Yusoff, A. R.; Nazeeruddin, M. K. Molecular materials as interfacial layers and additives in perovskite solar cells. Chemical Society Reviews 2020, 49 (13), 4496-4526.
(23) Li, H.; Hao, X.; Chang, B.; Li, Z.; Wang, L.; Pan, L.; Chen, X.; Yin, L. Stiffening the Pb-X framework through a π-conjugated small-molecule cross-linker for high-performance inorganic CsPbI2Br perovskite solar cells. ACS Applied Materials & Interfaces 2021, 13 (34), 40489-40501.
(24) Zhu, J.; Kim, D. H.; Kim, J. D.; Lee, D. G.; Kim, W. B.; Chen, S. W.; Kim, J. Y.; Lee, J. M.; Lee, H.; Han, G. S. All-in-one Lewis base for enhanced precursor and device stability in highly efficient perovskite solar cells. ACS Energy Letters 2021, 6 (10), 3425-3434.
(25) Lao, Y.; Yang, S.; Yu, W.; Guo, H.; Zou, Y.; Chen, Z.; Xiao, L. Multifunctional π‐Conjugated Additives for Halide Perovskite. Advanced Science 2022, 9 (17), 2105307.
(26) Sun, J.; Chandrasekaran, N.; Liu, C.; Scully, A. D.; Yin, W.; Ng, C. K.; Jasieniak, J. J. Enhancement of 3D/2D perovskite solar cells using an F4TCNQ molecular additive. ACS Applied Energy Materials 2020, 3 (9), 8205-8215.
(27) Sun, Y.; Zhang, J.; Yu, H.; Huang, C.; Huang, J. Several triazine-based small molecules assisted in the preparation of high-performance and stable perovskite solar cells by trap passivation and heterojunction engineering. ACS Applied Materials & Interfaces 2022, 14 (5), 6625-6637.
(28) Zhao, C.; Zhang, H.; Krishna, A.; Xu, J.; Yao, J. Interface engineering for highly efficient and stable perovskite solar cells. Advanced Optical Materials 2024, 12 (7), 2301949.
(29) Chiang, C. H.; Chen, H. T.; Chen, W. Y.; Wang, W. T.; Feng, S. P.; Wu, C. G. Tin Oxide/Amphiphilic Polymer Double‐Layered Hole Transporter for High‐Efficiency Tin Perovskite Solar Modules. Advanced Energy Materials, 2400346.
(30) Kim, S.; Lee, Y. J.; Park, J. D.; Kang, G.; Park, M. Selective Passivation of Grain Boundaries via Incorporation of a Fluidic Small Molecule in Perovskite Solar Absorbers. ACS Applied Energy Materials 2021, 4 (9), 10059-10068.
(31) Cai, Y.; Cui, J.; Chen, M.; Zhang, M.; Han, Y.; Qian, F.; Zhao, H.; Yang, S.; Yang, Z.; Bian, H. Multifunctional enhancement for highly stable and efficient perovskite solar cells. Advanced Functional Materials 2021, 31 (7), 2005776.
(32) Elbohy, H.; Suzuki, H.; Nishikawa, T.; Htun, T.; Tsutsumi, K.; Nakano, C.; Kyaw, A. K. K.; Hayashi, Y. Benzophenone: A Small Molecule Additive for Enhanced Performance and Stability of Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces 2023, 15 (38), 45177-45189.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2024-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明