博碩士論文 111324018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:18.118.252.85
姓名 黃啓明(Qi-Ming Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 熱電材料碲化錫與銅電極之界面反應
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 近年來,隨著科技的迅速發展和環保意識的提升,對綠色能源來源的需求顯著增加。熱電模組,這種將廢熱轉換為電能的技術在再生能源領受到關注。其中,由碲化錫(SnTe)為基礎材料的中溫熱電模組在400至800K範圍內的高性能尤其引人注目。雖然在熱電性能上略遜於碲化鉛(PbTe),但碲化錫因其安全無毒的特性而更受青睞。 在實際應用中,中溫熱電模組會經歷長時間的高溫環境,導致熱電材料與電極之間發生劇烈的界面反應,這可能會顯著地降低模組性能,甚至可能導致模組失效。而在本研究中,將使用市售的銀銅鋅錫高溫銲膏,在973K條件下焊接1分鐘來接合碲化錫與銅電極。然後,樣品將在500K與600K溫度下進行0、1、5和15天的熱時效測試。本
研究旨在探討不同溫度下的界面反應,並評估中溫SnTe 熱電模組在長期運行條件下的可靠性。並嘗試加入電鍍鈷(Co)作為阻障層來改善接合狀況,在600K溫度下、0、1、5和15天的熱時效測試來評估電鍍鈷作為阻障層對於界面反應以及接點機械性質之影響。 由實驗結果得知,以此方式接合可以成功結合碲化錫與銅電極並且在500K、15天的熱時效測試下維持一定的接點強度,但在600K的情況下,因界面反應過於劇烈導致接點處大量銅擴散導致機械強度大幅下降,但在引入電鍍鈷擴散阻障層後不僅提升接點強度,經熱時效測試後亦維持良好的接點強度。
摘要(英) Recent advancements in technology and growing environmental awareness have increased the demand for green energy sources. Thermoelectric modules, which convert waste heat into electricity, are gaining attention. Mid-temperature modules made of tin telluride (SnTe) are notable for their high performance in the 400-800 K range. Although lead telluride has slightly better thermoelectric properties, SnTe is preferred for its safety and non-toxicity. In practical applications, mid-temperature thermoelectric modules undergo long term thermal aging, leading to interfacial reactions between the thermoelectric materials and electrodes. This can significantly reduce module performance or even cause failure. In this study, commercial AgCuZnSn braze paste will be used to bond SnTe with Cu electrodes under the
condition of 973 K for 1 minute. The samples will then undergo thermal aging tests at 500 K and 600 K for 1, 5, and 15 days. This research aims to investigate interfacial reactions at different temperatures and assess the reliability of mid-temperature SnTe thermoelectric
modules under long-term operational conditions. Additionally, cobalt (Co) electroplating will be attempted as a barrier layer to improve joint conditions. Thermal aging tests at 600 K for 1, 5, and 15 days will be conducted to evaluate the effect of Co electroplating on interfacial reactions and joint mechanical properties. Experimental results indicate that this bonding method can successfully bond SnTe and
Cu electrodes, maintaining a certain level of joint strength after thermal aging tests at 500 K for 15 days. However, at 600 K, intense interfacial reactions cause significant Cu diffusion at the joint, leading to a substantial decrease in joint strength. Introducing a Co diffusion barrier not
only improves joint strength but also maintains good joint strength after thermal aging tests.
關鍵字(中) ★ 熱電材料
★ 碲化錫
★ 鈷阻障層
★ 硬焊接合
★ 老化測試
★ 推力測試
關鍵字(英) ★ thermoelectric device
★ SnTe
★ Co diffusion barrier
★ brazing
★ aging test
★ shear test
論文目次 目錄
摘要 ............................................................................................................................................. i
Abstract ....................................................................................................................................... ii
致謝 ...........................................................................................................................................iii
目錄 ............................................................................................................................................ v
圖目錄 ...................................................................................................................................... vii
表目錄 ....................................................................................................................................... ix
第一章 緒論 ............................................................................................................................ 1
1-1 能源議題 ..................................................................................................................... 1
1-2 熱電材料 ..................................................................................................................... 3
1-2-1 熱電效應基礎原理.......................................................................................... 3
1-2-2 熱電模組裝置應用.......................................................................................... 5
1-3 碲化錫中溫熱電材料 ................................................................................................. 8
1-4 熱電材料界面接合 ................................................................................................... 10
1-4-1 熱壓接合........................................................................................................ 10
1-4-2 火花電漿燒結................................................................................................ 12
1-4-3 固液擴散接合................................................................................................ 13
1-4-4 硬焊................................................................................................................ 15
1-5 擴散阻障層 ............................................................................................................... 17
1-5-1 電鍍沉積擴散阻障層.................................................................................... 20
第二章 研究目的與動機 ...................................................................................................... 22
第三章 實驗方法 .................................................................................................................. 23
3-1 碲化錫熱電材料製備 ............................................................................................... 23
3-2 電鍍鈷擴散阻障層 ................................................................................................... 23
3-3 硬焊接合 ................................................................................................................... 23
3-4 推力測試 ................................................................................................................... 24
3-5 熱時效測試 ............................................................................................................... 24
3-6 試片分析 ................................................................................................................... 24
3-6-1 X光光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) ..................... 24
3-6-2 掃描式電子顯微鏡 (Scanning electronic microscope, SEM) ...................... 25
3-6-3 能量散佈光譜儀 (Energy Dispersive Spectrometer, EDS) .......................... 26
3-6-4 場發式電子微探儀 (Field Emission Electron Probe Microanalyzer, FE-
EPMA) ...................................................................................................................... 27
第四章 結果與討論 .............................................................................................................. 28
4-1 碲化錫熱電塊材製備 ............................................................................................... 28
4-2 SnTe/AgCuZnSn/Cu硬焊接合之接點 ...................................................................... 30
4-2-1 SnTe/AgCuZnSn/Cu接點之熱時效測試 ...................................................... 33
vi

4-2-2 SnTe/AgCuZnSn/Cu接點之推力測試與破斷面分析 .................................. 34
4-3 SnTe/Co/AgCuZnSn/Cu硬焊接合之接點 ................................................................ 38
4-3-1 SnTe/Co/AgCuZnSn/Cu接點熱時效測試 .................................................... 41
4-3-2 SnTe/Co/AgCuZnSn/Cu接點之推力測試與破斷面分析 ............................ 48
第五章 結論 .......................................................................................................................... 55
參考文獻與資料 ...................................................................................................................... 57


vii

圖目錄
圖 1-1 全球能源消耗來源圖[1] .............................................................................................. 1
圖 1-2 車輛能源損失比例圖[2] .............................................................................................. 2
圖 1-3 典型的熱電裝置圖[8] .................................................................................................. 6
圖 1-4 TEC與TEG簡單示意圖[9] ......................................................................................... 7
圖 1-5 SnTe的三種晶體結構[20] ............................................................................................ 9
圖 1-6 SnTe-based熱電材料zT值時間線[20] ..................................................................... 10
圖 1-7 PbTe對Cu接合截面SEM圖[33] ............................................................................. 11
圖 1-8 Pb0.6Sn0.4Te對Cu接合截面SEM圖[33] .................................................................. 11
圖 1-9 SPS接合Mg2Si與Cu流程圖與截面圖[37] ............................................................. 12
圖 1-10 Mg2Si對Cu接合截面SEM圖[37] ......................................................................... 13
圖 1-11 TLP示意圖[41] ......................................................................................................... 13
圖 1-12 (a)TLP方式接合Sn0.88Mn0.12Li0.01Te與銅電極接點SEM圖、不同條件熱處理
BSE圖、(b)523K持溫15分鐘、(c) 773K持溫10分鐘、(d) 773K持溫24小時與
(e) 873K持溫24小時[42] .............................................................................................. 14
圖 1-13 Hf0.75Zr0.25NiSn0.99Sb0.01(n-type)與Hf0.5Zr0.5CoSb0.8Sn0.2 (p-type)對銅接點及元素
分析位置[45].................................................................................................................... 15
圖 1-14 Hf0.75Zr0.25NiSn0.99Sb0.01(n-type)與Hf0.5Zr0.5CoSb0.8Sn0.2 (p-type)對銅接點各點元
素分析位置與EDS mapping結果 .................................................................................. 16
圖 1-15熱電材料之EPMA截面圖(a)無Ni阻障層(b)1μm Ni阻障層[47] ........................ 18
圖 1-16不同Ni層厚度下的熱電模組發電效率[47] ........................................................... 18
圖 1-17 n-type與p-type有無阻障層之seebeck係數比值[48] ........................................... 19
圖 1-18(a)Ni/PbTe接點在400℃持溫60天之BSE圖 (b)Co/PbTe接點在400℃持溫60
天之EPMA元素分布圖 (c)Ni/Ag-Ge在400℃持溫7天之BSE圖 (d) Co/Ag-Ge在
400℃持溫7天之BSE圖 (e) Ni/Ag-Ge在750℃持溫30分鐘之BSE圖 (f) Co/Ag
Ge在750℃持溫30分鐘之BSE圖[52]........................................................................ 21
圖 3-1電子束撞擊試片時各類型訊號產生範圍示意圖[58] ............................................... 26
圖 4-1 各條件下SEM與EDS位置圖(a)為剛熔煉完之碲化錫(b)為熱壓完成之碲化錫 28
圖 4-2碲化錫熱壓前後的繞射峰圖譜 .................................................................................. 29
圖 4-3 (a)SnTe/AgCuZnSn/Cu接點之截面圖 (b)角落缺陷處放大圖 (c)
SnTe/AgCuZnSn/Cu截面放大圖 .................................................................................... 30
圖 4-4 SnTe經過700K熱時效測試1分鐘結果與碲化錫相圖[60] ................................... 31
圖 4-5 SnTe/AgCuZnSn/Cu截面EPMA mapping元素分布圖 ............................................ 31
圖 4-6 SnTe/AgCuZnSn/Cu截面EPMA點分析位置 .......................................................... 32
圖 4-7 SnTe/AgCuZnSn經過1、5、15天不同溫度下熱時效測試截面圖(a)500K(b)600K
.......................................................................................................................................... 33
圖 4-8 各條件下SnTe/AgCuZnSn/Cu接點強度 .................................................................. 34
viii

圖 4-9 SnTe/AgCuZnSn/Cu接合後推力測試破斷面 ............................................................ 35
圖 4-10 SnTe/AgCuZnSn/Cu斷裂位置截面圖 ...................................................................... 36
圖 4-11 SnTe/AgCuZnSn/Cu接點經過500K熱時效測試1、5與15天後的破斷面 ....... 36
圖 4-12 SnTe/AgCuZnSn/Cu接點經過600K熱時效測試1、5與15天後的破斷面 ....... 37
圖 4-13(a)為SnTe/Co/AgCuZnSn/Cu接點之截面圖 (b)角落處放大圖 (c)
SnTe/Co/AgCuZnSn/Cu接點之截面放大圖 .................................................................. 38
圖 4-14 SnTe/Co/AgCuZnSn之(a)SEM與(b)EDS點分析位置圖 ....................................... 39
圖 4-15 接合後EDS mapping圖 .......................................................................................... 40
圖 4-16接合後結構變化示意圖 ............................................................................................ 40
圖 4-17經過600K熱時效測試1天後SnTe/Co/AgCuZnSn之(a)SEM與(b)EDS點分析
位置圖 .............................................................................................................................. 42
圖 4-18經過600K熱時效測試1天後EDS mapping圖 .................................................... 42
圖 4-19經過600K熱時效測試1天後結構變化示意圖 ..................................................... 43
圖 4-20經過600K熱時效測試5天後SnTe/Co/AgCuZnSn之(a)SEM與EDS點分析位
置圖(b)放大倍率SEM與EDS點分析位置圖 .............................................................. 44
圖 4-21經過600K熱時效測試5天後EDS mapping圖 .................................................... 45
圖 4-22經過600K熱時效測試5天後結構改變示意圖 ..................................................... 45
圖 4-23經過600K熱時效測試15天後SnTe/Co/AgCuZnSn之(a)SEM與EDS點分析位
置圖(b)放大倍率SEM與EDS點分析位置圖 .............................................................. 46
圖 4-24經過600K熱時效測試15天後EDS mapping圖 .................................................. 47
圖 4-25經過600K熱時效測試15天後結構改變示意圖 ................................................... 47
圖 4-26 600K熱時效測試下是否添加Co層的推力強度 ................................................... 49
圖 4-27 SnTe /Co/AgCuZnSn/Cu硬焊接合後推力測試破斷面 ........................................... 50
圖 4-28 SnTe /Co/AgCuZnSn/Cu斷裂位置示意圖 ............................................................... 50
圖 4-29 SnTe/Co/AgCuZnSn/Cu經過600K溫度下熱時效測試1天之推力測試後破斷面
.......................................................................................................................................... 51
圖 4-30 SnTe/Co/AgCuZnSn/Cu經過600K溫度下熱時效測試1天後斷裂截面圖 ......... 51
圖 4-31 SnTe /Co/AgCuZnSn/Cu經過600K溫度下熱時效測試5天之推力測試後破斷面
.......................................................................................................................................... 52
圖 4-32 SnTe /Co/AgCuZnSn/Cu經過600K溫度下熱時效測試5天斷裂位置截面圖 .... 53
圖 4-33 SnTe /Co/AgCuZnSn/Cu經過600K溫度下熱時效測試15天之推力測試後破斷
面 ...................................................................................................................................... 53
圖 4-34 SnTe /Co/AgCuZnSn/Cu經過600K溫度下熱時效測試15天斷裂位置截面圖 .. 54


ix
參考文獻 [1] https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser?country=WORLD&fuel=Energy%20supply&indicator=TESbySource (accessed 0425, 2024).
[2] E. Garofalo, M. Bevione, L. Cecchini, F. Mattiussi, and A. Chiolerio, "Waste heat to power: Technologies, current applications, and future potential," Energy Technology, vol. 8, no. 11, p. 2000413, 2020.
[3] S. Shafiee and E. Topal, "When will fossil fuel reserves be diminished?," Energy policy, vol. 37, no. 1, pp. 181-189, 2009.
[4] S. M. Pourkiaei et al., "Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials," Energy, vol. 186, p. 115849, 2019.
[5] S. B. Riffat and X. Ma, "Thermoelectrics: a review of present and potential applications," Applied thermal engineering, vol. 23, no. 8, pp. 913-935, 2003.
[6] J. Yang, "Potential applications of thermoelectric waste heat recovery in the automotive industry," in ICT 2005. 24th International Conference on Thermoelectrics, 2005., 2005: IEEE, pp. 170-174.
[7] D. Zhao and G. Tan, "A review of thermoelectric cooling: Materials, modeling and applications," Applied thermal engineering, vol. 66, no. 1-2, pp. 15-24, 2014.
[8] R. Saidur, M. Rezaei, W. K. Muzammil, M. Hassan, S. Paria, and M. Hasanuzzaman, "Technologies to recover exhaust heat from internal combustion engines," Renewable and sustainable energy reviews, vol. 16, no. 8, pp. 5649-5659, 2012.
[9] H. Jouhara et al., "Thermoelectric generator (TEG) technologies and applications," International Journal of Thermofluids, vol. 9, p. 100063, 2021.
[10] A. Aziz, R. I. Mainil, A. K. Mainil, S. Syafri, and M. F. Syukrillah, "Design of portable beverage cooler using one stage thermoelectric cooler (tec) module," Aceh International Journal of Science and Technology, vol. 6, no. 1, pp. 29-36, 2017.
[11] V. Dongare, R. Kinare, M. Parkar, and R. Salunke, "Design and development of thermoelectric refrigerator," International Research Journal of Engineering and Technology, vol. 5, no. 4, 2018.
[12] H.-S. Choi, S. Yun, and K.-i. Whang, "Development of a temperature-controlled car-seat system utilizing thermoelectric device," Applied Thermal Engineering, vol. 27, no. 17-18, pp. 2841-2849, 2007.
[13] A. Miranda, T. Chen, and C. Hong, "Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles," Energy, vol. 59, pp. 633-641, 2013.
[14] P. Naphon and S. Wiriyasart, "Liquid cooling in the mini-rectangular fin heat sink with and without thermoelectric for CPU," International Communications in Heat and Mass Transfer, vol. 36, no. 2, pp. 166-171, 2009.
[15] D. Rowe, "Applications of nuclear-powered thermoelectric generators in space," Applied Energy, vol. 40, no. 4, pp. 241-271, 1991.
[16] M. Q. Khan, S. Malarmannan, and G. Manikandaraja, "Power generation from waste heat of vehicle exhaust using thermo electric generator: A review," in IOP Conference Series: Materials Science and Engineering, 2018, vol. 402, no. 1: IOP Publishing, p. 012174.
[17] B. Orr, A. Akbarzadeh, M. Mochizuki, and R. Singh, "A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes," Applied thermal engineering, vol. 101, pp. 490-495, 2016.
[18] M. Hyland, H. Hunter, J. Liu, E. Veety, and D. Vashaee, "Wearable thermoelectric generators for human body heat harvesting," Applied Energy, vol. 182, pp. 518-524, 2016.
[19] Y. Zhang, J. Sun, J. Shuai, X. Tang, and G. Tan, "Lead-free SnTe-based compounds as advanced thermoelectrics," Materials Today Physics, vol. 19, p. 100405, 2021.
[20] P.-P. Peng, C. Wang, L.-W. Li, S.-Y. Li, and Y.-Q. Chen, "Research status and performance optimization of medium-temperature thermoelectric material SnTe," Chinese Physics B, vol. 31, no. 4, p. 047307, 2022.
[21] L. Rogers, "Valence band structure of SnTe," Journal of Physics D: Applied Physics, vol. 1, no. 7, p. 845, 1968.
[22] G. Tan et al., "High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach," Journal of the American Chemical Society, vol. 136, no. 19, pp. 7006-7017, 2014.
[23] T. Fu, J. Xin, T. Zhu, J. Shen, T. Fang, and X. Zhao, "Approaching the minimum lattice thermal conductivity of p-type SnTe thermoelectric materials by Sb and Mg alloying," Science Bulletin, vol. 64, no. 14, pp. 1024-1030, 2019.
[24] L.-D. Zhao et al., "Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe," Journal of the American Chemical Society, vol. 138, no. 7, pp. 2366-2373, 2016.
[25] Y. Pei et al., "Interstitial point defect scattering contributing to high thermoelectric performance in SnTe," Advanced Electronic Materials, vol. 2, no. 6, p. 1600019, 2016.
[26] D. Bhat and U. Shenoy, "Zn: a versatile resonant dopant for SnTe thermoelectrics," Materials Today Physics, vol. 11, p. 100158, 2019.
[27] Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, "Convergence of electronic bands for high performance bulk thermoelectrics," Nature, vol. 473, no. 7345, pp. 66-69, 2011.
[28] G. Tan et al., "Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence," Journal of the American Chemical Society, vol. 137, no. 15, pp. 5100-5112, 2015.
[29] R. Moshwan, L. Yang, J. Zou, and Z. G. Chen, "Eco‐friendly SnTe thermoelectric materials: progress and future challenges," Advanced Functional Materials, vol. 27, no. 43, p. 1703278, 2017.
[30] M. Zhou et al., "Optimization of thermoelectric efficiency in SnTe: the case for the light band," Physical Chemistry Chemical Physics, vol. 16, no. 38, pp. 20741-20748, 2014.
[31] W. Le, W. Yang, W. Sheng, and J. Shuai, "Research progress of interfacial design between thermoelectric materials and electrode materials," ACS Applied Materials & Interfaces, vol. 15, no. 10, pp. 12611-12621, 2023.
[32] H.-C. Hsieh et al., "Joint properties enhancement for PbTe thermoelectric materials by addition of diffusion barrier," Materials Chemistry and Physics, vol. 246, p. 122848, 2020.
[33] C. Li et al., "Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials," Journal of Materials Chemistry C, vol. 3, no. 40, pp. 10590-10596, 2015.
[34] H. Xia, F. Drymiotis, C.-L. Chen, A. Wu, Y.-Y. Chen, and G. Jeffrey Snyder, "Bonding and high-temperature reliability of NiFeMo alloy/n-type PbTe joints for thermoelectric module applications," Journal of Materials Science, vol. 50, pp. 2700-2708, 2015.
[35] H. Xia, F. Drymiotis, C.-L. Chen, A. Wu, and G. J. Snyder, "Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications," Journal of Materials Science, vol. 49, pp. 1716-1723, 2014.
[36] W.-T. Chiu, C.-L. Chen, and Y.-Y. Chen, "A strategy to optimize the thermoelectric performance in a spark plasma sintering process," Scientific reports, vol. 6, no. 1, p. 23143, 2016.
[37] L. Cai, P. Li, P. Wang, Q. Luo, P. Zhai, and Q. Zhang, "Duration of thermal stability and mechanical properties of Mg 2 Si/Cu thermoelectric joints," Journal of Electronic Materials, vol. 47, pp. 2591-2599, 2018.
[38] A. Larsson, T. A. Tollefsen, and K. E. Aasmundtveit, "Ni-Sn solid liquid interdiffusion (SLID) bonding—Process, bond characteristics and strength," in 2016 6th Electronic System-Integration Technology Conference (ESTC), 2016: IEEE, pp. 1-6.
[39] K. Placha, R. S. Tuley, M. Salvo, V. Casalegno, and K. Simpson, "Solid-liquid interdiffusion (SLID) bonding of p-type skutterudite thermoelectric material using Al-Ni interlayers," Materials, vol. 11, no. 12, p. 2483, 2018.
[40] G. O. Cook III and C. D. Sorensen, "Overview of transient liquid phase and partial transient liquid phase bonding," Journal of materials science, vol. 46, no. 16, pp. 5305-5323, 2011.
[41] D. Jung, A. Sharma, M. Mayer, and J. Jung, "A review on recent advances in transient liquid phase (TLP) bonding for thermoelectric power module," Reviews on advanced materials science, vol. 53, no. 2, pp. 147-160, 2018.
[42] F. Guo et al., "Preliminary exploration of key technique for the application of thermoelectric SnTe in mid-temperature power generation," Acta Materialia, vol. 242, p. 118455, 2023.
[43] Y. S. Lee et al., "Research for Brazing Materials of High-Temperature Thermoelectric Modules with CoSb 3 Thermoelectric Materials," Journal of Electronic Materials, vol. 46, pp. 3083-3088, 2017.
[44] D. Ben-Ayoun, Y. Sadia, and Y. Gelbstein, "Compatibility between Co-metallized PbTe thermoelectric legs and an Ag–Cu–In brazing alloy," Materials, vol. 11, no. 1, p. 99, 2018.
[45] H. He et al., "Bonding performance of Ag–Cu brazing solders and half-Heusler alloys for high-performance thermoelectric generators," ACS Applied Materials & Interfaces, vol. 14, no. 36, pp. 41588-41597, 2022.
[46] X. Wang, Y. Jiang, Z. Ling, Z. Yuan, and J. Shi, "Advancements in diffusion barrier layers based on heterogeneous connection of electrode/thermoelectric materials," Journal of Alloys and Compounds, p. 175185, 2024.
[47] J. M. Park et al., "Enhanced output power of thermoelectric modules with reduced contact resistance by adopting the optimized Ni diffusion barrier layer," Journal of Alloys and Compounds, vol. 884, p. 161119, 2021.
[48] W. H. Chao, Y. R. Chen, S. C. Tseng, P. H. Yang, R. J. Wu, and J. Y. Hwang, "Enhanced thermoelectric properties of metal film on bismuth telluride-based materials," Thin Solid Films, vol. 570, pp. 172-177, 2014.
[49] R. Gupta et al., "Interface characterization of cobalt contacts on bismuth selenium telluride for thermoelectric devices," Electrochemical and Solid-State Letters, vol. 12, no. 10, p. H395, 2009.
[50] S. Chen et al., "Synergetic effect of interface barrier and doping on the thermoelectric transport properties of tellurium," Journal of materials science, vol. 55, pp. 8642-8650, 2020.
[51] X. Hu et al., "Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules," Energy & Environmental Science, vol. 9, no. 2, pp. 517-529, 2016.
[52] S.-W. Chen, J.-C. Wang, and L.-C. Chen, "Interfacial reactions at the joints of PbTe thermoelectric modules using Ag-Ge braze," Intermetallics, vol. 83, pp. 55-63, 2017.
[53] T. Chuang, H. Lin, C. Chuang, W. Yeh, J. Hwang, and H. Chu, "Solid liquid interdiffusion bonding of (Pb, Sn) Te thermoelectric modules with Cu electrodes using a thin-film Sn interlayer," Journal of electronic materials, vol. 43, pp. 4610-4618, 2014.
[54] T.-H. Chuang, W.-T. Yeh, C.-H. Chuang, and J.-D. Hwang, "Improvement of bonding strength of a (Pb, Sn) Te–Cu contact manufactured in a low temperature SLID-bonding process," Journal of alloys and compounds, vol. 613, pp. 46-54, 2014.
[55] A. Larsson, "Die-attach for high-temperature electronics," 2019.
[56] C. Li et al., "Development of interconnection materials for Bi 2 Te 3 and PbTe thermoelectric module by using SLID technique," in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), 2015: IEEE, pp. 1470-1476.
[57] X. Wang et al., "Optimization of the performance of the SnTe uni-leg thermoelectric module via metallized layers," Renewable Energy, vol. 131, pp. 606-616, 2019.
[58] C. Lemell, J. Burgdörfer, and F. Aumayr, "Interaction of charged particles with insulating capillary targets–The guiding effect," Progress in Surface Science, vol. 88, no. 3, pp. 237-278, 2013.
[59] B. Mondal et al., "Vapor pressure versus temperature relations of common elements," Materials, vol. 16, no. 1, p. 50, 2022.
[60] D. Bletskan, "Phase equilibrium in binary systems AIVBVI," J. Ovonic Res, vol. 1, pp. 61-69, 2005.
[61] https://next-gen.materialsproject.org/materials (accessed 0616, 2024).
指導教授 吳子嘉(Albert T. Wu) 審核日期 2024-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明