博碩士論文 111324039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.133.125.185
姓名 陳聖揚(Sheng-Yang Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 錫鉍/錫銀銅複合銲料之電遷移研究
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 國 立 中 央 大 學


化 學 工 程 與 材 料 工 程 學 系
碩 士 論 文



錫鉍/錫銀銅複合銲料之電遷移研究


研 究 生:陳聖揚
指導教授:吳子嘉 博士

中 華 民 國 一一三 年 六 月
中文摘要
現今高功率元件之輸入/輸出埠數量增加,而此技術需仰賴複雜的異質材料組合。異質整合需在迴焊過程中管理熱能分佈,以避免晶片損毀。因此,低溫焊接製程提供了一種減少高溫製程中銲點熱應力的方法。使用錫銀銅(Sn-Ag-Cu)與錫鉍(Sn-Bi)之複合銲料可顯著降低加工溫度,成為有前瞻性的替代方案。
研究中旨在探討複合低溫銲料(SAC305 ball/Sn-56.8Bi-1.0Ag-0.2Cu paste)迴焊接合的電遷移現象。於60°C下通以電流密度(0.8、1.0×10^3A/cm^2),並量測0, 5, 10和20天的電流應力與觀察熱遷移現象。透過觀察通電與加熱後銲料與銅導線之介金屬化合物(IMC)厚度與形貌變化,發現通電後,陰、陽極冷端SAC305/solder界面處IMC將產生粗化現象;熱端SB102/Cu界面處IMC上方受Bi原子堆積,呈塊狀富Bi相抑制生長而無明顯變化。針對此變化,高電流密度又比低電流密度更為顯著。此外,在熱遷移的影響下,Bi由熱端往冷端方向擴散,在熱端IMC上方先粗化,並擴散進入SAC305形成小顆粒分佈。
本研究致力探討SAC305銲球和Sn-56.8Bi-1.0Ag-0.2Cu銲膏之間的界面上Bi顆粒尺寸和分佈,以及複合銲料系統的陰、陽極端之IMC演變。我們將討論熱遷移和應用電流對擴散機制的影響,為複合焊接技術(composite soldering technology)於未來電子製造產業中的可靠度提升進行貢獻。
摘要(英) Abstract
In modern high-power devices, the growing number of input/output ports demands complex heterogeneous material combinations. Effective thermal management during reflow is crucial to prevent chip damage. Therefore, low-temperature soldering processes provide a promising solution to minimize thermal stress on solder joints, common in high-temperature processes. The utilization of hybrid solders, specifically Sn-Ag-Cu (SAC) and Sn-Bi alloys, can significantly reduce processing temperatures, presenting a feasible alternative.
This study intends to investigate the electromigration phenomena in hybrid low-temperature solder joints (SAC305 ball/Sn-56.8Bi-1.0Ag-0.2Cu paste). samples were subjected to a current density of 0.8 and 1.0×103 A/cm² at 60°C, with current stress measured at intervals of 0, 5, 10, and 20 days to observe thermal migration effects. By examining the changes in the thickness and morphology of intermetallic compounds (IMCs) at the solder/Cu interfaces post-electrification and heating, it was found that IMC coarsening occurred at the SAC305/solder interface on the cathode and anode cold ends. Meanwhile, At the hot end of the SB102/Cu interface, IMC growth was inhibited by the accumulation of Bi atoms, which appeared as blocky Bi-rich phases, showing no significant changes. These changes were more significant under higher current densities compared to lower ones. Furthermore, due to thermal migration, Bi atoms diffused from the hot end towards the cold end, initially leading to the coarsening of Bi above the IMC interface at the hot end. These Bi atoms subsequently dispersed into the SAC305 forming small particles.
This research focuses on the size and distribution of Bi particles at the SAC305 ball and Sn-56.8Bi-1.0Ag-0.2Cu paste interface, as well as the IMC evolution at the cathode and anode ends of the composite solder system. We will discuss the impact of thermal migration and current application on the diffusion mechanisms, contributing to the reliability enhancement of composite soldering technology in future electronic manufacturing industries.
關鍵字(中) ★ 低溫銲料
★ 電遷移
★ 覆晶構裝
★ 複合焊接技術
★ 複合銲料
關鍵字(英)
論文目次 目錄
中文摘要 i
Abstract ii
目錄 vi
圖目錄 viii
表目錄 xii
1 第一章 緒論 1
1-1 前言 1
1-2 晶圓製程與構裝層級 2
1-3 傳統電子構裝 4
1-3-1通孔插裝技術 (Pin-through-Hole Technology) 5
1-3-2表面黏著技術 (Surface Mount Technology) 5
1-3-3球柵陣列構裝 (Ball Grid Array) 6
1-4 先進三維構裝技術 (Advanced three-dimensional packaging technology) 6
2 第二章 文獻回顧 8
2-1 銲料構裝簡介 8
2-1-1 錫銦(Sn-In)銲料 8
2-1-2 錫鉍(Sn-Bi)銲料 11
2-2 多元合金(Multi-component alloy)銲料 14
2-2-1 錫鉍銦(Sn-Bi-In)銲料 14
2-2-2 錫鉍銀(Sn-Bi-Ag)銲料 16
2-2-3 錫銀銅(Sn-Ag-Cu)銲料 17
2-2-4 錫銀銅鉍(Sn-Ag-Cu-Bi)銲料 19
2-3 複合銲料(Hybrid solder) 21
2-3-1 含鉛中溫複合銲料 21
2-3-2 無鉛低溫複合銲料 23
2-4 電遷移(Electromigration)現象簡介 26
2-4-1 錫鉛(Sn-Pb)銲料 28
2-4-2 錫銦(Sn-In)銲料 29
2-4-3 錫銀銅(Sn-Ag-Cu)銲料 30
2-4-4 錫鉍(Sn-Bi)銲料 32
2-5 研究動機 33
3 第三章 實驗方法 34
3-1 複合銲料樣品製備 34
3-2 電遷移測試之試片 36
3-3 熱遷移測試之試片 38
3-4 試片分析 38
3-4-1 離子研磨機 (Ion Milling) 38
3-4-2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 39
3-4-3 能量散射光譜儀 (Energy Dispersive Spectrometer, EDS) 39
4 第四章 結果與討論 40
4-1 SAC305/Sn56.8Bi1.0Ag0.2Cu複合銲料微結構樣貌 40
4-2 覆晶複合銲料電遷移界面反應與演變 48
4-2-1 SAC305/Sn56.8Bi1.0Ag0.2Cu陰極冷端界面樣貌演進 48
4-2-2 SAC305/Sn56.8Bi1.0Ag0.2Cu陽極冷端界面樣貌演進 51
4-2-3 SAC305/Sn56.8Bi1.0Ag0.2Cu陰極熱端界面樣貌演進 54
4-2-4 SAC305/Sn56.8Bi1.0Ag0.2Cu陽極熱端界面樣貌演進 56
4-3 覆晶複合銲料熱遷移界面反應與演變 45
4-3-1 SAC305/Sn56.8Bi1.0Ag0.2Cu冷端界面樣貌演進 45
4-3-2 SAC305/Sn56.8Bi1.0Ag0.2Cu熱端界面樣貌演進 46
4-4 覆晶複合銲料熱遷移與電遷移微結構組成探討 59
5 第五章 結論 69
參考文獻與資料 71

圖目錄
圖1 1 5G產業對全球GDP成長趨勢圖[1] 1
圖1 2 晶圓製造流程[4] 2
圖1 3 電子構裝層級圖[6] 3
圖1 4 半導體構裝技術演進[7] 4
圖1 5 通孔插裝技術OM橫截面圖[9] 5
圖1 6 晶片與導線架打線接合之功率元件[10] 5
圖1 7 球柵陣列構裝(Ball Grid Array, BGA) [11] 6
圖1 8 半導體構裝技術與應用演進[12] 7
圖1 9 系統級構裝(System in Package, SiP)示意圖[13] 7
圖2 1 錫銦二元相圖[16] 9
圖2 2 液態氮中測量In、In-48Sn、In-50Pb和Sn-37Pb銲料的斷裂拉伸率[17] 9
圖2 3 (a) Sn-52In aging test 7天之界面微結構,(b) Cu2(In,Sn)粗化與細化亞層界面間的Kirkendall voids TEM影像,(c) Cu2(In,Sn)/Cu無孔洞界面[18] 10
圖2 4 (a) 銲點於溫度循環下的強度衰減,(b) 失效時間測量數據[19] 10
圖2 5 Sn-Bi二元相圖[16] 12
圖2 6 錫鉍焊料於五種組成配比下BSE微結構樣貌圖,(a) Sn-3Bi,(b) Sn-10Bi,(c) Sn-50Bi,(d) Sn-57Bi與(e) Sn-58Bi[21] 12
圖2 7 不同Bi元素含量的Sn-Bi銲料(a) 彈性模數,(b) 硬度數值[21] 12
圖2 8 等溫熱時效過程,Bi含量對Sn-Bi銲料之IMC生長影響[22] 13
圖2 9 熱時效處理後,不同Bi含量的Sn-Bi銲點界面演變[23] 13
圖2 10 Cu3Sn/Cu介面處之Bi析出與孔洞形成[24] 13
圖2 11 Sn-40Bi-xIn銲料合金微結構(a) 0In,(b) 1In,(c) 2In,(d) 4In,(e) 6In與(f) 8In[25] 15
圖2 12 環境溫度下xIn (x=0, 1, 2, 4, 6, 8)合金之應力-應變曲線(a) 60oC,(b) 80oC,(c) 100oC與(d) 120oC[25] 15
圖2 13 xIn (x=0, 1, 2, 4, 6, 8)合金拉伸測試(a) 應力-應變曲線,(b) 添加In,極限拉伸強度(UTS)和拉伸率關係[25] 15
圖2 14 SEM影像微結構(a) Sn-58Bi,(b) Sn-57.6Bi-0.4Ag[26] 16
圖2 15 Ag3Sn介金屬化合物呈棒狀體於Sn-57.6Bi-0.4Ag銲料[26] 16
圖2 16 Sn-58Bi和Sn-57.6Bi-0.4Ag機械性質(a) 拉伸曲線,(b) 最大拉伸強度與降伏強度,(c) 伸長量,(d) 楊氏模數,(e) 奈米壓痕測出之硬度[27] 17
圖2 17 熱老化180oC的SAC305/Cu界面微結構(a) 48h,(b) 144h,(c) 240h,(d) 456h[28] 18
圖2 18 在熱老化180oC下240h後之Solder/IMC破斷模式(a) 示意圖說明,(b-c) A區,(d-e) B區SEM影像微結構[28] 18
圖2 19 Cu/SAC-xBi/Cu (x=0, 1, 2.5, 5)之DSC冷卻與升溫曲線(a) 0Bi,(b) 1Bi,(c) 2.5Bi,(d) 5Bi[30] 20
圖2 20 Molten solder/Cu界面處的Bi阻擋與擴散影響示意圖(a) SAC257/Cu,(b) SAC257-1Bi/Cu,(c) SAC257-2.5Bi/Cu,(d) SAC257-5Bi[30] 20
圖2 21 迴焊後Cu基板與銲料合金界面處之介金屬化合物形貌(a) Cu/SAC257/Cu,(b) Cu/SAC257-1Bi/Cu,(c) Cu/SAC257-2.5Bi/Cu,(d) Cu/SAC257-5Bi/Cu[30] 20
圖2 22 SAC257-xBi合金銲料的破斷面(a-c) SAC257-1Bi/Cu,(d-f) SAC257-2.5Bi/Cu,(g-i) SAC257-5Bi/Cu[31] 21
圖2 23 不同含Pb比例於SAC305形成複合銲料的平均失效時間[34] 22
圖2 24 熱循環測試後複合銲料之EBSD晶向與SEM影像微結構(a) As-reflowed,(b) 1400次,(c) 3000次[36] 22
圖2 25 Sn-Bi基體低溫銲料A、B與SAC305球之複合銲料,不同迴焊溫度條件下熱循環測試的失效模式[37] 24
圖2 26 Bi含量影響paste-ball體積占比與熱循環壽命關係[37] 24
圖2 27 熱循環試驗下Ni/Au與Cu/OSP pads之銲料形變[37] 24
圖2 28 迴焊溫度210oC下完全熔融複合銲料之SAC305/Sn-49Bi-1Ag截面微結構(a) 銲料球整體,(b) Ni界面,(c) 富Bi區域,(d) Cu界面[38] 25
圖2 29 迴焊溫度190oC下完全熔融複合銲料之SAC305/Sn-49Bi-1Ag截面微結構(a) 銲料球整體,(b) Ni界面,(c) 富Bi區域,(d) Cu界面[38] 25
圖2 30 完全熔融複合銲料於不同熱循環次數下之截面微結構(a-c) 銲料球整體,(d-f) Ni界面,(g-i) Cu界面[38] 25
圖2 31 陽極處孔洞周圍被Pb相與Sn-Cu的IMC包覆[42] 28
圖2 32 Sn-37Pb覆晶銲料於持溫120oC通電之截面微結構(a) 0h,(b) 70h,(c) 324h[43] 29
圖2 33 In-48Sn銲料電遷移現象(a) 未通電,(b) 通電後[44] 30
圖2 34 In-48Sn覆晶銲料於電遷移和熱時效720h後的微結構(a-c) EM於25oC,(d-f) EM於55oC,(g-i) aging 55oC[45] 30
圖2 35 電流密度分佈模擬圖,電流壅擠發生在凸塊與UBM接合處[46] 31
圖2 36 Sn-3.8Ag-0.7Cu通以3.2×104A/cm2電流密度與180oC下,陰、陽極界面處的IMC生長演進[47] 31
圖2 37 不同電流應力與溫度下,富Bi層的厚度變化(a) 30oC,(b) 50oC,(c) 70oC[48] 32
圖2 38 EM在2.0×104/cm2與30oC下,Sn-58Bi共晶銲料陰、陽極側變化(a) 30min,(b) 60min,(c) 90min[48] 32
圖3 1 CABGA192 34
圖3 2 複合銲料實驗試片示意圖 35
圖3 3 覆晶構裝複合銲料製備流程圖 35
圖3 4 四點探針組座與加熱平台 37
圖3 5 銅電極製作程序圖 37
圖4 1 SAC305/Sn-56.8Bi-1.0Ag-0.2Cu複合銲料迴焊完與電遷移0.8×103A/cm2電流密度與持溫60oC下截面微結構樣貌(a)0d,(b) 5天,(c) 10天,(d) 20天 41
圖4 2 SAC305/Sn-56.8Bi-1.0Ag-0.2Cu複合銲料截面微結構樣貌於電遷移1.0×103A/cm2電流密度與持溫60oC下截面微結構樣貌(a)5d,(b) 10天,(c) 20天 42
圖4 3 SAC305/Sn-56.8Bi-1.0Ag-0.2Cu複合銲料於熱遷移時長截面微結構樣貌(a)0d,(b) 5天,(c) 10天,(d) 20天 42
圖4 4 電遷移與熱遷移之界面處IMC厚度隨時長變化趨勢 44
圖4 5 恆溫60oC下熱遷移時長冷端界面處SAC305/Cu之IMC形貌微結構(a) 0天,(b) 5天,(c) 10天,(d) 20天 45
圖4 6 冷端界面處之Cu6Sn5生長機制示意圖 46
圖4 7恆溫60oC下熱遷移時長熱端界面處SB102/Cu之IMC形貌微結構(a) 0天,(b) 5天,(c) 10天,(d) 20天 47
圖4 8 熱端界面處之Cu6Sn5生長機制示意圖 47
圖4 9 陰極冷端界面電遷移示意圖 49
圖4 10 恆溫60oC下,通以0.8×103A/cm2電流密度時長陰極冷端界面處SAC305/Cu之IMC形貌微結構(a) 0天,(b) 5天,(c) 10天,(d) 20天 49
圖4 11 恆溫60oC下,通以1.0×103A/cm2電流密度時長陰極冷端界面處SAC305/Cu之IMC形貌微結構(a) 0天,(b) 5天,(c) 10天,(d) 20天 50
圖4 12 陰極冷端界面處之Cu6Sn5生長機制示意圖 50
圖4 13 Cu、Sn、Bi原子於各成分相之有效電荷數(effective charge number) [51] 51
圖4 14 陽極熱端界面電遷移示意圖 52
圖4 15 恆溫60oC下,通以0.8×103A/cm2電流密度時長陽極熱端界面處SB102/Cu之IMC形貌微結構(a) 0天,(b) 5天,(c) 10天,(d) 20天 52
圖4 16 恆溫60oC下,通以1.0×103A/cm2電流密度時長陽極熱端界面處SB102/Cu之IMC形貌微結構(a) 0天,(b) 5天,(c) 10天,(d) 20天 53
圖4 17 陽極熱端界面處之Cu6Sn5生長機制示意圖 53
圖4 18 陰極熱端界面電遷移示意圖 54
圖4 19恆溫60oC下,通以0.8×103A/cm2電流密度時長陰極熱端界面處SB102/Cu之IMC形貌微結構(a) 0天,(b) 5天,(c) 10天,(d) 20天 55
圖4 20 恆溫60oC下,通以1.0×103A/cm2電流密度時長陰極熱端界面處SB102/Cu之IMC形貌微結構(a) 0天,(b) 5天,(c) 10天,(d) 20天 55
圖4 21 陰極熱端界面處之Cu6Sn5生長機制示意圖 56
圖4 22 陽極冷端界面電遷移示意圖 57
圖4 23 恆溫60oC下,通以0.8×103A/cm2電流密度時長陽極冷端界面處SAC305/Cu之IMC形貌微結構(a) 0天,(b) 5天,(c) 10天,(d) 20天 57
圖4 24 恆溫60oC下,通以1.0×103A/cm2電流密度時長陽極冷端界面處SAC305/Cu之IMC形貌微結構(a) 0天,(b) 5天,(c) 10天,(d) 20天 58
圖4 25 陽極冷端界面處之Cu6Sn5生長機制示意圖 58
圖4 26 電遷移與熱遷移之界面處IMC粗糙度變化 59
圖4 27 SAC305/Sn-56.8Bi-1.0Ag-0.2Cu複合銲料於熱遷移EDS mapping結果(a) 0天,(b) 5天,(c) 10天,(d) 20天 60
圖4 28 SB102銲料中間區域之熱遷移5天EDS mapping結果 61
圖4 29 SB102銲料中間區域之熱遷移10天EDS mapping結果 61
圖4 30 SB102銲料中間區域之熱遷移20天EDS mapping結果 61
圖4 31 SAC305/Sn-56.8Bi-1.0Ag-0.2Cu複合銲料於0.8×103A/cm2電流密度EDS mapping結果(a)陰極0天,(b)陰極5天,(c)陰極10天,(d)陰極20天 63
圖4 32 SAC305/Sn-56.8Bi-1.0Ag-0.2Cu複合銲料於1.0×103A/cm2電流密度EDS mapping結果(a)陰極0天,(b)陰極5天,(c)陰極10天,(d)陰極20天 63
圖4 33 0.8×103A/cm2電流密度於SB102銲料區域之陰極界面處Bi元素EDS mapping結果分佈圖(a) 0天,(b) 5天,(c) 10天,(d) 20天 64
圖4 34 1.0×103A/cm2電流密度於SB102銲料區域之陰極界面處Bi元素EDS mapping結果分佈圖(a) 5天,(b) 10天,(c) 20天 64
圖4 35 0.8×103A/cm2電流密度於SB102銲料區域之陽極界面處Bi元素EDS mapping結果分佈圖(a) 0天,(b) 5天,(c) 10天,(d) 20天 66
圖4 36 1.0×103A/cm2電流密度於SB102銲料區域之陽極界面處Bi元素EDS mapping結果分佈圖(a) 0天,(b) 5天,(c) 10天,(d) 20天 66
圖4 37 0.8×103A/cm2電流密度於SB102銲料區域之陽極界面處Bi元素EDS mapping結果分佈圖(a) 0天,(b) 5天,(c) 10天,(d) 20天 67
圖4 38 1.0×103A/cm2電流密度於SB102銲料區域之陽極界面處Bi元素EDS mapping結果分佈圖(a) 5天,(b) 10天,(c) 20天 67

表目錄
表4 1各參數條件下IMC厚度 44
表4 2 熱遷移EDS分析元素組成表 61
表4 3 電遷移試驗下陰極SB102銲料區域界面處EDS元素組成表 68
表4 4 電遷移試驗下陽極SB102銲料區域界面處EDS元素組成表 68
參考文獻 參考文獻與資料
[1] K. Campbell, J. Diffley, B. Flanagan, B. Morelli, B. O’Neil, and F. Sideco, "The 5G economy: How 5G technology will contribute to the global economy," IHS economics and IHS technology, vol. 4, no. 16, p. 1, 2017.
[2] Y. Li, G. Fu, B. Wan, Z. Wu, X. Yan, and W. Zhang, "A study on the effects of electrical and thermal stresses on void formation and migration lifetime of Sn3.0Ag0.5Cu solder joints," Soldering & Surface Mount Technology, vol. 34, no. 3, pp. 162-173, 2022, doi: 10.1108/SSMT-04-2021-0012.
[3] K.-N. Tu, "Reliability challenges in 3D IC packaging technology," Microelectronics Reliability, vol. 51, no. 3, pp. 517-523, 2011.
[4] https://intech-technologies.com/category/packaging-services/ (accessed 0228, 2024).
[5] J. W. Fowler, L. Mönch, and T. Ponsignon, "DISCRETE-EVENT SIMULATION FOR SEMICONDUCTOR WAFER FABRICATION FACILITIES: A TUTORIAL," International Journal of Industrial Engineering, vol. 22, no. 5, 2015.
[6] D. P. Seraphim, P. A. Engel, R. Lasky, and C.-Y. Li, "Principles of electronic packaging," 1989.
[7] R. R. Tummala, "Packaging: past, present and future," in 2005 6th International Conference on Electronic Packaging Technology, 2005: IEEE, pp. 3-7.
[8] P. T. Vianco, "Electronic packaging: Solder mounting technologies," Encyclopedia of Materials: Science and Technology, pp. 2705-2715, 2001.
[9] A. Donaldson, R. Aspandiar, and K. Doss, "Comparison of copper erosion at plated through-hole knees in motherboards using SAC305 and an SnCuNiGe alternative alloy for wave soldering and mini-pot rework," APEX, 2008.
[10] https://www.materialsnet.com.tw/DocView.aspx?id=51833 (accessed 0622, 2024).
[11] E. Suhir and R. Ghaffarian, "Flip-Chip (FC) and Fine-Pitch-Ball-Grid-Array (FPBGA) underfills for application in aerospace electronics—brief review," Aerospace, vol. 5, no. 3, p. 74, 2018.
[12] M. Wietstruck et al., "Al-Al Direct Bonding with Sub-µm Alignment Accuracy for Millimeter Wave SiGe BiCMOS Wafer Level Packaging and Heterogeneous Integration," in 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), 2019: IEEE, pp. 942-947.
[13] H. Wang, J. Ma, Y. Yang, M. Gong, and Q. Wang, "A Review of System-in-Package Technologies: Application and Reliability of Advanced Packaging," Micromachines, vol. 14, no. 6, p. 1149, 2023.
[14] Y.-F. Su, K.-N. Chiang, and S. Y. Liang, "Design and reliability assessment of novel 3D-IC packaging," Journal of Mechanics, vol. 33, no. 2, pp. 193-203, 2017.
[15] M. Abtew and G. Selvaduray, "Lead-free solders in microelectronics," Materials Science and Engineering: R: Reports, vol. 27, no. 5-6, pp. 95-141, 2000.
[16] Y. Liu and K. Tu, "Low melting point solders based on Sn, Bi, and In elements," Materials Today Advances, vol. 8, p. 100115, 2020.
[17] K. Shimizu, T. Nakanishi, K. Karasawa, K. Hashimoto, and K. Niwa, "Solder joint reliability of indium-alloy interconnection," Journal of electronic materials, vol. 24, pp. 39-45, 1995.
[18] P. Shang, Z. Liu, D. Li, and J. Shang, "Intermetallic compound identification and Kirkendall void formation in eutectic SnIn/Cu solder joint during solid-state aging," Philosophical magazine letters, vol. 91, no. 6, pp. 410-417, 2011.
[19] J. Seyyedi, "Thermal fatigue behaviour of low melting point solder joints," Soldering & Surface mount technology, vol. 5, no. 1, pp. 26-32, 1993.
[20] H. Zhang, Y. Liu, F. Sun, G. Ban, and J. Fan, "Effects of nano-copper particles on the properties of Sn58Bi composite solder pastes," Microelectronics International, vol. 34, no. 1, pp. 40-44, 2017.
[21] L. Shen, P. Septiwerdani, and Z. Chen, "Elastic modulus, hardness and creep performance of SnBi alloys using nanoindentation," Materials Science and Engineering: A, vol. 558, pp. 253-258, 2012.
[22] F. Wang, Y. Huang, Z. Zhang, and C. Yan, "Interfacial reaction and mechanical properties of Sn-Bi solder joints," Materials, vol. 10, no. 8, p. 920, 2017.
[23] F. Wang, H. Chen, Y. Huang, and C. Yan, "Interfacial behavior and joint strength of Sn–Bi solder with solid solution compositions," Journal of Materials Science: Materials in Electronics, vol. 29, pp. 11409-11420, 2018.
[24] P. Shang, Z. Liu, D. Li, and J. Shang, "Bi-induced voids at the Cu3Sn/Cu interface in eutectic SnBi/Cu solder joints," Scripta Materialia, vol. 58, no. 5, pp. 409-412, 2008.
[25] X. Wu, J. Wu, X. Wang, J. Yang, M. Xia, and B. Liu, "Effect of In addition on microstructure and mechanical properties of Sn–40Bi alloys," Journal of materials science, vol. 55, pp. 3092-3106, 2020.
[26] G. Ren and M. N. Collins, "Improved reliability and mechanical performance of Ag microalloyed Sn58Bi solder alloys," Metals, vol. 9, no. 4, p. 462, 2019.
[27] M. N. Collins et al., "Thermal fatigue and failure analysis of SnAgCu solder alloys with minor Pb additions," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, no. 10, pp. 1594-1600, 2011.
[28] X. Hu, T. Xu, L. M. Keer, Y. Li, and X. Jiang, "Microstructure evolution and shear fracture behavior of aged Sn3Ag0. 5Cu/Cu solder joints," Materials Science and Engineering: A, vol. 673, pp. 167-177, 2016.
[29] D. M. Jacobson and G. Humpston, "Principles of soldering," ASM International, 2004.
[30] R. Sayyadi and H. Naffakh-Moosavy, "The role of intermetallic compounds in controlling the microstructural, physical and mechanical properties of Cu-[Sn-Ag-Cu-Bi]-Cu solder joints," Scientific reports, vol. 9, no. 1, p. 8389, 2019.
[31] G.-y. Li and X.-q. Shi, "Effects of bismuth on growth of intermetallic compounds in Sn-Ag-Cu Pb-free solder joints," Transactions of Nonferrous Metals Society of China, vol. 16, pp. s739-s743, 2006.
[32] J. Nguyen, D. Geiger, D. Rooney, and D. Shangguan, "Solder joint characteristics and reliability of lead-free area array packages assembled at various tin–lead soldering process conditions," IEEE transactions on electronics packaging manufacturing, vol. 31, no. 3, pp. 227-239, 2008.
[33] M. Meilunas and P. Borgesen, "Effects of cycling parameters on the thermal fatigue life of mixed SnAgCu/SnPb solder joints," 2011.
[34] Q. Wen, X. Li, and G. Li, "Effect of Pb content on thermal fatigue life of mixed SnAgCu-SnPb solder joints," in 2016 17th International Conference on Electronic Packaging Technology (ICEPT), 2016: IEEE, pp. 1369-1372.
[35] P. Borgesen and M. Meilunas, "Effects of solder paste volume and reflow profiles on the thermal cycling performance of mixed SnAgCu/SnPb solder joints," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, no. 8, pp. 1205-1213, 2011.
[36] H. Chen, L. Wang, J. Han, M. Li, and H. Liu, "Microstructure, orientation and damage evolution in SnPb, SnAgCu, and mixed solder interconnects under thermomechanical stress," Microelectronic Engineering, vol. 96, pp. 82-91, 2012.
[37] J. Lee et al., "Risk Assessment of Hybrid Low Temperature Solder on Surface Mount Technology and Board Level Reliability for BGA Packages," in 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), 2023: IEEE, pp. 656-660.
[38] S. Liu, J. Ren, and M. Huang, "Microstructural evolution and thermal fatigue reliability of Sn-Ag-Cu/Sn-Bi-Ag hybrid BGA solder joints assembled by low-temperature soldering," in 2023 24th International Conference on Electronic Packaging Technology (ICEPT), 2023: IEEE, pp. 1-4.
[39] K.-N. Tu, "Recent advances on electromigration in very-large-scale-integration of interconnects," Journal of applied physics, vol. 94, no. 9, pp. 5451-5473, 2003.
[40] H. Huntington and A. Grone, "Current-induced marker motion in gold wires," Journal of Physics and Chemistry of Solids, vol. 20, no. 1-2, pp. 76-87, 1961.
[41] Y. Li and D. Goyal, 3D Microelectronic Packaging: From Architectures to Applications. Springer Nature, 2020.
[42] C. Liu, C. Chen, C. Liao, and K.-N. Tu, "Microstructure-electromigration correlation in a thin stripe of eutectic SnPb solder stressed between Cu electrodes," Applied Physics Letters, vol. 75, no. 1, pp. 58-60, 1999.
[43] T. Lee, K.-N. Tu, S. Kuo, and D. Frear, "Electromigration of eutectic SnPb solder interconnects for flip chip technology," Journal of Applied Physics, vol. 89, no. 6, pp. 3189-3194, 2001.
[44] J. P. Daghfal and J. Shang, "Current-induced phase partitioning in eutectic indium-tin Pb-free solder interconnect," Journal of electronic materials, vol. 36, pp. 1372-1377, 2007.
[45] Y. Li, F. Wu, and Y. Chan, "Electromigration in eutectic In-48Sn ball grid array (BGA) solder interconnections with Au/Ni/Cu pads," Journal of Materials Science: Materials in Electronics, vol. 26, pp. 8522-8533, 2015.
[46] K. N. Chiang, C. C. Lee, C. C. Lee, and K. M. Chen, "Current crowding-induced electromigration in SnAg3. 0Cu0. 5 microbumps," Applied Physics Letters, vol. 88, no. 7, 2006.
[47] H. Gan and K.-N. Tu, "Polarity effect of electromigration on kinetics of intermetallic compound formation in Pb-free solder V-groove samples," Journal of applied physics, vol. 97, no. 6, 2005.
[48] F. Wang, L. Liu, D. Li, and M. Wu, "Electromigration behaviors in Sn–58Bi solder joints under different current densities and temperatures," Journal of Materials Science: Materials in Electronics, vol. 29, pp. 21157-21169, 2018.
[49] C.-M. Chen, L.-T. Chen, and Y.-S. Lin, "Electromigration-induced Bi segregation in eutectic SnBi solder joint," Journal of electronic materials, vol. 36, pp. 168-172, 2007.
[50] Y.-Y. Lai, J.-L. Chao, C.-J. Hsu, C.-M. Wang, and A. T. Wu, "Hybrid Solder Joint for Low-Temperature Bonding Application," Journal of Electronic Materials, vol. 52, no. 2, pp. 782-791, 2023.
[51] B. Chao, S.-H. Chae, X. Zhang, K.-H. Lu, J. Im, and P. S. Ho, "Investigation of diffusion and electromigration parameters for Cu–Sn intermetallic compounds in Pb-free solders using simulated annealing," Acta Materialia, vol. 55, no. 8, pp. 2805-2814, 2007.
[52] A. M. Delhaise and D. D. Perovic, "Study of solid-state diffusion of Bi in polycrystalline Sn using electron probe microanalysis," Journal of electronic materials, vol. 47, pp. 2057-2065, 2018.
[53] X. Gu and Y. C. Chan, "Electromigration in line-type Cu/Sn-Bi/Cu solder joints," Journal of electronic materials, vol. 37, pp. 1721-1726, 2008.
[54] "The Materials Project." https://legacy.materialsproject.org/ (accessed 0701, 2024).
指導教授 吳子嘉(Albert T. Wu) 審核日期 2024-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明