博碩士論文 111324047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:3.135.201.101
姓名 林郁璇(Yu-Hsuan Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 開發以磁性奈米粒子和量子點檢測β-澱粉樣蛋白42/40比值之阿茲海默症診斷技術
(Development of a Quantum Dot-Based Technique to Measure the Aβ42 and Aβ40 Molar Ratio as a Diagnostic for Alzheimer′s Disease)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討
★ 脂質組成成分對細胞膜物理性質與生物功能的影響★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響
★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響
★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性★ CoCrFeMnNi 高熵合金 形變行為之探討
★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動
★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化★ 發展量測雙層脂質膜的排列密度之實驗技術
★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響★ 開發預測雙子型界面活性劑之自組裝結構的方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-31以後開放)
摘要(中) 阿茲海默症(Alzheimer′s disease, AD)是最常見的癡呆症,全世界患病人數呈上升趨勢,目前尚無實質的治療和預防方法。然而現今普遍之診斷方法因價格高昂、具有侵入性等因素而無法廣泛篩檢,導致早期檢測受到限制。研究表明血漿中的澱粉樣蛋白(amyloid beta, Aβ)之水平變化與疾病發展相關,因此已被研究作為候選生物標記物,其中 Aβ 42/40 血漿中的莫耳比隨著病程發展呈現負相關,更能作為阿茲海默症臨床試驗中的縱向分析(longitudinal analysis)依據。因此,本研究致力於開發一種早期檢測方法,使用磁性奈米粒子及量子點複合物的診斷技術。具體而言,利用 Aβ42 和 Aβ40及其與各自抗體之特異性捕獲血漿中的澱粉樣蛋白,再配合量子點高亮度和光穩定性之特性及磁性奈米粒子的順磁性執行定向分析策略(direct assay strategy, DAS)及反向分析策略(reverse assay strategy, RAS),從而提升檢測靈敏度。我們成功地利用此檢測系統測定了 Aβ42 和 Aβ40。最低檢測濃度為0.1 μM,且在 0.4 至 2 μM 的濃度範圍內,螢光強度與濃度呈線性關係。最後,通過固定一種蛋白的濃度並改變另一種蛋白的濃度,成功分析 Aβ42/40比例的變化,驗證了系統的準確性和穩定性。此種方法不僅達到便利且低侵入性,並且為早期診斷提供一個新選擇。
摘要(英) Alzheimer′s disease (AD) stands as the predominant form of dementia worldwide, with its prevalence on a steady rise. Despite this escalating burden, effective treatments or preventive measures remain elusive. Challenges persist in
the realm of diagnostics, where existing methods often prove inaccessible for extensive AD screening due to exorbitant costs and invasiveness. Measuring the concentrations of amyloid beta (Aβ), a protein family believed to be involved in AD pathogenesis, in the blood plasma has emerged as a promising diagnostic, owing to the correlation of the Aβ concentrations, particularly the Aβ42/Aβ40 molar ratio, with AD progression. This ratio presents an opportunity for
comprehensive longitudinal analysis in AD clinical trials. In this vein, our study sets out to develop an approach for early AD detection, leveraging the technique based on magnetic nanoparticles and quantum dot complexed with anti-Aβantibodies. By harnessing the specificity between Aβ42 and Aβ40 and their respective antibodies, our technique captures the two proteins with high precision and efficiency. Crucially, we exploit the high brightness and photostability
characteristics of quantum dots and the paramagnetism of magnetic nanoparticles to enact both directed assay strategies (DAS) and reverse assay strategies (RAS),
which enhances the detection sensitivity. We successfully utilized the detection system to measure Aβ42 and Aβ40, achieving a lowest detectable concentration of 0.1 μM. Within the 0.4 to 2 μM range, fluorescence intensity exhibited a linear relationship with concentration. In addition, effectively analyzed changes in the Aβ42/40 ratio, thereby validating the accuracy and stability of the system.
Through this integrated approach, our method not only facilitates convenient and minimally invasive diagnosis but also heralds a transformative pathway for early detection in AD.
關鍵字(中) ★ 阿茲海默症
★ β-澱粉樣蛋白
★ 磁性奈米粒子
★ 量子點
關鍵字(英) ★ Alzheimer′s disease
★ Amyloid-beta
★ Magnetic nanoparticle
★ Quantum dot
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 IX
表目錄 XV
第一章 緒論 1
1-1 簡介 1
1-2 研究動機與目的 2
第二章 文獻回顧 3
2-1 阿茲海默症 (Alzheimer′s disease) 3
2-1-1 阿茲海默症病程發展 3
2-1-2 阿茲海默症成因假說 4
2-1-3 阿茲海默症病理學 9
2-1-4 阿茲海默症診斷及其優缺點 12
2-2 磁性奈米粒子 (Magnetic nanoparticles) 16
2-2-1 磁性奈米粒子介紹及應用 16
2-2-2 磁性奈米粒子合成 17
2-3 量子點 (Quantum Dots) 18
2-3-1 量子點光學特性及發光原理 18
2-3-2 量子點製備方法 20
2-3-3 量子點應用 21
第三章 材料與方法 23
3-1 實驗材料與藥品 23
3-2 實驗架構 26
3-3 樣品製備 27
3-3-1 磁性奈米粒子合成 27
3-3-2 磁性奈米粒子-抗體偶聯物 29
3-3-3 碲化鎘(CdTe) 量子點製備 30
3-3-4 硒化鋅(ZnSe) 量子點製備 32
3-3-5 量子點-抗體偶聯物 34
3-3-6 β類澱粉蛋白質製備 35
3-3-7 生物傳感器系統整合 37
3-4 實驗儀器 38
3-5 儀器原理介紹 40
3-5-1 小角度 X-ray 散射 (small-angle X-ray scattering, SAXS) 40
3-5-2 動態光散射儀 (dynamic light scattering, DLS) 43
3-5-3 X-ray 粉末繞射儀 (X-ray diffractometer, XRD) 46
3-5-4 穿透式電子顯微鏡 (transmission electron microscope, TEM) 49
3-5-5 傅立葉轉換紅外光譜 (Fourier transform infrared spectroscopy, FTIR) 51
3-5-6 微量盤酵素免疫分析儀 (microplate reader) 53
3-5-7 紫外-可見光分光光譜儀 (ultraviolet-visible spectroscopy) 55
3-5-8 螢光光譜儀 (spectrofluorometer) 57
第四章 結果與討論 60
4-1 磁性奈米粒子性質分析 60
4-1-1 SAXS 分析 60
4-1-2 DLS 分析 62
4-1-3 XRD 分析 64
4-1-4 TEM 分析 65
4-1-5 FTIR 分析 71
4-2 量子點性質分析 73
4-2-1 XRD 分析 73
4-2-2 TEM 分析 75
4-2-3 吸收光譜分析 77
4-2-4 CdTe螢光光譜分析 78
4-2-5 ZnSe螢光光譜分析 79
4-2-6 CdTe與ZnSe混合螢光光譜分析 80
4-3 磁性奈米粒子-抗體複合物性質分析 84
4-3-1 吸收光譜分析 84
4-3-2 BCA Assay分析 85
4-4 量子點-抗體複合物性質分析 87
4-4-1 吸收光譜分析 87
4-4-2 螢光光譜分析 89
4-4-3 BCA Assay分析 91
4-5 β類澱粉蛋白質狀態 94
4-6 β類澱粉蛋白質濃度檢測 96
4-6-1 Aβ42及Aβ40檢測 96
4-6-2 Aβ42/40 ratio檢測,固定Aβ40濃度並改變Aβ42濃度 105
4-6-3 Aβ42/40 ratio檢測,固定Aβ42濃度並改變Aβ40濃度 108
第五章 結論 111
參考資料 113
附錄 123
附錄一 磁性奈米粒子-電子顯微鏡 (MNP-TEM) 123
附錄二 綠色碲化鎘量子點-高解析電子顯微鏡 (CdTe HR-TEM) 127
附錄三 黃色碲化鎘量子點-高解析電子顯微鏡 (CdTe HR-TEM) 128
附錄四 BCA assay分析之標準檢量線 129
附錄五 磁性奈米粒子吸收光譜 130
附錄六 Aβ42檢測,濃度0.4至2μM檢測-三獨立樣品重複實驗 131
附錄七 Aβ40檢測,濃度0.4至2μM檢測-三獨立樣品重複實驗 133
參考文獻 [1]Li, X. L., Hu, N., Tan, M. S., Yu, J. T., & Tan, L, “Behavioral and psychological symptoms in Alzheimer’s disease”, BioMed Research International, 2014.
[2]Fan, Y., Resnick, S. M., Wu, X., & Davatzikos, C, “Structural and functional biomarkers of prodromal Alzheimer′s disease: a high-dimensional pattern classification study”, Neuroimage, 41(2), 2008, 277-285.
[3]Hinrichs, C., Singh, V., Xu, G., & Johnson, S, “MKL for robust multi-modality AD classification”, In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2009: 12th International Conference, Proceedings, Part II 12 (pp. 786-794), London, UK, September 20-24, 2009, Springer Berlin Heidelberg.
[4]Eckerström, C., Andreasson, U., Olsson, E., Rolstad, S., Blennow, K., Zetterberg, H., ... & Wallin, A, “Combination of hippocampal volume and cerebrospinal fluid biomarkers improves predictive value in mild cognitive impairment”, Dementia and Geriatric Cognitive Disorders, 29(4), 2010, 294-300.
[5]Wolz, R., Julkunen, V., Koikkalainen, J., Niskanen, E., Zhang, D. P., Rueckert, D., ... & Alzheimer′s Disease Neuroimaging Initiative, “Multi-method analysis of MRI images in early diagnostics of Alzheimer′s disease”, PloS One, 6(10), 2011, e25446.
[6]Fandos, N., Pérez-Grijalba, V., Pesini, P., Olmos, S., Bossa, M., Villemagne, V. L., ... & AIBL Research Group, “Plasma amyloid β 42/40 ratios as biomarkers for amyloid β cerebral deposition in cognitively normal individuals” Alzheimer′s & Dementia: Diagnosis, Assessment & Disease Monitoring, 8, 2017, 179-187.
[7]West, T., Kirmess, K. M., Meyer, M. R., Holubasch, M. S., Knapik, S. S., Hu, Y., ... & Yarasheski, K. E, “A blood-based diagnostic test incorporating plasma Aβ42/40 ratio, ApoE proteotype, and age accurately identifies brain amyloid status: findings from a multi cohort validity analysis”, Molecular Neurodegeneration, 16(1), 2021, 30.
[8]Douglas, W., & Scharre, M, “Preclinical, prodromal, and dementia stages of Alzheimer’s disease”, Practical Neurology, 2019, 36-42.
[9]Davis, M., O′Connell, T., Johnson, S., Cline, S., Merikle, E., Martenyi, F., & Simpson, K, “Estimating Alzheimer′s disease progression rates from normal cognition through mild cognitive impairment and stages of dementia”, Current Alzheimer Research, 15(8), 2018, 777-788.
[10]Van der Flier PhD, W. M, Philip Scheltens, Bart De Strooper, Miia Kivipelto, Henne Holstege, Gael Chételat, Charlotte E Teunissen, Jeffrey Cummings, Wiesje M van der Flier. Lancet, 397, 2021, 1577-90.
[11]Cáceres, C., Heusser, B., Garnham, A., & Moczko, E., “The major hypotheses of Alzheimer’s disease: related nanotechnology-based approaches for its diagnosis and treatment”, Cells, 12(23), 2023, 2669.
[12]Monteiro, A. R., Barbosa, D. J., Remião, F., & Silva, R., “Alzheimer’s disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs”, Biochemical Pharmacology, 211, 115522, 2023.
[13]Butterfield, D. A., Swomley, A. M., & Sultana, R, “Amyloid β-peptide (1–42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression”, Antioxidants & Redox Signaling, 19(8), 2013, 823-835.
[14]Lee, S. J. C., Nam, E., Lee, H. J., Savelieff, M. G., & Lim, M. H, “Towards an understanding of amyloid-β oligomers: characterization, toxicity mechanisms, and inhibitors”, Chemical Society Reviews, 46(2), 2017, 310-323.
[15]Guo, T., Noble, W., & Hanger, D. P, “Roles of tau protein in health and disease”, Acta Neuropathologica, 133, 2017, 665-704.
[16]Mietelska-Porowska, A., Wasik, U., Goras, M., Filipek, A., & Niewiadomska, G, “Tau protein modifications and interactions: their role in function and dysfunction”, International Journal of Molecular Sciences, 15(3), 2014, 4671-4713.
[17]Liu, P. P., Xie, Y., Meng, X. Y., & Kang, J. S, “History and progress of hypotheses and clinical trials for Alzheimer’s disease”, Signal Transduction and Targeted Therapy, 4(1), 2019, 29.
[18]Jastrzębski, M. K., Wójcik, P., Stępnicki, P., & Kaczor, A. A, “Effects of small molecules on neurogenesis: Neuronal proliferation and differentiation”, Acta Pharmaceutica Sinica B, 2023. 
[19]Montine, T. J., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Dickson, D. W., ... & Hyman, B. T, “National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach”, Acta Neuropathologica, 123, 2012, 1-11.
[20]Apostolova, L. G., Green, A. E., Babakchanian, S., Hwang, K. S., Chou, Y. Y., Toga, A. W., & Thompson, P. M, “Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer Disease”, Alzheimer Disease & Associated Disorders, 26(1), 2012, 17-27.
[21]Serrano-Pozo, A., Frosch, M. P., Masliah, E., & Hyman, B. T, “Neuropathological alterations in Alzheimer disease”, Cold Spring Harbor Perspectives in Medicine, 1(1), 2011, a006189.
[22]DeTure, M. A., & Dickson, D. W, “The neuropathological diagnosis of Alzheimer’s disease”, Molecular Neurodegeneration, 14(1), 2019, 32.
[23]Blennow, K., de Leon, M. J., & Zetterberg, H, “Alzheimer′s disease”, The Lancet, 368(9533), 2006, 387-403.
[24]Kumar, A., & Singh, A, “A review on Alzheimer′s disease pathophysiology and its management: an update”, Pharmacological Reports, 67(2), 2015, 195-203.
[25]Ryan, N. S., Rossor, M. N., & Fox, N. C, “Alzheimer’s disease in the 100 years since Alzheimer’s death”, Brain, 138(12), 2015, 3816-3821.
[26]Alonso, A. D. C., Zaidi, T., Grundke-Iqbal, I., & Iqbal, K, “Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease”, Proceedings of the National Academy of Sciences, 91(12), 1994, 5562-5566.
[27]Binder, L. I., Guillozet-Bongaarts, A. L., Garcia-Sierra, F., & Berry, R. W, “Tau, tangles, and Alzheimer′s disease”, Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1739(2-3), 2005, 216-223.
[28]Mosconi, L, “Glucose metabolism in normal aging and Alzheimer’s disease: methodological and physiological considerations for PET studies”, Clinical and Translational Imaging, 1, 2013, 217-233.
[29]Van Oostveen, W. M., & de Lange, E. C, “Imaging techniques in Alzheimer’s disease: a review of applications in early diagnosis and longitudinal monitoring”, International Journal of Molecular Sciences, 22(4), 2110, 2021.
[30]Giorgio, A., & De Stefano, N, “Clinical use of brain volumetry”, Journal of Magnetic Resonance Imaging, 37(1), 2013, 1-14.
[31]Plant, C., Teipel, S. J., Oswald, A., Böhm, C., Meindl, T., Mourao-Miranda, J., ... & Ewers, M, “Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer′s disease”, Neuroimage, 50(1), 2010, 162-174.
[32]Creavin, S. T., Wisniewski, S., Noel‐Storr, A. H., Trevelyan, C. M., Hampton, T., Rayment, D., ... & Cullum, S, “Mini‐Mental State Examination (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations”, Cochrane Database of Systematic Reviews, 2016, (1).
[33]Panegyres, P. K., Rogers, J. M., McCarthy, M., Campbell, A., & Wu, J. S, “Fluorodeoxyglucose-positron emission tomography in the differential diagnosis of early-onset dementia: a prospective, community-based study”, BMC Neurology, 9(1), 2009, 1-9.
[34]Drzezga, A., Altomare, D., Festari, C., Arbizu, J., Orini, S., Herholz, K., ... & EANM-EAN Task Force for the Prescription of FDG-PET for Dementing Neurodegenerative Disorders, “Diagnostic utility of 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) in asymptomatic subjects at increased risk for Alzheimer’s disease”, European Journal of Nuclear Medicine and Molecular Imaging, 45, 2018, 1487-1496.
[35]Blennow, K., de Leon, M. J., & Zetterberg, H, “Alzheimer′s disease”, The Lancet, 368(9533), 2006, 387-403.
[36]Scheltens, P., Blennow, K., Breteler, M. M., De Strooper, B., Frisoni, G. B., Salloway, S., & Van der Flier, W. M, “Alzheimer′s disease”, The Lancet, 388(10043), 2016, 505-517.
[37]Forlenza, O. V., Radanovic, M., Talib, L. L., Aprahamian, I., Diniz, B. S., Zetterberg, H., & Gattaz, W. F, “Cerebrospinal fluid biomarkers in Alzheimer′s disease: Diagnostic accuracy and prediction of dementia”, Alzheimer′s & Dementia: Diagnosis, Assessment & Disease Monitoring, 1(4), 2015, 455-463.
[38]Blennow, K., Hampel, H., Weiner, M., & Zetterberg, H, “Cerebrospinal fluid and plasma biomarkers in Alzheimer disease”, Nature Reviews Neurology, 6(3), 2010, 131-144.
[39]Akbarzadeh, A., Samiei, M., & Davaran, S, “Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine”, Nanoscale Research Letters, 7, 2012, 1-13.
[40]Coricovac, D. E., Moacă, E. A., Pinzaru, I., Cîtu, C., Soica, C., Mihali, C. V., ... & Dehelean, C. A, “Biocompatible colloidal suspensions based on magnetic iron oxide nanoparticles: synthesis, characterization and toxicological profile”, Frontiers in Pharmacology, 8, 2017, 154.
[41]Mou, X., Ali, Z., Li, S., & He, N, “Applications of magnetic nanoparticles in targeted drug delivery system”, Journal of Nanoscience and Nanotechnology, 15(1), 2015, 54-62.
[42]Valdiglesias, V., Fernández-Bertólez, N., Kiliç, G., Costa, C., Costa, S., Fraga, S., ... & Laffon, B, “Are iron oxide nanoparticles safe? Current knowledge and future perspectives”, Journal of Trace Elements in Medicine and Biology, 38, 2016, 53-63.
[43]Markides, H., Rotherham, M., & El Haj, A. J, “Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine”, Journal of Nanomaterials, 2012, 13-13.
[44]Bulte, J. W, “In vivo MRI cell tracking: clinical studies”, AJR. American Journal of Roentgenology, 193(2), 2009, 314.
[45]Bruce, I. J., & Sen, T, “Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations”, Langmuir, 21(15), 2005, 7029-7035.
[46]Tietze, R., Zaloga, J., Unterweger, H., Lyer, S., Friedrich, R. P., Janko, C., ... & Alexiou, C, “Magnetic nanoparticle-based drug delivery for cancer therapy”, Biochemical and Biophysical Research Communications, 468(3), 2015, 463-470.
[47]Colombo, M., Carregal-Romero, S., Casula, M. F., Gutiérrez, L., Morales, M. P., Böhm, I. B., ... & Parak, W. J, “Biological applications of magnetic nanoparticles”, Chemical Society Reviews, 41(11), 2012, 4306-4334.
[48]Fan, R., Chen, X. H., Gui, Z., Liu, L., & Chen, Z. Y, “A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4”, Materials Research Bulletin, 36(3-4), 2001, 497-502.
[49]Tartaj, P., & Serna, C. J, “Microemulsion-assisted synthesis of tunable superparamagnetic composites”, Chemistry of Materials, 14(10), 2002, 4396-4402.
[50]Jiang, W., Yang, H. C., Yang, S. Y., Horng, H. E., Hung, J. C., Chen, Y. C., & Hong, C. Y, “Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible”, Journal of Magnetism and Magnetic Materials, 283(2-3), 2004, 210-214.
[51]Khollam, Y. B., Dhage, S. R., Potdar, H. S., Deshpande, S. B., Bakare, P. P., Kulkarni, S. D., & Date, S. K, “Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders”, Materials Letters, 56(4), 2002, 571-577.
[52]Liu, S., Yu, B., Wang, S., Shen, Y., & Cong, H, “Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles”, Advances in Colloid and Interface Science, 281, 2020,102-165.
[53]Kumar, D. S., Kumar, B. J., & Mahesh, H. M, “Quantum nanostructures (QDs): an overview”, Synthesis of Inorganic Nanomaterials, 2018, 59-88.
[54]Smith, A. M., & Nie, S, “Semiconductor nanocrystals: structure, properties, and band gap engineering”, Accounts of Chemical Research, 43(2), 2010, 190-200.
[55]Zhao, H., & Rosei, F, “Colloidal quantum dots for solar technologies”, Chem, 3(2), 2017, 229-258.
[56]Agarwal, K., Mondal, S., Rai, H., & Mondal, S, “Quantum dots: an overview of synthesis, properties, and applications”, Materials Research Express, 2023.
[57]Valizadeh, A., Mikaeili, H., Samiei, M., Farkhani, S. M., Zarghami, N., Kouhi, M., ... & Davaran, S, “Quantum dots: synthesis, bioapplications, and toxicity”, Nanoscale Research Letters, 7, 2012, 1-14.
[58]Spanhel, L., & Anderson, M. A, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids”, Journal of the American Chemical Society, 113(8), 1991, 2826-2833.
[59]Aboulaich, A., Billaud, D., Abyan, M., Balan, L., Gaumet, J. J., Medjadhi, G., ... & Schneider, R, “One-pot noninjection route to CdS quantum dots via hydrothermal synthesis”, ACS Applied Materials & Interfaces, 4(5), 2012, 2561-2569. 
[60]Gerion, D., Pinaud, F., Williams, S. C., Parak, W. J., Zanchet, D., Weiss, S., & Alivisatos, A. P, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots”, The Journal of Physical Chemistry B, 105(37), 2001, 8861-8871.
[61]Coe-Sullivan, S., Liu, W., Allen, P., & Steckel, J. S, “Quantum dots for LED downconversion in display applications”, ECS Journal of Solid State Science and Technology, 2(2), 2012, R3026.
[62]Bang, J. H., & Kamat, P. V, “CdSe quantum dot–fullerene hybrid nanocomposite for solar energy conversion: electron transfer and photoelectrochemistry”, ACS Nano, 5(12), 2011, 9421-9427.
[63]Tsurui, H., Nishimura, H., Hattori, S., Hirose, S., Okumura, K., & Shirai, T, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition”, Journal of Histochemistry & Cytochemistry, 48(5), 2000, 653-662.
[64]Wang, Y., Hu, R., Lin, G., Roy, I., & Yong, K. T, “Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity”, ACS Applied Materials & Interfaces, 5(8), 2013, 2786-2799.
[65]Gao, X., Cui, Y., Levenson, R. M., Chung, L. W., & Nie, S, “In vivo cancer targeting and imaging with semiconductor quantum dots”, Nature Biotechnology, 22(8), 2004, 969-976.
[66]Åkerman, M. E., Chan, W. C., Laakkonen, P., Bhatia, S. N., & Ruoslahti, E, “Nanocrystal targeting in vivo”, Proceedings of the National Academy of Sciences, 99(20), 2002, 12617-12621.
[67]Bruchez Jr, M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P, “Semiconductor nanocrystals as fluorescent biological labels”, Science, 281(5385), 1998, 2013-2016.
[68]Savla, R., Taratula, O., Garbuzenko, O., & Minko, T, “Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer”, Journal of Controlled Release, 153(1), 2011, 16-22.
[69]Kairdolf, B. A., Smith, A. M., Stokes, T. H., Wang, M. D., Young, A. N., & Nie, S, “Semiconductor quantum dots for bioimaging and biodiagnostic applications”, Annual Review of Analytical Chemistry, 6, 2013, 143-162. 
[70]Coral, D. F., Soto, P. A., de Sousa, E., Brollo, M. E. F., Mera-Córdoba, J. A., Zélis, P. M., ... & van Raap, M. F., “Small-angle X-ray scattering to quantify the incorporation and analyze the disposition of magnetic nanoparticles inside cells”, Journal of Colloid and Interface Science, 608, 2022, 1-12.
[71]Jeffries, C. M., Ilavsky, J., Martel, A., Hinrichs, S., Meyer, A., Pedersen, J. S., ... & Svergun, D. I., “Small-angle X-ray and neutron scattering”, Nature Reviews Methods Primers, 1(1),2021, 70.
[72]陳信龍, & 鄭有舜, 〈小角度 X 光散射在高分子奈米結構解析之應用〉, 科儀新知, (160),2007, 7-17.
[73]Hammouda, B., “Analysis of the Beaucage model”, Journal of Applied Crystallography, 43(6), 2010, 1474-1478.
[74]Babick, F., “Dynamic light scattering (DLS)”, In Characterization of nanoparticles, Elsevier, (pp. 137-172), 2020.
[75]Jia, Z., Li, J., Gao, L., Yang, D., & Kanaev, A., “Dynamic Light Scattering: A Powerful Tool for In Situ Nanoparticle Sizing”, Colloids and Interfaces, 7(1), 2023, 15.
[76]Uhlenbeck, G. E., & Ornstein, L. S., “On the theory of the Brownian motion”, Physical Review, 36(5), 1930, 823.
[77]Misono, T., “Dynamic Light Scattering (DLS)”, Measurement Techniques and Practices of Colloid and Interface Phenomena, 65-69, 2019.
[78]Waeselmann, N., “Structural transformations in complex perovskite-type relaxor and relaxor-based ferroelectrics at high pressures and temperatures” (Doctoral dissertation, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky), 2012.
[79]Gawas, U. B., Mandrekar, V. K., & Majik, M. S., “Structural analysis of proteins using X-ray diffraction technique”, In Advances in Biological Science Research, Academic Press, 2019, (pp. 69-84).
[80]El-Nahass, M. M., Youssef, G. M., & Noby, S. Z., “Structural and optical characterization of CdTe quantum dots thin films”, Journal of Alloys and Compounds, 604, 2014, 253-259.
[81]Kiprotich, S., Onani, M. O., & Dejene, F. B., “High luminescent L-cysteine capped CdTe quantum dots prepared at different reaction times”, Physica B: Condensed Matter, 535, 2018, 202-210.
[82]Tang, C. Y., & Yang, Z., “Transmission electron microscopy (TEM)”, In Membrane characterization, Elsevier, 2017, (pp. 145-159).
[83]Parikh, S. J., & Chorover, J., “FTIR spectroscopic study of biogenic Mn-oxide formation by Pseudomonas putida GB-1”, Geomicrobiology Journal, 22(5), 2005, 207-218.
[84]Chen, Y., Zou, C., Mastalerz, M., Hu, S., Gasaway, C., & Tao, X., “Applications of micro-fourier transform infrared spectroscopy (FTIR) in the geological sciences—a review”, International Journal of Molecular Sciences, 16(12), 2015, 30223-30250.
[85]Ojeda, J. J., & Dittrich, M., “Fourier transform infrared spectroscopy for molecular analysis of microbial cells”, Microbial Systems Biology: Methods and Protocols, 2012, 187-211.
[86]Otieno, B. A., Krause, C. E., & Rusling, J. F., “Bioconjugation of antibodies and enzyme labels onto magnetic beads”, Methods in Enzymology, Academic Press, 2016, (Vol. 571, pp. 135-150).
[87]Akash, M. S. H., Rehman, K., Akash, M. S. H., & Rehman, K., “Ultraviolet-visible (UV-VIS) spectroscopy”, Essentials of Pharmaceutical Analysis, 2020, 29-56.
[88]Grimsley, G. R., & Pace, C. N., “Spectrophotometric determination of protein concentration”, Current Protocols in Protein Science, 33(1), 2003, 3-1.
[89]Bose, A., Thomas, I., & Abraham, E., “Fluorescence spectroscopy and its applications: A Review”, Int. J. Adv. Pharm. Res, 8(1), 2018, 1-8.
[90]Mohamad, N. S., Zakaria, N. H., Daud, N., Tan, L. L., Ta, G. C., Heng, L. Y., & Hassan, N. I., “The role of 8-amidoquinoline derivatives as fluorescent probes for zinc ion determination”, Sensors, 21(1), 2021, 311.
[91]Yin, B., Wang, Y., Dong, M., Wu, J., Ran, B., Xie, M., ... & Chen, Y., “One-step multiplexed detection of foodborne pathogens: Combining a quantum dot-mediated reverse assaying strategy and magnetic separation”, Biosensors and Bioelectronics, 86, 2016, 996-1002.
[92]El Ghandoor, H. M. Z. H., Zidan, H. M., Khalil, M. M., & Ismail, M. I. M., “Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles”, International Journal of Electrochemical Science, 7(6), 2012, 5734-5745.
[93]Yang, K., Peng, H., Wen, Y., & Li, N., “Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles”, Applied Surface Science, 256(10), 2010, 3093-3097.
[94]Ojemaye, M. O., Okoh, O. O., & Okoh, A. I., “Adsorption of Cu2+ from aqueous solution by a novel material; azomethine functionalized magnetic nanoparticles”, Separation and Purification Technology, 183, 2017, 204-215.
[95]Han, C., Cai, N., Chan, V., Liu, M., Feng, X., & Yu, F., “Enhanced drug delivery, mechanical properties and antimicrobial activities in poly (lactic acid) nanofiber with mesoporous Fe3O4-COOH nanoparticles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 559, 2018, 104-114.
[96]Shaaban, E. R., Afify, N., & El-Taher, A., “Effect of film thickness on microstructure parameters and optical constants of CdTe thin films”, Journal of Alloys and Compounds, 482(1-2), 2009, 400-404.
[97]Huimin, C., Fuqiang, G., & Baohua, Z., “Properties of CdTe nanocrystalline thin films grown on different substrates by low temperature sputtering”, Journal of Semiconductors, 30(5), 2009, 053001.
[98]Zhang, C., Han, Y., Lin, L., Deng, N., Chen, B., & Liu, Y., “Development of quantum dots-labeled antibody fluorescence immunoassays for the detection of morphine”, Journal of Agricultural and Food Chemistry, 65(6), 2017, 1290-1295.
[99]Levine III, H., “Thioflavine T interaction with synthetic Alzheimer′s disease β‐amyloid peptides: Detection of amyloid aggregation in solution”, Protein Science, 2(3), 1993, 404-410.
[100]黃富昌:<以等溫吸/脫附動力曲線探討土壤對有機污染物吸附特性之研究>,2005台灣環境資源永續發展研討會,2005年10月。
[101]Nounou, M. N., & Nounou, H. N., “Multiscale estimation of the Freundlich adsorption isotherm”, International Journal of Environmental Science & Technology, 7, 2010, 509-518.
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2024-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明