博碩士論文 110821004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:3.138.204.67
姓名 李承豪(Cheng-Hao Lee)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討壓力對於雌性小鼠觀察恐懼學習的影響
(Investigate the effects of stress on female mice’s observational fear learning)
相關論文
★ 探討暴露聚苯乙烯塑膠微粒對小鼠大腦學習與記憶之分子機制與神經發炎的影響★ 探討剔除Dtnbp1基因對於公和母鼠前額葉多巴胺傳遞路徑與社交行為的影響
★ 探討早期壓力及成年慢性不可預測壓力對恐懼社交轉移的影響★ 探討食入及吸入聚苯乙烯塑膠微粒對小鼠行為的影響
★ 探討壓力對觀察恐懼學習的影響: 雄性小鼠杏仁核腦區分子機制探討★ Development of Seasonal Influenza Virus-like Particle (VLP) Vaccines Using Insect Cell-based Baculovirus Expressing System
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 壓力為許多神經精神障礙的風險因子。恐懼社交轉移(social transfer of fear)是一種透過觀察他人恐懼表現進而導致個體自身同樣產生恐懼的學習過程,此能力的核心為能感受及分辨他人情緒的情緒同理心。同理心不但提供個體自我保護使個體不用親自接觸就能了解觀察到的情境並迴避對生存造成威脅的潛在危險環境或因子,同時也是社交認知中重要的一環。當他人遭遇艱困情境時,個體能夠正確理解他人情緒並結合情緒與情境的關係而進一步做出利他的行為。先前的研究發現,許多神經精神障礙患者會有辨別他人情緒和痛苦的能力缺陷,然而壓力是否影響恐懼社交轉移尚不清楚,尤其鮮少有足夠清晰的報告指出雌性動物的生理行為是否更容易受到賀爾蒙週期影響。
在本論文中為了探討不同生命階段遭受的各種壓力是否會影響恐懼社交轉移,我們將雌性小鼠依照經歷的壓力類別區分成幼年早期壓力(Early life stress, ELS)以及成年慢性不可預測壓力(Chronic unpredictable stress, CUS),並分成四組: 對照組(control)、早年壓力(ELS)、慢性不可預知壓力(CUS)以及雙重壓力(Double stresses, DS)。雌性小鼠在出生後第二天開始接受為期13天的早期生活壓力,並於成年後接受了為期14天的慢性不可預知壓力。我們發現有經歷慢性不可預知壓力的雌性小鼠產生體重下降以及腎上腺重量增加的現象,顯示雌性小鼠確實受到慢性不可預知壓力而產生生理變化。
在恐懼社交轉移中,我們使從未經歷過壓力(Naïve)的陌生小鼠遭受電擊,並觀察上述四組雌性小鼠在電擊當下的行為表現。結果顯示經歷過雙重壓力的雌性小鼠比其他組別表現靜止不動的時間(freezing time)更短,顯示雙重壓力小鼠無法感受並陌生小鼠表現的恐懼情緒,也無法將恐懼情緒與情境形成聯想記憶,在觀察性恐懼學習能力上有缺失的現象。
由於雌性小鼠缺乏相關的研究,我們進一步比對使用雄性小鼠研究的與恐懼社交轉移相關腦區的神經元活性,在恐懼社交轉移測試結束後,我們收取大腦組織並切片,利用免疫螢光染色技術並挑選c-Fos作為神經元的活性標記,探討壓力對這些相關腦區神經細胞的活化情形是否產生影響。我們觀察到在各組別的雌性小鼠在基底外側杏仁核(basolateral Amygdala,BLA)、腹側海馬迴(Ventral hippocampus,VHP)與前扣帶皮層(Anterior cingulate cortex,ACC)的c-Fos數量上都不具有統計上的顯著差異。
根據上述結果,本研究顯示在雌性小鼠中壓力所引起的恐懼社交轉移缺失可能與雄性小鼠的相關腦區迴路無關或是存在性別差異。
摘要(英) Stress is a risk factor for many neuropsychiatric disorders. Social transfer of fear is a learning process where individuals develop fear by observing others′ fearful expressions. At the core of this ability is emotional empathy, which involves feeling and distinguishing others′ emotions. Empathy not only helps individuals protect themselves by understanding and avoiding potentially dangerous situations without direct personal contact, but it also plays a crucial role in social cognition. When others encounter difficult situations, individuals can correctly understand others. Emotions and the relationship between emotions and situations to further perform altruistic behaviors. Previous research has found that many patients with neuropsychiatric disorders have deficits in the ability to discern the feelings and pain of others. However, it is still unclear whether stress affects the social transfer of fear, and in particular, there are few clear reports indicating whether the physiological behavior of female animals is more susceptible to the hormone cycle. In this paper, to explore whether various stresses experienced at different life stages affect the social transfer of fear, we divided female mice according to the categories of stress they experienced. Early life stress (ELS) in adulthood and chronic unpredictable stress (CUS) in adulthood, and are divided into four groups: control, early life stress (ELS), chronic unpredictable stress (CUS), and Double stresses (DS). Female mice were exposed to 13 days of early life stress starting on the second day of life and 14 days of chronic unpredictable stress as adults. We found that female mice experiencing chronic unpredictable stress experienced weight loss and increased adrenal gland weight, indicating that female mice are indeed subjected to physiological changes caused by chronic unpredictable stress. In fear social transfer, we subjected strange mice that had never experienced stress (Naïve) to electric shock and observed the behavior of the above four groups of female mice under the electric shock. The results showed that female mice that had experienced double stress had shorter freezing time than other groups, indicating that the double-stressed mice were unable to feel the fearful emotions expressed by unfamiliar mice, and were unable to associate fearful emotions with the situation. The formation of associative memory and the lack of observational fear learning ability. Due to the lack of relevant research on female mice, we further compared the neuronal activity in brain areas related to fear social transfer using male mice. After the fear social transfer test, we collected brain tissue and sliced it, using immunofluorescence staining and selecting c-Fos as a marker of neuron activity to explore whether stress affects the activation of nerve cells in these related brain areas. We observed the amount of c-Fos in the basolateral amygdala (BLA), ventral hippocampus (VHP), and anterior cingulate cortex (ACC) of female mice in each group. There is no statistically significant difference. Based on the above results, this study shows that the lack of stress-induced fear social transfer in female mice may have nothing to do with the relevant brain circuits in male mice or there may be sex differences.
關鍵字(中) ★ 早期壓力
★ 不可預知壓力
★ 恐懼社交轉移
★ 基底外側杏仁核
★ 腹側海馬迴
★ 前扣帶皮層
★ 性別差異
關鍵字(英)
論文目次 中文摘要 i
Abstract iii
目錄 v
圖目錄 vii
表目錄 viii
中英文對照表 ix
一、緒論 1
1-1壓力 1
1-2 早期生活壓力 2
1-3 慢性不可預期壓力 3
1-4 同理心 4
1-5 同理心與社交轉移 5
1-6 前扣帶皮層與基底外側杏仁核神經迴路調控恐懼社交轉移 6
1-7 腹側海馬迴到基底外側杏仁核調控恐懼社交轉移 7
1-8 壓力對於前扣帶皮層、基底外側杏仁核、腹側海馬迴的影響 8
1-9 研究動機與目的 9
二、材料與方法 11
2-1 實驗動物 11
2-2 建立早期壓力動物模型 11
2-3 建立成年慢性壓力動物模型 11
2-4 建立實驗動物模型 13
表格2- 2實驗動物組別 13
2-5 糖水偏好實驗 (Sucrose preference test ,SPT) 14
2-6 恐懼社交轉移實驗(Social transfer of fear test) 14
2-7 免疫螢光染色 15
2-8統計分析 16
三、實驗結果 17
3-1 慢性不可預期壓力對雌性小鼠體重,蔗糖偏好、腎上腺重量之影響 17
3-2 雙重壓力降低雌性小鼠承受慢性不可預期壓力後的恐懼社交轉移現象 18
3-3 雙重壓力導致雌性小鼠在觀察性情境恐懼記憶(Observational contextual fear memory)受損 19
3-4 壓力對於雌性小鼠基底外側杏仁核神經活性c-Fos影響 19
3-5 壓力對於雌性小鼠腹側海馬迴神經活性c-Fos影響 20
3-6 壓力對於雌性小鼠前扣帶皮層神經活性c-Fos影響 20
四、討論 21
五、結論 25
圖表 figure 26
參考文獻 33
附錄 48
參考文獻 1. Weiner H. Perturbing the Organism: The Biology of Stressful Experience. Chicago, III: University of Chicago Press; 1992
2. Lazarus RS. Psychological Stress and the Coping Process.New York, NY: McGraw-Hill International Book Co; 1966
3. Russell G, Lightman S. The human stress response. Nat Rev Endocrinol. 2019;15(9):525-534. doi:10.1038/s41574-019-0228-0
4. Leistner C, Menke A. Hypothalamic-pituitary-adrenal axis and stress. Handb Clin Neurol. 2020;175:55-64. doi:10.1016/B978-0-444-64123-6.00004-7
5. Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors, and stress. J Psychosom Res. 2002;53(4):865-871. doi:10.1016/s0022-3999(02)00429-4
6. Chrousos GP, Gold PW. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis [published correction appears in JAMA 1992 Jul 8;268(2):200]. JAMA. 1992;267(9):1244-1252.
7. Koolhaas JM, Bartolomucci A, Buwalda B, et al. Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev. 2011;35(5):1291-1301. doi:10.1016/j.neubiorev.2011.02.003
8. Tafet GE, Bernardini R. Psychoneuroendocrinological links between chronic stress and depression. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(6):893-903. doi:10.1016/S0278-5846(03)00162-3
9. Hammen C. Stress and depression. Annu Rev Clin Psychol. 2005;1:293-319. doi:10.1146/annurev.clinpsy.1.102803.143938
10. Robinson-Agramonte MA, Gonçalves CA, Noris-García E, et al. Impact of SARS-CoV-2 on neuropsychiatric disorders. World J Psychiatry. 2021;11(7):347-354. Published 2021 Jul 19. doi:10.5498/wjp.v11.i7.347
11. Asgharian P, Quispe C, Herrera-Bravo J, et al. Pharmacological effects and therapeutic potential of natural compounds in neuropsychiatric disorders: An update. Front Pharmacol. 2022;13:926607. Published 2022 Sep 15. doi:10.3389/fphar.2022.926607
12. Bhatt S, Devadoss T, Jha NK, et al. Targeting inflammation: a potential approach for the treatment of depression. Metab Brain Dis. 2023;38(1):45-59. doi:10.1007/s11011-022-01095-1
13. Davis MT, Holmes SE, Pietrzak RH, Esterlis I. Neurobiology of Chronic Stress-Related Psychiatric Disorders: Evidence from Molecular Imaging Studies. Chronic Stress (Thousand Oaks). 2017;1:2470547017710916. doi:10.1177/2470547017710916
14. Wang W, Liu W, Duan D, Bai H, Wang Z, Xing Y. Chronic social defeat stress mouse model: Current view on its behavioral deficits and modifications. Behav Neurosci. 2021;135(3):326-335. doi:10.1037/bne0000418
15. Yohn CN, Ashamalla SA, Bokka L, Gergues MM, Garino A, Samuels BA. Social instability is an effective chronic stress paradigm for both male and female mice. Neuropharmacology. 2019;160:107780. doi:10.1016/j.neuropharm.2019.107780
16. Mariotti A. The effects of chronic stress on health: new insights into the molecular mechanisms of brain-body communication. Future Sci OA. 2015;1(3):FSO23. Published 2015 Nov 1. doi:10.4155/fso.15.21
17. Ophuis RH, Olij BF, Polinder S, Haagsma JA. Prevalence of post-traumatic stress disorder, acute stress disorder and depression following violence related injury treated at the emergency department: a systematic review. BMC Psychiatry. 2018;18(1):311. Published 2018 Sep 25. doi:10.1186/s12888-018-1890-9
18. Santiago PN, Ursano RJ, Gray CL, et al. A systematic review of PTSD prevalence and trajectories in DSM-5 defined trauma exposed populations: intentional and non-intentional traumatic events. PLoS One. 2013;8(4):e59236. Published 2013 Apr 11. doi:10.1371/journal.pone.0059236
19. Lopresti AL. The Effects of Psychological and Environmental Stress on Micronutrient Concentrations in the Body: A Review of the Evidence. Adv Nutr. 2020 Jan 1;11(1):103-112. doi: 10.1093/advances/nmz082. PMID: 31504084; PMCID: PMC7442351.
20. Motta E Motta J, Souza LN, Vieira BB, Delle H, Consolim-Colombo FM, Egan BM, Lopes HF. Acute physical and mental stress resulted in an increase in fatty acids, norepinephrine, and hemodynamic changes in normal individuals: A possible pathophysiological mechanism for hypertension-Pilot study. J Clin Hypertens (Greenwich). 2021 Apr;23(4):888-894. doi: 10.1111/jch.14190. Epub 2021 Jan 29. PMID: 33512748; PMCID: PMC8678781.
21. Altemus M. Sex differences in depression and anxiety disorders: potential biological determinants. Horm Behav. 2006;50(4):534-538. doi:10.1016/j.yhbeh.2006.06.031
22. Altemus M, Sarvaiya N, Neill Epperson C. Sex differences in anxiety and depression clinical perspectives. Front Neuroendocrinol. 2014;35(3):320-330. doi:10.1016/j.yfrne.2014.05.004
23. Bangasser DA, Eck SR, Telenson AM, Salvatore M. Sex differences in stress regulation of arousal and cognition. Physiol Behav. 2018;187:42-50. doi:10.1016/j.physbeh.2017.09.025
24. Plante DT, Landsness EC, Peterson MJ, et al. Sex-related differences in sleep slow wave activity in major depressive disorder: a high-density EEG investigation. BMC Psychiatry. 2012;12:146. Published 2012 Sep 18. doi:10.1186/1471-244X-12-146
25. Heck AL, Handa RJ. Sex differences in the hypothalamic-pituitary-adrenal axis′ response to stress: an important role for gonadal hormones. Neuropsychopharmacology. 2019;44(1):45-58. doi:10.1038/s41386-018-0167-9
26. Babb JA, Masini CV, Day HE, Campeau S. Sex differences in activated corticotropin-releasing factor neurons within stress-related neurocircuitry and hypothalamic-pituitary-adrenocortical axis hormones following restraint in rats. Neuroscience. 2013;234:40-52. doi:10.1016/j.neuroscience.2012.12.051
27. Bangasser DA, Wiersielis KR, Khantsis S. Sex differences in the locus coeruleus-norepinephrine system and its regulation by stress. Brain Res. 2016;1641(Pt B):177-188. doi:10.1016/j.brainres.2015.11.021
28. Guillamón A, de Blas MR, Segovia S. Effects of sex steroids on the development of the locus coeruleus in the rat. Brain Res. 1988;468(2):306-310. doi:10.1016/0165-3806(88)90143-5
29. Luque JM, de Blas MR, Segovia S, Guillamón A. Sexual dimorphism of the dopamine-beta-hydroxylase-immunoreactive neurons in the rat locus ceruleus. Brain Res Dev Brain Res. 1992;67(2):211-215. doi:10.1016/0165-3806(92)90221-h
30. Pinos H, Collado P, Rodríguez-Zafra M, Rodríguez C, Segovia S, Guillamón A. The development of sex differences in the locus coeruleus of the rat. Brain Res Bull. 2001;56(1):73-78. doi:10.1016/s0361-9230(01)00540-8
31. Bangasser DA, Reyes BA, Piel D, et al. Increased vulnerability of the brain norepinephrine system of females to corticotropin-releasing factor overexpression. Mol Psychiatry. 2013;18(2):166-173. doi:10.1038/mp.2012.24
32. Karandrea D, Kittas C, Kitraki E. Forced swimming differentially affects male and female brain corticosteroid receptors. Neuroendocrinology. 2002;75(4):217-226. doi:10.1159/000054713
33. Babb JA, Masini CV, Day HE, Campeau S. Sex differences in activated corticotropin-releasing factor neurons within stress-related neurocircuitry and hypothalamic-pituitary-adrenocortical axis hormones following restraint in rats. Neuroscience. 2013;234:40-52. doi:10.1016/j.neuroscience.2012.12.051
34. Iwasaki-Sekino A, Mano-Otagiri A, Ohata H, Yamauchi N, Shibasaki T. Gender differences in corticotropin and corticosterone secretion and corticotropin-releasing factor mRNA expression in the paraventricular nucleus of the hypothalamus and the central nucleus of the amygdala in response to footshock stress or psychological stress in rats. Psychoneuroendocrinology. 2009;34(2):226-237. doi:10.1016/j.psyneuen.2008.09.003
35. Pollak SD. Early adversity and mechanisms of plasticity: integrating affective neuroscience with developmental approaches to psychopathology. Dev Psychopathol. 2005;17(3):735-752. doi:10.1017/S0954579405050352
36. Andersen SL. Trajectories of brain development: point of vulnerability or window of opportunity?. Neurosci Biobehav Rev. 2003;27(1-2):3-18. doi:10.1016/s0149-7634(03)00005-8
37. Kitamura T, Fujihara S. Understanding personality traits from early life experiences. Psychiatry Clin Neurosci. 2003;57(3):323-331. doi:10.1046/j.1440-1819.2003.01124.x
38. Raby KL, Roisman GI, Fraley RC, Simpson JA. The enduring predictive significance of early maternal sensitivity: social and academic competence through age 32 years. Child Dev. 2015;86(3):695-708. doi:10.1111/cdev.12325
39. Jonson-Reid M, Kohl PL, Drake B. Child and adult outcomes of chronic child maltreatment. Pediatrics. 2012;129(5):839-845. doi:10.1542/peds.2011-2529
40. Hammen C, Henry R, Daley SE. Depression and sensitization to stressors among young women as a function of childhood adversity. J Consult Clin Psychol. 2000;68(5):782-787.
41. Kendler KS, Kuhn JW, Prescott CA. Childhood sexual abuse, stressful life events and risk for major depression in women. Psychol Med. 2004;34(8):1475-1482. doi:10.1017/s003329170400265x
42. Williams LM, Debattista C, Duchemin AM, Schatzberg AF, Nemeroff CB. Childhood trauma predicts antidepressant response in adults with major depression: data from the randomized international study to predict optimized treatment for depression. Transl Psychiatry. 2016;6(5):e799. Published 2016 May 3. doi:10.1038/tp.2016.61
43. Hughes K, Bellis MA, Hardcastle KA, et al. The effect of multiple adverse childhood experiences on health: a systematic review and meta-analysis. Lancet Public Health. 2017;2(8):e356-e366. doi:10.1016/S2468-2667(17)30118-4
44. Bellis MA, Hughes K, Leckenby N, Hardcastle KA, Perkins C, Lowey H. Measuring mortality and the burden of adult disease associated with adverse childhood experiences in England: a national survey. J Public Health (Oxf). 2015;37(3):445-454. doi:10.1093/pubmed/fdu065
45. Felitti VJ, Anda RF, Nordenberg D, et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am J Prev Med. 1998;14(4):245-258. doi:10.1016/s0749-3797(98)00017-8
46. Campbell JA, Walker RJ, Egede LE. Associations Between Adverse Childhood Experiences, High-Risk Behaviors, and Morbidity in Adulthood. Am J Prev Med. 2016;50(3):344-352. doi:10.1016/j.amepre.2015.07.022
47. Bellis MA, Lowey H, Leckenby N, Hughes K, Harrison D. Adverse childhood experiences: retrospective study to determine their impact on adult health behaviours and health outcomes in a UK population. J Public Health (Oxf). 2014;36(1):81-91. doi:10.1093/pubmed/fdt038
48. Smith K. Mental health: a world of depression. Nature. 2014;515(7526):181. doi:10.1038/515180a
49. Katz RJ. Animal model of depression: pharmacological sensitivity of a hedonic deficit. Pharmacol Biochem Behav. 1982;16(6):965-968. doi:10.1016/0091-3057(82)90053-3
50. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl). 1987;93(3):358-364. doi:10.1007/BF00187257
51. Meerlo P, Koehl M, van der Borght K, Turek FW. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress. J Neuroendocrinol. 2002;14(5):397-402. doi:10.1046/j.0007-1331.2002.00790.x
52. Suchecki D, Lobo LL, Hipólide DC, Tufik S. Increased ACTH and corticosterone secretion induced by different methods of paradoxical sleep deprivation. J Sleep Res. 1998;7(4):276-281. doi:10.1046/j.1365-2869.1998.00122.x
53. Andersen ML, Martins PJ, D′Almeida V, Bignotto M, Tufik S. Endocrinological and catecholaminergic alterations during sleep deprivation and recovery in male rats. J Sleep Res. 2005;14(1):83-90. doi:10.1111/j.1365-2869.2004.00428.x
54. Jee HJ, Ryu D, Kim S, et al. Fermented Perilla frutescens Ameliorates Depression-like Behavior in Sleep-Deprivation-Induced Stress Model. Int J Mol Sci. 2022;24(1):622. Published 2022 Dec 30. doi:10.3390/ijms24010622
55. Rachel Leproult, Georges Copinschi, Orfeu Buxton, Eve Van Cauter, Sleep Loss Results in an Elevation of Cortisol Levels the Next Evening, Sleep, Volume 20, Issue 10, October 1997, Pages 865–870
56. Suchecki D, Antunes J, Tufik S. Palatable solutions during paradoxical sleep deprivation: reduction of hypothalamic-pituitary-adrenal axis activity and lack of effect on energy imbalance. J Neuroendocrinol. 2003;15(9):815-821. doi:10.1046/j.1365-2826.2003.01067.x
57. Barf RP, Van Dijk G, Scheurink AJ, et al. Metabolic consequences of chronic sleep restriction in rats: changes in body weight regulation and energy expenditure. Physiol Behav. 2012;107(3):322-328. doi:10.1016/j.physbeh.2012.09.005
58. Yang DF, Huang WC, Wu CW, Huang CY, Yang YSH, Tung YT. Acute sleep deprivation exacerbates systemic inflammation and psychiatry disorders through gut microbiota dysbiosis and disruption of circadian rhythms. Microbiol Res. 2023;268:127292. doi:10.1016/j.micres.2022.127292
59. Holmes TH, Rahe RH. The Social Readjustment Rating Scale. J Psychosom Res. 1967;11(2):213-218. doi:10.1016/0022-3999(67)90010-4
60. Teo AR, Choi H, Valenstein M. Social relationships and depression: ten-year follow-up from a nationally representative study. PLoS One. 2013;8(4):e62396. Published 2013 Apr 30. doi:10.1371/journal.pone.0062396
61. Gamallo A, Villanua A, Trancho G, Fraile A. Stress adaptation and adrenal activity in isolated and crowded rats. Physiol Behav. 1986;36(2):217-221. doi:10.1016/0031-9384(86)90006-5
62. Rygula R, Abumaria N, Flügge G, Fuchs E, Rüther E, Havemann-Reinecke U. Anhedonia and motivational deficits in rats: impact of chronic social stress. Behav Brain Res. 2005;162(1):127-134. doi:10.1016/j.bbr.2005.03.009
63. Dalla C, Antoniou K, Drossopoulou G, et al. Chronic mild stress impact: are females more vulnerable?. Neuroscience. 2005;135(3):703-714. doi:10.1016/j.neuroscience.2005.06.068
64. Vieira JO, Duarte JO, Costa-Ferreira W, Morais-Silva G, Marin MT, Crestani CC. Sex differences in cardiovascular, neuroendocrine and behavioral changes evoked by chronic stressors in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:426-437. doi:10.1016/j.pnpbp.2017.08.014
65. Liu LL, Li JM, Su WJ, Wang B, Jiang CL. Sex differences in depressive-like behaviour may relate to imbalance of microglia activation in the hippocampus. Brain Behav Immun. 2019;81:188-197. doi:10.1016/j.bbi.2019.06.012
66. Sachs BD, Ni JR, Caron MG. Sex differences in response to chronic mild stress and congenital serotonin deficiency. Psychoneuroendocrinology. 2014;40:123-129. doi:10.1016/j.psyneuen.2013.11.008
67. Hodes GE, Pfau ML, Purushothaman I, et al. Sex Differences in Nucleus Accumbens Transcriptome Profiles Associated with Susceptibility versus Resilience to Subchronic Variable Stress. J Neurosci. 2015;35(50):16362-16376. doi:10.1523/JNEUROSCI.1392-15.2015
68. Luine V, Gomez J, Beck K, Bowman R. Sex differences in chronic stress effects on cognition in rodents. Pharmacol Biochem Behav. 2017;152:13-19. doi:10.1016/j.pbb.2016.08.005
69. Simpson J, Kelly JP. An investigation of whether there are sex differences in certain behavioural and neurochemical parameters in the rat. Behav Brain Res. 2012;229(1):289-300. doi:10.1016/j.bbr.2011.12.036
70. McCarthy MM, Arnold AP, Ball GF, Blaustein JD, De Vries GJ. Sex differences in the brain: the not so inconvenient truth. J Neurosci. 2012;32(7):2241-2247. doi:10.1523/JNEUROSCI.5372-11.2012
71. Warrier V, Toro R, Chakrabarti B, et al. Genome-wide analyses of self-reported empathy: correlations with autism, schizophrenia, and anorexia nervosa. Transl Psychiatry. 2018;8(1):35. Published 2018 Mar 12. doi:10.1038/s41398-017-0082-6Bernhardt BC, Singer T. The neural basis of empathy. Annu Rev Neurosci. 2012;35:1-23. doi:10.1146/annurev-neuro-062111-150536
72. Preston SD, de Waal FB. Empathy: Its ultimate and proximate bases. Behav Brain Sci. 2002;25(1):1-71. doi:10.1017/s0140525x02000018
73. de Waal FB. Putting the altruism back into altruism: the evolution of empathy. Annu Rev Psychol. 2008;59:279-300. doi:10.1146/annurev.psych.59.103006.093625
74. Simonoff E, Elander J, Holmshaw J, Pickles A, Murray R, Rutter M. Predictors of antisocial personality. Continuities from childhood to adult life. Br J Psychiatry. 2004;184:118-127. doi:10.1192/bjp.184.2.118
75. Shirtcliff EA, Vitacco MJ, Graf AR, Gostisha AJ, Merz JL, Zahn-Waxler C. Neurobiology of empathy and callousness: implications for the development of antisocial behavior. Behav Sci Law. 2009;27(2):137-171. doi:10.1002/bsl.862
76. Bora E, Yucel M, Pantelis C. Theory of mind impairment in schizophrenia: meta-analysis. Schizophr Res. 2009;109(1-3):1-9. doi:10.1016/j.schres.2008.12.020
77. Ueno H, Suemitsu S, Murakami S, et al. Empathic behavior according to the state of others in mice. Brain Behav. 2018;8(7):e00986. doi:10.1002/brb3.986
78. Wessely S. Anders Breivik, the public, and psychiatry. Lancet. 2012;379(9826):1563-1564. doi:10.1016/S0140-6736(12)60655-2
79. Appelbaum PS. Law & psychiatry: Treatment of incompetent, dangerous criminal defendants: parsing the law. Psychiatr Serv. 2012;63(7):630-632. doi:10.1176/appi.ps.201200630
80. Simonoff E, Elander J, Holmshaw J, Pickles A, Murray R, Rutter M. Predictors of antisocial personality. Continuities from childhood to adult life. Br J Psychiatry. 2004;184:118-127. doi:10.1192/bjp.184.2.118
81. Shirtcliff EA, Vitacco MJ, Graf AR, Gostisha AJ, Merz JL, Zahn-Waxler C. Neurobiology of empathy and callousness: implications for the development of antisocial behavior. Behav Sci Law. 2009;27(2):137-171. doi:10.1002/bsl.862
82. Blair RJ, Colledge E, Murray L, Mitchell DG. A selective impairment in the processing of sad and fearful expressions in children with psychopathic tendencies. J Abnorm Child Psychol. 2001;29(6):491-498. doi:10.1023/a:1012225108281
83. Kimonis ER, Frick PJ, Fazekas H, Loney BR. Psychopathy, aggression, and the processing of emotional stimuli in non-referred girls and boys [published correction appears in Behav Sci Law. 2006;24(3):407]. Behav Sci Law. 2006;24(1):21-37. doi:10.1002/bsl.668
84. Gleichgerrcht E, Decety J. Empathy in clinical practice: how individual dispositions, gender, and experience moderate empathic concern, burnout, and emotional distress in physicians. PLoS One. 2013;8(4):e61526. Published 2013 Apr 19. doi:10.1371/journal.pone.0061526
85. Halpern J. What is clinical empathy?. J Gen Intern Med. 2003;18(8):670-674. doi:10.1046/j.1525-1497.2003.21017.x
86. Larson EB, Yao X. Clinical empathy as emotional labor in the patient-physician relationship. JAMA. 2005;293(9):1100-1106. doi:10.1001/jama.293.9.1100
87. Mcilfatrick S, Sullivan K, McKenna H. Nursing the clinic vs. nursing the patient: nurses′ experience of a day hospital chemotherapy service. J Clin Nurs. 2006;15(9):1170-1178. doi:10.1111/j.1365-2702.2006.01495.x
88. Lee RT, Seo B, Hladkyj S, Lovell BL, Schwartzmann L. Correlates of physician burnout across regions and specialties: a meta-analysis. Hum Resour Health. 2013;11:48. Published 2013 Sep 28. doi:10.1186/1478-4491-11-48
89. Lamothe M, Boujut E, Zenasni F, Sultan S. To be or not to be empathic: the combined role of empathic concern and perspective taking in understanding burnout in general practice. BMC Fam Pract. 2014;15:15. Published 2014 Jan 23. doi:10.1186/1471-2296-15-15
90. Decety J, Fotopoulou A. Why empathy has a beneficial impact on others in medicine: unifying theories. Front Behav Neurosci. 2015 Jan 14;8:457. doi: 10.3389/fnbeh.2014.00457. PMID: 25642175; PMCID: PMC4294163.
91. Halpern J. From idealized clinical empathy to empathic communication in medical care. Med Health Care Philos. 2014 May;17(2):301-11. doi: 10.1007/s11019-013-9510-4. PMID: 24343367.
92. Neumann M, Scheffer C, Tauschel D, Lutz G, Wirtz M, Edelhäuser F. Physician empathy: definition, outcome-relevance and its measurement in patient care and medical education. GMS Z Med Ausbild. 2012;29(1):Doc11. doi: 10.3205/zma000781. Epub 2012 Feb 15. PMID: 22403596; PMCID: PMC3296095.
93. Gerdes KE, Segal E. Importance of empathy for social work practice: integrating new science. Soc Work. 2011 Apr;56(2):141-8. doi: 10.1093/sw/56.2.141. PMID: 21553577.
94. Coutinho JF, Silva PO, Decety J. Neurosciences, empathy, and healthy interpersonal relationships: recent findings and implications for counseling psychology. J Couns Psychol. 2014 Oct;61(4):541-8. doi: 10.1037/cou0000021. Erratum in: J Couns Psychol. 2015 Jul;62(3):551. PMID: 25285714.
95. Clark AJ, Butler CM. Empathy: An Integral Model in Clinical Social Work. Soc Work. 2020 Apr 1;65(2):169-177. doi: 10.1093/sw/swaa009. PMID: 32266410.
96. Langford DJ, Crager SE, Shehzad Z, et al. Social modulation of pain as evidence for empathy in mice. Science. 2006;312(5782):1967-1970. doi:10.1126/science.1128322
97. Li Z, Lu YF, Li CL, et al. Social interaction with a cagemate in pain facilitates subsequent spinal nociception via activation of the medial prefrontal cortex in rats. Pain. 2014;155(7):1253-1261. doi:10.1016/j.pain.2014.03.019
98. Baptista-de-Souza D, Rodrigues Tavares LR, Canto-de-Souza L, Nunes-de-Souza RL, Canto-de-Souza A. Behavioral, hormonal, and neural alterations induced by social contagion for pain in mice. Neuropharmacology. 2022;203:108878. doi:10.1016/j.neuropharm.2021.108878
99. Panksepp JB, Lahvis GP. Rodent empathy and affective neuroscience. Neurosci Biobehav Rev. 2011;35(9):1864-1875. doi:10.1016/j.neubiorev.2011.05.013
100. Keum S, Park J, Kim A, et al. Variability in empathic fear response among 11 inbred strains of mice. Genes Brain Behav. 2016;15(2):231-242. doi:10.1111/gbb.12278
101. Kim A, Keum S, Shin HS. Observational fear behavior in rodents as a model for empathy. Genes Brain Behav. 2019;18(1):e12521. doi:10.1111/gbb.12521
102. Baptista-de-Souza D, Nunciato AC, Pereira BC, Fachinni G, Zaniboni CR, Canto-de-Souza A. Mice undergoing neuropathic pain induce anxiogenic-like effects and hypernociception in cagemates. Behav Pharmacol. 2015;26(7 Spec No):664-672. doi:10.1097/FBP.0000000000000170
103. Smith ML, Hostetler CM, Heinricher MM, Ryabinin AE. Social transfer of pain in mice. Sci Adv. 2016;2(10):e1600855. Published 2016 Oct 19. doi:10.1126/sciadv.1600855
104. Lu YF, Ren B, Ling BF, Zhang J, Xu C, Li Z. Social interaction with a cagemate in pain increases allogrooming and induces pain hypersensitivity in the observer rats. Neurosci Lett. 2018;662:385-388. doi:10.1016/j.neulet.2017.10.063
105. Smith ML, Asada N, Malenka RC. Anterior cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia. Science. 2021;371(6525):153-159. doi:10.1126/science.abe3040
106. Han Y, Ai L, Sha S, et al. The functional role of the visual and olfactory modalities in the development of socially transferred mechanical hypersensitivity in male C57BL/6J mice. Physiol Behav. 2024;277:114499. doi:10.1016/j.physbeh.2024.114499
107. Sanders J, Mayford M, Jeste D. Empathic fear responses in mice are triggered by recognition of a shared experience. PLoS One. 2013;8(9):e74609. Published 2013 Sep 18. doi:10.1371/journal.pone.0074609
108. Ben-Ami Bartal I, Decety J, Mason P. Empathy and pro-social behavior in rats [published correction appears in Science. 2012 Jan 27;335(6067):401]. Science. 2011;334(6061):1427-1430. doi:10.1126/science.1210789
109. Phillips HL, Dai H, Choi SY, et al. Dorsomedial prefrontal hypoexcitability underlies lost empathy in frontotemporal dementia. Neuron. 2023;111(6):797-806.e6. doi:10.1016/j.neuron.2022.12.027
110. Jeon D, Kim S, Chetana M, et al. Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nat Neurosci. 2010;13(4):482-488. doi:10.1038/nn.2504
111. Atsak P, Orre M, Bakker P, et al. Experience modulates vicarious freezing in rats: a model for empathy. PLoS One. 2011;6(7):e21855. doi:10.1371/journal.pone.0021855
112. Kondrakiewicz K, Rokosz-Andraka K, Nikolaev T, et al. Social Transfer of Fear in Rodents. Curr Protoc Neurosci. 2019;90(1):e85. doi:10.1002/cpns.85
113. Olsson A, Phelps EA. Social learning of fear. Nat Neurosci. 2007;10(9):1095-1102. doi:10.1038/nn1968
114. Allsop SA, Wichmann R, Mills F, et al. Corticoamygdala Transfer of Socially Derived Information Gates Observational Learning. Cell. 2018;173(6):1329-1342.e18. doi:10.1016/j.cell.2018.04.004
115. Terranova JI, Yokose J, Osanai H, et al. Hippocampal-amygdala memory circuits govern experience-dependent observational fear. Neuron. 2022;110(8):1416-1431.e13. doi:10.1016/j.neuron.2022.01.019
116. Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron. 2005;48(2):175-187. doi:10.1016/j.neuron.2005.09.025
117. Chen Q, Panksepp JB, Lahvis GP. Empathy is moderated by genetic background in mice. PLoS One. 2009;4(2):e4387. doi:10.1371/journal.pone.0004387
118. Keum S, Shin HS. Neural Basis of Observational Fear Learning: A Potential Model of Affective Empathy. Neuron. 2019;104(1):78-86. doi:10.1016/j.neuron.2019.09.013
119. Price DD. Psychological and neural mechanisms of the affective dimension of pain. Science. 2000;288(5472):1769-1772. doi:10.1126/science.288.5472.1769
120. Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci. 2005;6(7):533-544. doi:10.1038/nrn1704
121. Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4(6):215-222. doi:10.1016/s1364-6613(00)01483-2
122. Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain. 1995;118 ( Pt 1):279-306. doi:10.1093/brain/118.1.279
123. Stevens FL, Hurley RA, Taber KH. Anterior cingulate cortex: unique role in cognition and emotion. J Neuropsychiatry Clin Neurosci. 2011;23(2):121-125. doi:10.1176/jnp.23.2.jnp121
124. Morrison I, Downing PE. Organization of felt and seen pain responses in anterior cingulate cortex. Neuroimage. 2007;37(2):642-651. doi:10.1016/j.neuroimage.2007.03.079
125. Gao YJ, Ren WH, Zhang YQ, Zhao ZQ. Contributions of the anterior cingulate cortex and amygdala to pain- and fear-conditioned place avoidance in rats. Pain. 2004;110(1-2):343-353. doi:10.1016/j.pain.2004.04.030
126. Johansen JP, Fields HL, Manning BH. The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc Natl Acad Sci U S A. 2001;98(14):8077-8082. doi:10.1073/pnas.141218998
127. LaGraize SC, Labuda CJ, Rutledge MA, Jackson RL, Fuchs PN. Differential effect of anterior cingulate cortex lesion on mechanical hypersensitivity and escape/avoidance behavior in an animal model of neuropathic pain. Exp Neurol. 2004;188(1):139-148. doi:10.1016/j.expneurol.2004.04.003
128. Hooker CI, Germine LT, Knight RT, D′Esposito M. Amygdala response to facial expressions reflects emotional learning. J Neurosci. 2006;26(35):8915-8922. doi:10.1523/JNEUROSCI.3048-05.2006
129. Olsson A, Nearing KI, Phelps EA. Learning fears by observing others: the neural systems of social fear transmission. Soc Cogn Affect Neurosci. 2007;2(1):3-11. doi:10.1093/scan/nsm005
130. Adolphs R, Gosselin F, Buchanan TW, Tranel D, Schyns P, Damasio AR. A mechanism for impaired fear recognition after amygdala damage. Nature. 2005;433(7021):68-72. doi:10.1038/nature03086
131. Whalen PJ, Rauch SL, Etcoff NL, McInerney SC, Lee MB, Jenike MA. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J Neurosci. 1998;18(1):411-418. doi:10.1523/JNEUROSCI.18-01-00411.1998
132. Sun Y, Gooch H, Sah P. Fear conditioning and the basolateral amygdala. F1000Res. 2020;9:F1000 Faculty Rev-53. Published 2020 Jan 28. doi:10.12688/f1000research.21201.1
133. Krabbe S, Gründemann J, Lüthi A. Amygdala Inhibitory Circuits Regulate Associative Fear Conditioning. Biol Psychiatry. 2018;83(10):800-809. doi:10.1016/j.biopsych.2017.10.006
134. Zhang MM, Geng AQ, Chen K, et al. Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational pain. Neuron. 2022;110(12):1993-2008.e6. doi:10.1016/j.neuron.2022.03.030
135. Bissière S, Plachta N, Hoyer D, et al. The rostral anterior cingulate cortex modulates the efficiency of amygdala-dependent fear learning. Biol Psychiatry. 2008;63(9):821-831. doi:10.1016/j.biopsych.2007.10.022
136. Ortiz S, Latsko MS, Fouty JL, Dutta S, Adkins JM, Jasnow AM. Anterior Cingulate Cortex and Ventral Hippocampal Inputs to the Basolateral Amygdala Selectively Control Generalized Fear. J Neurosci. 2019;39(33):6526-6539. doi:10.1523/JNEUROSCI.0810-19.2019
137. Hakamata Y, Mizukami S, Izawa S, et al. Basolateral Amygdala Connectivity With Subgenual Anterior Cingulate Cortex Represents Enhanced Fear-Related Memory Encoding in Anxious Humans. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5(3):301-310. doi:10.1016/j.bpsc.2019.11.008
138. Burkett JP, Andari E, Johnson ZV, Curry DC, de Waal FB, Young LJ. Oxytocin-dependent consolation behavior in rodents. Science. 2016;351(6271):375-378. doi:10.1126/science.aac4785
139. Kim SW, Kim M, Baek J, et al. Hemispherically lateralized rhythmic oscillations in the cingulate-amygdala circuit drive affective empathy in mice. Neuron. 2023;111(3):418-429.e4. doi:10.1016/j.neuron.2022.11.001
140. Allsop SA, Wichmann R, Mills F, et al. Corticoamygdala Transfer of Socially Derived Information Gates Observational Learning. Cell. 2018;173(6):1329-1342.e18. doi:10.1016/j.cell.2018.04.004
141. Pavlov PI. Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Ann Neurosci. 2010;17(3):136-141. doi:10.5214/ans.0972-7531.1017309
142. LaBar KS, LeDoux JE, Spencer DD, Phelps EA. Impaired fear conditioning following unilateral temporal lobectomy in humans. J Neurosci. 1995;15(10):6846-6855. doi:10.1523/JNEUROSCI.15-10-06846.1995
143. Büchel C, Dolan RJ, Armony JL, Friston KJ. Amygdala-hippocampal involvement in human aversive trace conditioning revealed through event-related functional magnetic resonance imaging. J Neurosci. 1999;19(24):10869-10876. doi:10.1523/JNEUROSCI.19-24-10869.1999
144. McEchron MD, Bouwmeester H, Tseng W, Weiss C, Disterhoft JF. Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat. Hippocampus. 1998;8(6):638-646. doi:10.1002/(SICI)1098-1063(1998)8:6<638::AID-HIPO6>3.0.CO;2-Q
145. Sahay A, Hen R. Adult hippocampal neurogenesis in depression. Nat Neurosci. 2007;10(9):1110-1115. doi:10.1038/nn1969
146. Kim J, Kang S, Choi TY, Chang KA, Koo JW. Metabotropic Glutamate Receptor 5 in Amygdala Target Neurons Regulates Susceptibility to Chronic Social Stress. Biol Psychiatry. 2022;92(2):104-115. doi:10.1016/j.biopsych.2022.01.006
147. Lupien SJ, Juster RP, Raymond C, Marin MF. The effects of chronic stress on the human brain: From neurotoxicity, to vulnerability, to opportunity. Front Neuroendocrinol. 2018;49:91-105. doi:10.1016/j.yfrne.2018.02.001
148. Walter TJ, Vetreno RP, Crews FT. Alcohol and Stress Activation of Microglia and Neurons: Brain Regional Effects. Alcohol Clin Exp Res. 2017;41(12):2066-2081. doi:10.1111/acer.13511
149. Hoffman AN, Lorson NG, Sanabria F, Foster Olive M, Conrad CD. Chronic stress disrupts fear extinction and enhances amygdala and hippocampal Fos expression in an animal model of post-traumatic stress disorder. Neurobiol Learn Mem. 2014;112:139-147. doi:10.1016/j.nlm.2014.01.018
150. Pavlides C, Nivón LG, McEwen BS. Effects of chronic stress on hippocampal long-term potentiation. Hippocampus. 2002;12(2):245-257. doi:10.1002/hipo.1116
151. Conrad CD, LeDoux JE, Magariños AM, McEwen BS. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav Neurosci. 1999;113(5):902-913. doi:10.1037//0735-7044.113.5.902
152. Schoenfeld, Timothy J, and Elizabeth Gould. “Stress, stress hormones, and adult neurogenesis.” Experimental neurology vol. 233,1 (2012): 12-21. doi:10.1016/j.expneurol.2011.01.008
153. Kim, J J et al. “Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning.” The Journal of neuroscience : the official journal of the Society for Neuroscience vol. 21,14 (2001): 5222-8. doi:10.1523/JNEUROSCI.21-14-05222.2001
154. Fee C, Prevot T, Misquitta K, Banasr M, Sibille E. Chronic Stress-induced Behaviors Correlate with Exacerbated Acute Stress-induced Cingulate Cortex and Ventral Hippocampus Activation. Neuroscience. 2020;440:113-129. doi:10.1016/j.neuroscience.2020.05.034
155. Misquitta KA, Miles A, Prevot TD, et al. Reduced anterior cingulate cortex volume induced by chronic stress correlates with increased behavioral emotionality and decreased synaptic puncta density. Neuropharmacology. 2021;190:108562. doi:10.1016/j.neuropharm.2021.108562
156. Ito H, Nagano M, Suzuki H, Murakoshi T. Chronic stress enhances synaptic plasticity due to disinhibition in the anterior cingulate cortex and induces hyper-locomotion in mice. Neuropharmacology. 2010;58(4-5):746-757. doi:10.1016/j.neuropharm.2009.12.011
157. Cohen RA, Grieve S, Hoth KF, et al. Early life stress and morphometry of the adult anterior cingulate cortex and caudate nuclei [published correction appears in Biol Psychiatry. 2006 Nov 1;60(9):1023. MacFarlane, Alexander [corrected to McFarlane, Alexander]]. Biol Psychiatry. 2006;59(10):975-982. doi:10.1016/j.biopsych.2005.12.016
158. Zhai ZW, Yip SW, Lacadie CM, Sinha R, Mayes LC, Potenza MN. Childhood trauma moderates inhibitory control and anterior cingulate cortex activation during stress. Neuroimage. 2019;185:111-118. doi:10.1016/j.neuroimage.2018.10.049
159. Heun-Johnson H, Levitt P. Differential impact of Met receptor gene interaction with early-life stress on neuronal morphology and behavior in mice. Neurobiol Stress. 2017;8:10-20. Published 2017 Nov 26. doi:10.1016/j.ynstr.2017.11.003
160. Park AT, Tooley UA, Leonard JA, et al. Early childhood stress is associated with blunted development of ventral tegmental area functional connectivity. Dev Cogn Neurosci. 2021;47:100909. doi:10.1016/j.dcn.2020.100909
161. Leventopoulos M, Rüedi-Bettschen D, Knuesel I, Feldon J, Pryce CR, Opacka-Juffry J. Long-term effects of early life deprivation on brain glia in Fischer rats. Brain Res. 2007;1142:119-126. doi:10.1016/j.brainres.2007.01.039
162. Oomen CA, Soeters H, Audureau N, et al. Early maternal deprivation affects dentate gyrus structure and emotional learning in adult female rats. Psychopharmacology (Berl). 2011;214(1):249-260. doi:10.1007/s00213-010-1922-8
163. Champagne DL, Bagot RC, van Hasselt F, et al. Maternal care and hippocampal plasticity: evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. J Neurosci. 2008;28(23):6037-6045. doi:10.1523/JNEUROSCI.0526-08.2008
164. Oomen CA, Girardi CE, Cahyadi R, et al. Opposite effects of early maternal deprivation on neurogenesis in male versus female rats. PLoS One. 2009;4(1):e3675. doi:10.1371/journal.pone.0003675
165. Ulrich-Lai YM, Figueiredo HF, Ostrander MM, Choi DC, Engeland WC, Herman JP. Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am J Physiol Endocrinol Metab. 2006 Nov;291(5):E965-73. doi: 10.1152/ajpendo.00070.2006. Epub 2006 Jun 13. PMID: 16772325.
166. Razzoli M, Domenici E, Carboni L, Rantamaki T, Lindholm J, Castrén E, Arban R. A role for BDNF/TrkB signaling in behavioral and physiological consequences of social defeat stress. Genes Brain Behav. 2011 Jun;10(4):424-33. doi: 10.1111/j.1601-183X.2011.00681.x. Epub 2011 Feb 21. PMID: 21272243.
167. Sandi C, Haller J. Stress and the social brain: behavioural effects and neurobiological mechanisms. Nat Rev Neurosci. 2015;16(5):290-304. doi:10.1038/nrn3918
168. Tzanoulinou S, Sandi C. The Programming of the Social Brain by Stress During Childhood and Adolescence: From Rodents to Humans. Curr Top Behav Neurosci. 2017;30:411-429. doi:10.1007/7854_2015_430
169. WEISKRANTZ L. Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J Comp Physiol Psychol. 1956;49(4):381-391. doi:10.1037/h0088009
170. Blanchard DC, Blanchard RJ. Innate and conditioned reactions to threat in rats with amygdaloid lesions. J Comp Physiol Psychol. 1972;81(2):281-290. doi:10.1037/h0033521
171. LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM. The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci. 1990;10(4):1062-1069. doi:10.1523/JNEUROSCI.10-04-01062.1990
172. Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility - linking memory and mood. Nat Rev Neurosci. 2017;18(6):335-346. doi:10.1038/nrn.2017.45
173. Felix-Ortiz AC, Tye KM. Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. J Neurosci. 2014;34(2):586-595. doi:10.1523/JNEUROSCI.4257-13.2014
174. Nguyen R, Sivakumaran S, Lambe EK, Kim JC. Ventral hippocampal cholecystokinin interneurons gate contextual reward memory. iScience. 2024;27(2):108824. Published 2024 Jan 9. doi:10.1016/j.isci.2024.108824
175. Zhao MG, Ko SW, Wu LJ, et al. Enhanced presynaptic neurotransmitter release in the anterior cingulate cortex of mice with chronic pain. J Neurosci. 2006;26(35):8923-8930. doi:10.1523/JNEUROSCI.2103-06.2006
176. Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ. The involvement of the anterior cingulate cortex in remote contextual fear memory. Science. 2004;304(5672):881-883. doi:10.1126/science.1094804
177. Shen LH, Tseng YC, Liao MH, Fu YK. The role of molecular imaging in the diagnosis and management of neuropsychiatric disorders. J Biomed Biotechnol. 2011;2011:439397. doi:10.1155/2011/439397
178. Cacioppo JT, Hawkley LC, Norman GJ, Berntson GG. Social isolation. Ann N Y Acad Sci. 2011;1231(1):17-22. doi:10.1111/j.1749-6632.2011.06028.x
179. Brandt L, Liu S, Heim C, Heinz A. The effects of social isolation stress and discrimination on mental health. Transl Psychiatry. 2022;12(1):398. Published 2022 Sep 21. doi:10.1038/s41398-022-02178-4
180. Lieberz J, Shamay-Tsoory SG, Saporta N, et al. Loneliness and the Social Brain: How Perceived Social Isolation Impairs Human Interactions. Adv Sci (Weinh). 2021;8(21):e2102076. doi:10.1002/advs.202102076
181. Pollak SD, Nelson CA, Schlaak MF, et al. Neurodevelopmental effects of early deprivation in postinstitutionalized children. Child Dev. 2010;81(1):224-236. doi:10.1111/j.1467-8624.2009.01391.x
182. Nelson CA 3rd, Zeanah CH, Fox NA. How Early Experience Shapes Human Development: The Case of Psychosocial Deprivation. Neural Plast. 2019;2019:1676285. doi:10.1155/2019/1676285
183. Bondi CO, Rodriguez G, Gould GG, Frazer A, Morilak DA. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology. 2008;33(2):320-331. doi:10.1038/sj.npp.1301410
184. Naegeli KJ, O′Connor JA, Banerjee P, Morilak DA. Effects of milnacipran on cognitive flexibility following chronic stress in rats. Eur J Pharmacol. 2013;703(1-3):62-66. doi:10.1016/j.ejphar.2013.02.006
185. Beery AK, Zucker I. Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev. 2011;35(3):565-572. doi:10.1016/j.neubiorev.2010.07.002
186. Becker JB, Prendergast BJ, Liang JW. Female rats are not more variable than male rats: a meta-analysis of neuroscience studies. Biol Sex Differ. 2016;7:34. Published 2016 Jul 26. doi:10.1186/s13293-016-0087-5
187. Beery AK. Inclusion of females does not increase variability in rodent research studies. Curr Opin Behav Sci. 2018;23:143-149. doi:10.1016/j.cobeha.2018.06.016
188. Benelli A, Filaferro M, Bertolini A, Genedani S. Influence of S-adenosyl-L-methionine on chronic mild stress-induced anhedonia in castrated rats. Br J Pharmacol. 1999;127(3):645-654. doi:10.1038/sj.bjp.0702589
189. Bauer ER, Angelo WL. Social isolation and saccharin consumption by the rat. Physiol Behav. 1971;7(6):909-911. doi:10.1016/0031-9384(71)90063-1
190. Van den Berg CL, Pijlman FT, Koning HA, Diergaarde L, Van Ree JM, Spruijt BM. Isolation changes the incentive value of sucrose and social behaviour in juvenile and adult rats. Behav Brain Res. 1999;106(1-2):133-142. doi:10.1016/s0166-4328(99)00099-6
191. Albert KM, Newhouse PA. Estrogen, Stress, and Depression: Cognitive and Biological Interactions. Annu Rev Clin Psychol. 2019;15:399-423. doi:10.1146/annurev-clinpsy-050718-095557
192. Li D, Sun T, Tong Y, et al. Gut-microbiome-expressed 3β-hydroxysteroid dehydrogenase degrades estradiol and is linked to depression in premenopausal females. Cell Metab. 2023;35(4):685-694.e5. doi:10.1016/j.cmet.2023.02.017
193. Halbreich U, Rojansky N, Palter S, Tworek H, Hissin P, Wang K. Estrogen augments serotonergic activity in postmenopausal women. Biol Psychiatry. 1995;37(7):434-441. doi:10.1016/0006-3223(94)00181-2
194. Kinlein SA, Wilson CD, Karatsoreos IN. Dysregulated hypothalamic-pituitary-adrenal axis function contributes to altered endocrine and neurobehavioral responses to acute stress. Front Psychiatry. 2015;6:31. Published 2015 Mar 13. doi:10.3389/fpsyt.2015.00031
195. Valentino RJ, Foote SL, Page ME. The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses. Ann N Y Acad Sci. 1993;697:173-188. doi:10.1111/j.1749-6632.1993.tb49931.x
196. Kinlein SA, Phillips DJ, Keller CR, Karatsoreos IN. Role of corticosterone in altered neurobehavioral responses to acute stress in a model of compromised hypothalamic-pituitary-adrenal axis function. Psychoneuroendocrinology. 2019;102:248-255. doi:10.1016/j.psyneuen.2018.12.010
197. Bangasser DA, Curtis A, Reyes BA, et al. Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress-related psychopathology. Mol Psychiatry. 2010;15(9):877-904. doi:10.1038/mp.2010.66
198. Bale TL, Picetti R, Contarino A, Koob GF, Vale WW, Lee KF. Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. J Neurosci. 2002;22(1):193-199. doi:10.1523/JNEUROSCI.22-01-00193.2002
199. Bissette G, Klimek V, Pan J, Stockmeier C, Ordway G. Elevated concentrations of CRF in the locus coeruleus of depressed subjects. Neuropsychopharmacology. 2003;28(7):1328-1335. doi:10.1038/sj.npp.1300191
200. Vandael D, Gounko NV. Corticotropin releasing factor-binding protein (CRF-BP) as a potential new therapeutic target in Alzheimer′s disease and stress disorders. Transl Psychiatry. 2019;9(1):272. Published 2019 Oct 22. doi:10.1038/s41398-019-0581-8
201. Bangasser DA, Dong H, Carroll J, et al. Corticotropin-releasing factor overexpression gives rise to sex differences in Alzheimer′s disease-related signaling. Mol Psychiatry. 2017;22(8):1126-1133. doi:10.1038/mp.2016.185
202. Sara SJ, Bouret S. Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron. 2012;76(1):130-141. doi:10.1016/j.neuron.2012.09.011
203. Skelly MJ, Ariwodola OJ, Weiner JL. Fear conditioning selectively disrupts noradrenergic facilitation of GABAergic inhibition in the basolateral amygdala. Neuropharmacology. 2017;113(Pt A):231-240. doi:10.1016/j.neuropharm.2016.10.003
204. Dunwiddie TV, Taylor M, Heginbotham LR, Proctor WR. Long-term increases in excitability in the CA1 region of rat hippocampus induced by beta-adrenergic stimulation: possible mediation by cAMP. J Neurosci. 1992;12(2):506-517. doi:10.1523/JNEUROSCI.12-02-00506.1992
205. Shanks N, Griffiths J, Anisman H. Norepinephrine and serotonin alterations following chronic stressor exposure: mouse strain differences. Pharmacol Biochem Behav. 1994;49(1):57-65. doi:10.1016/0091-3057(94)90456-1
206. Korf J, Aghajanian GK, Roth RH. Increased turnover of norepinephrine in the rat cerebral cortex during stress: role of the locus coeruleus. Neuropharmacology. 1973;12(10):933-938. doi:10.1016/0028-3908(73)90024-5
207. Finlay JM, Zigmond MJ, Abercrombie ED. Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam. Neuroscience. 1995;64(3):619-628. doi:10.1016/0306-4522(94)00331-x
208. Mulvey B, Bhatti DL, Gyawali S, et al. Molecular and Functional Sex Differences of Noradrenergic Neurons in the Mouse Locus Coeruleus. Cell Rep. 2018;23(8):2225-2235. doi:10.1016/j.celrep.2018.04.054
209. Schwarz LA, Miyamichi K, Gao XJ, et al. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature. 2015;524(7563):88-92. doi:10.1038/nature14600
210. Pezzone MA, Lee WS, Hoffman GE, Rabin BS. Induction of c-Fos immunoreactivity in the rat forebrain by conditioned and unconditioned aversive stimuli. Brain Res. 1992;597(1):41-50. doi:10.1016/0006-8993(92)91503-7
211. Martinez RC, Carvalho-Netto EF, Amaral VC, Nunes-de-Souza RL, Canteras NS. Investigation of the hypothalamic defensive system in the mouse. Behav Brain Res. 2008;192(2):185-190. doi:10.1016/j.bbr.2008.03.042
212. Penzo MA, Robert V, Tucciarone J, et al. The paraventricular thalamus controls a central amygdala fear circuit. Nature. 2015;519(7544):455-459. doi:10.1038/nature13978
213. Trogrlic L, Wilson YM, Newman AG, Murphy M. Context fear learning specifically activates distinct populations of neurons in amygdala and hypothalamus. Learn Mem. 2011;18(10):678-687. Published 2011 Oct 3. doi:10.1101/lm.2314311
214. Butler CW, Wilson YM, Gunnersen JM, Murphy M. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning. Learn Mem. 2015;22(8):370-384. Published 2015 Jul 15. doi:10.1101/lm.037663.114
215. Brivio E, Kos A, Ulivi AF, et al. Sex shapes cell-type-specific transcriptional signatures of stress exposure in the mouse hypothalamus. Cell Rep. 2023;42(8):112874. doi:10.1016/j.celrep.2023.112874
216. Oyola MG, Handa RJ. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress. 2017;20(5):476-494. doi:10.1080/10253890.2017.1369523
217. Takayama K, Tobori S, Andoh C, et al. Autism Spectrum Disorder Model Mice Induced by Prenatal Exposure to Valproic Acid Exhibit Enhanced Empathy-Like Behavior via Oxytocinergic Signaling. Biol Pharm Bull. 2022;45(8):1124-1132. doi:10.1248/bpb.b22-00200
218. McLean AC, Valenzuela N, Fai S, Bennett SA. Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. J Vis Exp. 2012;(67):e4389. Published 2012 Sep 15. doi:10.3791/4389
219. Matsumoto YK, Kasai M, Tomihara K. The enhancement effect of estradiol on contextual fear conditioning in female mice. PLoS One. 2018;13(5):e0197441. Published 2018 May 15. doi:10.1371/journal.pone.0197441
220. Jasnow AM, Schulkin J, Pfaff DW. Estrogen facilitates fear conditioning and increases corticotropin-releasing hormone mRNA expression in the central amygdala in female mice. Horm Behav. 2006;49(2):197-205. doi:10.1016/j.yhbeh.2005.06.005
221. Milad MR, Igoe SA, Lebron-Milad K, Novales JE. Estrous cycle phase and gonadal hormones influence conditioned fear extinction. Neuroscience. 2009;164(3):887-895. doi:10.1016/j.neuroscience.2009.09.011
222. McDermott CM, Liu D, Ade C, Schrader LA. Estradiol replacement enhances fear memory formation, impairs extinction and reduces COMT expression levels in the hippocampus of ovariectomized female mice. Neurobiol Learn Mem. 2015;118:167-177. doi:10.1016/j.nlm.2014.12.009
223. Taxier LR, Gross KS, Frick KM. Oestradiol as a neuromodulator of learning and memory. Nat Rev Neurosci. 2020;21(10):535-550. doi:10.1038/s41583-020-0362-7
224. Lewis MC, Orr PT, Frick KM. Differential effects of acute progesterone administration on spatial and object memory in middle-aged and aged female C57BL/6 mice. Horm Behav. 2008;54(3):455-462. doi:10.1016/j.yhbeh.2008.05.010
225. Frye CA, Walf AA. Progesterone enhances performance of aged mice in cortical or hippocampal tasks. Neurosci Lett. 2008;437(2):116-120. doi:10.1016/j.neulet.2008.04.004
226. Frye CA, Walf AA. Progesterone enhances learning and memory of aged wildtype and progestin receptor knockout mice. Neurosci Lett. 2010;472(1):38-42. doi:10.1016/j.neulet.2010.01.051
227. Pestana JE, Graham BM. The impact of estrous cycle on anxiety-like behaviour during unlearned fear tests in female rats and mice: A systematic review and meta-analysis. Neurosci Biobehav Rev. Published online July 14, 2024. doi:10.1016/j.neubiorev.2024.105789
228. 劉.,Tze-Shiun.(2023).探討早期壓力及成年慢性不可預測壓力對恐懼社交轉移的影響.http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=109821023109821023
指導教授 黃佳瑜 審核日期 2024-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明