博碩士論文 111223071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.149.27.7
姓名 郭蕎菱(Chiao-Ling Kuo)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用機械力學法合成中空酵素金屬有機骨架複合材料之研究
(Encapsulation of Biocatalysts in Hollow Metal-Organic Frameworks via Mechanochemical Approach)
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-9-30以後開放)
摘要(中) 本研究旨在解決酵素固定化在金屬有機骨架材料 (MOFs) 中的相互作用問題。實驗室於 2015 年開發的原位創新水相合成法 (de novo mild water-based) 雖成功封裝了酵素,但酵素與 MOF 之間的相互作用會影響酵素活性。雖然進一步開發出中空材料合成法 (Hollow MOFs, HMOFs) 以改善材料與酵素作用問題。然而,製備中空材料蝕刻過程的環境時間與釋放物質仍對酵素產生影響。所以如何為進一步優化蝕刻條件,讓酵素盡量保有原來活性狀態是一個重要課題。
本研究選擇了不同材料製備中空結構,並結合實驗室於 2023 年開發的球磨法,是一種超快速 (10 秒)、環境友善且產量高 (約 80%) 的合成方法。利用 Catalase (CAT)、UiO-66 (Universitetet i Oslo-66) 和 ZIF-90 (Zeolitic Imidazole Framework-90) 成功合成分級(Hierarchical)材料 CAT-on-UiO-66@ZIF-90。透過材料對蝕刻緩衝液的耐受性差異,選擇性地蝕刻內層材料 UiO-66,並保留了穩定的外層材料 ZIF-90,成功形成中空材料 CAT@HZIF-90。
透過表徵量測結果證實了中空結構的成功合成。同時,活性測試顯示中空材料內酵素的自由度提升,並表現出顯著活性提升,其活性常數從實心材料的 3.5 × 10-2 s-1 提升至空心材料的 7.2 × 10-2 s-1,顯示活性增強了兩倍。與 HZIF-8 相比,其活性為1.1 × 10-2 s-1,顯示 HZIF-90 的活性增強了七倍。
最後,為了未來應用上,能夠結合螢光光譜與中空材料,以研究酵素結構展開與重新摺疊過程,觀察酵素結構的動態變化。探討了中空材料中酵素結構的展開及重新摺疊。用尿素處理並隨後去除後,酵素的結構確實存在重新摺疊的現象。顯示HZIF-90系統在穩定酵素結構方面具有顯著優勢,為未來酵素固定化提供了新的選擇。
摘要(英) The aim of this study is to address the interaction issues of enzyme immobilization within metal-organic frameworks (MOFs). Although the innovative in-situ synthesis method (de novo mild water-based) developed by the laboratory in 2015 successfully encapsulated enzymes, the interactions between the enzyme and the MOF affected enzyme activity. To improve the interaction between materials and enzymes, hollow material synthesis methods (Hollow MOFs, HMOFs) were developed. However, the etching process used to prepare hollow materials, along with the environmental conditions and released substances like MOF linkers, still impacted enzyme activity. Therefore, optimizing etching conditions to maintain the enzyme’s original activity is a critical issue.
In this study, different MOF materials were selected to prepare hollow structures, combined with the ball milling method developed by our laboratory in 2023. This method is ultra-fast (10 seconds), environmentally friendly, and high-yield (about 80%). Catalase (CAT), UiO-66 (Universitetet i Oslo-66), and ZIF-90 (Zeolitic Imidazole Framework-90) were successfully used to synthesize a hierarchical MOF material, CAT-on-UiO-66@ZIF-90. By utilizing the differential resistance of the materials in buffer to the etching solution, the inner layer material, UiO-66, was selectively etched while the stable outer layer material, ZIF-90, was retained. This process successfully formed the hollow material CAT@HZIF-90.
Characterization measurements confirmed the successful synthesis of the hollow structure. Activity tests showed that the enzyme’s freedom within the hollow material was enhanced, resulting in a significant increase in activity. The activity constant increased from 3.5 × 10-2 s-1 for the solid material to 7.2 × 10-2 s-1 for the hollow material, indicating a twofold increase in activity. Compared to HZIF-8, which had an activity of 1.1 × 10-2 s-1, HZIF-90 demonstrated a sevenfold increase in activity. Subsequent immersion of the material in a proteinase-K solution further confirmed that the enzyme was primarily encapsulated within the MOF.
Finally, for future applications, the combination of fluorescence spectroscopy and hollow materials could be used to study enzyme unfolding and refolding processes, observing the dynamic changes in enzyme structure. The unfolding and refolding of the enzyme structure within the hollow material were explored. After treatment with urea and subsequent removal, the refolding of the enzyme structure was evident. This demonstrates that the HZIF-90 system has significant advantages in stabilizing enzyme structures, providing a new option for future enzyme immobilization.
關鍵字(中) ★ 有機金屬骨架材料 關鍵字(英) ★ MOF
論文目次 中文摘要 i
Abstract iii
目錄 vi
圖目錄 ix
表目錄 xii
1 第一章 緒論 1
1-1 金屬有機骨架材料 1
1-2 類沸石咪唑骨架材料 4
1-3 UiO-66 7
1-4 機械力化學法 8
1-5 酵素固定化 (Immobilized enzyme) 9
1-6 過氧化氫酶 10
1-7 研究動機與目的 12
2 第二章 實驗部分 15
2-1 實驗藥品與設備 15
2-1-1 實驗藥品 15
2-1-2 實驗使用儀器 18
2-1-3 實驗鑑定儀器 19
2-2 實驗儀器與方法 20
2-2-1 中量快速球磨機 (Mixer Mill) 20
2-2-2 X射線粉末繞射儀 (Powder X-ray Diffractometer;PXRD) 23
2-2-3 紫外光/可見光分光光譜儀 (UV/VIS Spectrophotometer) 26
2-2-4 場發掃描式電子顯微鏡 (Field-emission Scanning Electron Microscope, FE-SEM) 27
2-2-5 穿透式電子顯微鏡 (Transmission Electron Microscope; TEM) 29
2-2-6 界面電位分析儀 (Zeta Potential Analyzer) 30
2-2-7 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (SDS-PAGE) 32
2-3 實驗步驟 34
2-3-1 溶劑熱法合成 UiO-66 (Size : ~ 150 nm) 34
2-3-2 機械力球磨法合成中空類沸石咪骨架材料-包覆過氧化氫酶 (CAT@HZIF-90) 35
2-4 偵測蛋白質濃度 (Bradford Assay) 37
2-5 偵測過氧化氫水溶液之濃度 (Ferrous Oxidation-Xylenol orange assay;FOX assay) 39
3 第三章 結果與討論 41
3-1 MOF@MOF 材料之選擇 41
3-2 CAT-on-UiO-66@ZIF-90之合成條件探討 43
3-3 CAT@HZIF-90之蝕刻條件探討 47
3-4 CAT@HZIF-90 之中空材料結構鑑定與活性實驗 51
3-4-1 CAT-on-UiO-66@ZIF-90 之 X 射線粉末繞射圖譜鑑定 51
3-4-2 CAT@HZIF-90 之 X 射線粉末繞射圖譜鑑定 52
3-4-3 CAT@HZIF-90之掃描式電子顯微鏡影像分析 53
3-4-4 CAT@HZIF-90之穿透式電子顯微鏡影像分析 54
3-4-5 CAT@HZIF-90之膠體電泳實驗 55
3-4-6 CAT@HZIF-90中空材料之活性測試及比較 56
3-4-7 CAT@HZIF-90浸泡蛋白水解酶-K活性表現之影響 58
3-4-8 HZIF-90與HZIF-8系統活性比較 59
3-4-9 CAT@HZIF-90之酵素結構重新摺疊能力測定 60
4 第四章 結論及未來展望 61
參考文獻 63
參考文獻 (1) Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714.
(2) Liu, K. Fluorescent Probes Based on Metal and Aggregation-Induced Emission Organic Molecule Complexes for Bioimaging and Sensing Applications. Applied Science and Innovative Research 2023, 7 (2), 114.
(3) Hoskins, B. F.; Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American Chemical Society 1990, 112 (4), 1546-1554.
(4) Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Paik Suh, M.; Reedijk, J. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). 2013, 85 (8), 1715-1724.
(5) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W. Hydrogen storage in metal-organic frameworks. Chem Rev 2012, 112 (2), 782-835.
(6) Li, B.; Wen, H.-M.; Zhou, W.; Chen, B. Porous Metal–Organic Frameworks for Gas Storage and Separation: What, How, and Why? The Journal of Physical Chemistry Letters 2014, 5 (20), 3468-3479.
(7) Zhao, Z.; Ma, X.; Kasik, A.; Li, Z.; Lin, Y. S. Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes. Industrial & Engineering Chemistry Research 2013, 52 (3), 1102-1108.
(8) Li, S.; Chen, Y.; Pei, X.; Zhang, S.; Feng, X.; Zhou, J.; Wang, B. Water Purification: Adsorption over Metal-Organic Frameworks. Chinese Journal of Chemistry 2016, 34 (2), 175-185.
(9) Dhakshinamoorthy, A.; Li, Z.; Garcia, H. Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews 2018, 47 (22), 8134-8172, 10.1039/C8CS00256H.
(10) Huang, Y.-B.; Liang, J.; Wang, X.-S.; Cao, R. Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews 2017, 46 (1), 126-157, 10.1039/C6CS00250A.
(11) Yang, Q.; Xu, Q.; Jiang, H.-L. Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews 2017, 46 (15), 4774-4808, 10.1039/C6CS00724D.
(12) Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal–Organic Frameworks in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268.
(13) Zhou, J.; Wang, B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chemical Society Reviews 2017, 46 (22), 6927-6945, 10.1039/C7CS00283A.
(14) Li, X.; Yang, X.; Xue, H.; Pang, H.; Xu, Q. Metal–organic frameworks as a platform for clean energy applications. EnergyChem 2020, 2 (2), 100027.
(15) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem Rev 2012, 112 (2), 1105-1125.
(16) Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969.
(17) Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64 (36), 8553-8557.
(18) Rabenau, A. The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
(19) Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J. Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330, 10.1039/C0DT00708K.
(20) Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E. Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
(21) Pichon, A.; Lazuen-Garay, A.; James, S. L. Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214, 10.1039/B513750K.
(22) Qiu, L. G.; Li, Z. Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem Commun (Camb) 2008, (31), 3642-3644.
(23) Zhang, Z.; Chen, Y.; Xu, X.; Zhang, J.; Xiang, G.; He, W.; Wang, X. Well-defined metal-organic framework hollow nanocages. Angew Chem Int Ed Engl 2014, 53 (2), 429-433.
(24) Li, A.-L.; Ke, F.; Qiu, L.-G.; Jiang, X.; Wang, Y.-M.; Tian, X.-Y. Controllable synthesis of metal–organic framework hollow nanospheres by a versatile step-by-step assembly strategy. CrystEngComm 2013, 15 (18), 3554-3559, 10.1039/C2CE26636A.
(25) Kim, H.; Lah, M. S. Templated and template-free fabrication strategies for zero-dimensional hollow MOF superstructures. Dalton Transactions 2017, 46 (19), 6146-6158, 10.1039/C7DT00389G.
(26) Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research 2010, 43 (1), 58-67.
(27) Wu, H.; Zhou, W.; Yildirim, T. Hydrogen storage in a prototypical zeolitic imidazolate framework-8. J Am Chem Soc 2007, 129 (17), 5314-5315.
(28) Pan, Y.; Lai, Z. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chemical Communications 2011, 47 (37), 10275-10277, 10.1039/C1CC14051E.
(29) Kuo, C.-H.; Tang, Y.; Chou, L.-Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C.-K. Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. Journal of the American Chemical Society 2012, 134 (35), 14345-14348.
(30) Morabito, J. V.; Chou, L.-Y.; Li, Z.; Manna, C. M.; Petroff, C. A.; Kyada, R. J.; Palomba, J. M.; Byers, J. A.; Tsung, C.-K. Molecular Encapsulation beyond the Aperture Size Limit through Dissociative Linker Exchange in Metal–Organic Framework Crystals. Journal of the American Chemical Society 2014, 136 (36), 12540-12543.
(31) Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed Engl 2006, 45 (10), 1557-1559.
(32) Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M. Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130 (38), 12626-12627.
(33) Bahos, F. A.; Sainz-Vidal, A.; Sánchez-Pérez, C.; Saniger, J. M.; Gràcia, I.; Saniger-Alba, M. M.; Matatagui, D. ZIF Nanocrystal-Based Surface Acoustic Wave (SAW) Electronic Nose to Detect Diabetes in Human Breath. Biosensors 2019, 9 (1), 4.
(34) Lei, Y.; Zhang, G.; Zhang, Q.; Yu, L.; Li, H.; Yu, H.; He, Y. Visualization of gaseous iodine adsorption on single zeolitic imidazolate framework-90 particles. Nature Communications 2021, 12 (1), 4483.
(35) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society 2008, 130 (42), 13850-13851.
(36) Yitong, H.; Min, L.; Keyan, L.; Yi, Z.; Guoliang, Z.; Zongchao, Z.; Xinwen, G. Preparation and Application of High Stability Metal-Organic Framework UiO-66. Chinese Journal of Applied Chemistry 2016, 33, 367-378.
(37) Winarta, J.; Shan, B.; McIntyre, S. M.; Ye, L.; Wang, C.; Liu, J.; Mu, B. A Decade of UiO-66 Research: A Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal–Organic Framework. Crystal Growth & Design 2020, 20 (2), 1347-1362.
(38) Ying, P.; Yu, J.; Su, W. Liquid-Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals. Advanced Synthesis & Catalysis 2021, 363 (5), 1246-1271.
(39) Homaei, A. A.; Sariri, R.; Vianello, F.; Stevanato, R. Enzyme immobilization: an update. J Chem Biol 2013, 6 (4), 185-205.
(40) Razzaghi, M.; Homaei, A.; Vianello, F.; Azad, T.; Sharma, T.; Nadda, A. K.; Stevanato, R.; Bilal, M.; Iqbal, H. M. N. Industrial applications of immobilized nano-biocatalysts. Bioprocess Biosyst Eng 2022, 45 (2), 237-256.
(41) Datta, S.; Christena, L. R.; Rajaram, Y. R. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 2013, 3 (1), 1-9.
(42) Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H. C. Enzyme-MOF (metal-organic framework) composites. Chem Soc Rev 2017, 46 (11), 3386-3401.
(43) Halliwell, B.; Gutteridge, J. M. The definition and measurement of antioxidants in biological systems. Free Radic Biol Med 1995, 18 (1), 125-126.
(44) Fita, I.; Rossmann, M. G. The NADPH binding site on beef liver catalase. Proceedings of the National Academy of Sciences 1985, 82 (6), 1604-1608.
(45) Chance, B. EFFECT OF pH UPON THE REACTION KINETICS OF THE ENZYME-SUBSTRATE COMPOUNDS OF CATALASE. Journal of Biological Chemistry 1952, 194 (2), 471-481.
(46) Chen, S.-Y.; Lo, W.-S.; Huang, Y.-D.; Si, X.; Liao, F.-S.; Lin, S.-W.; Williams, B. P.; Sun, T.-Q.; Lin, H.-W.; An, Y.; et al. Probing Interactions between Metal–Organic Frameworks and Freestanding Enzymes in a Hollow Structure. Nano Letters 2020, 20 (9), 6630-6635.
(47) Liao, F.-S.; Lo, W.-S.; Hsu, Y.-S.; Wu, C.-C.; Wang, S.-C.; Shieh, F.-K.; Morabito, J. V.; Chou, L.-Y.; Wu, K. C. W.; Tsung, C.-K. Shielding against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a de Novo Approach. Journal of the American Chemical Society 2017, 139 (19), 6530-6533.
(48) Das, A.; Mukhopadhyay, C. Urea-Mediated Protein Denaturation: A Consensus View. The Journal of Physical Chemistry B 2009, 113 (38), 12816-12824.
(49) Lam, P. K.; Vo, T. H.; Chen, J.-H.; Lin, S.-W.; Kuo, C.-L.; Liao, J.-J.; Chen, K.-Y.; Huang, S.-R.; Li, D.; Chang, Y.-H.; et al. A green and ultrafast one-pot mechanochemical approach for efficient biocatalyst encapsulation in MOFs: insights from experiments and computation. Journal of Materials Chemistry A 2023, 11 (45), 24678-24685, 10.1039/D3TA05228A.
(50) Liang, W.; Xu, H.; Carraro, F.; Maddigan, N. K.; Li, Q.; Bell, S. G.; Huang, D. M.; Tarzia, A.; Solomon, M. B.; Amenitsch, H.; et al. Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal–Organic Frameworks. Journal of the American Chemical Society 2019, 141 (6), 2348-2355.
(51) Zhao, X.; Shaw, L. Modeling and Analysis of High-Energy Ball Milling Through Attritors. Metallurgical and Materials Transactions A 2017, 48 (9), 4324-4333.
(52) Daraio, D.; Villoria, J.; Ingram, A.; Alexiadis, A.; Stitt, E. H.; Munnoch, A. L.; Marigo, M. Using Discrete Element method (DEM) simulations to reveal the differences in the γ-Al2O3 to α-Al2O3 mechanically induced phase transformation between a planetary ball mill and an attritor mill. Minerals Engineering 2020, 155, 106374.
(53) Hrininh, K.; Hordeichuk, R.; Gubenia, O. Comparative analysis of equipment and research the superfine grinding process of titanium dioxide and quinacridone red suspensions in the bead mill. Ukrainian Journal of Food Science 2018, 6, 82-94.
(54) Baláž, P. Mechanochemistry in Nanoscience and Minerals Engineering; 2008.
(55) Guan, S.; Hao, L.; Lu, Y. A Review on the Modification Strategies of TiO2 Photocatalyst Coatings. 2021, 2, 30-50.
(56) Lu, Y.; Guan, S.; Hao, L.; Yoshida, H. Review on the Photocatalyst Coatings of TiO2: Fabrication by Mechanical Coating Technique and Its Application. Coatings 2015, 5 (3), 425-464.
(57) Bragg, W. H.; Bragg, W. L. The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1913, 88 (605), 428-438.
(58) Kudryavtsev, A. V.; Guelpa, V.; Rougeot, P.; Lehmann, O.; Dembélé, S.; Sturm, P.; Le Fort-Piat, N. Autocalibration method for scanning electron microscope using affine camera model. Machine Vision and Applications 2020, 31 (7), 69.
(59) Vinothini, K.; Rajan, M. Chapter 9 - Mechanism for the Nano-Based Drug Delivery System. In Characterization and Biology of Nanomaterials for Drug Delivery, Mohapatra, S. S., Ranjan, S., Dasgupta, N., Mishra, R. K., Thomas, S. Eds.; Elsevier, 2019; pp 219-263.
(60) Kaszuba, M.; Corbett, J.; Watson, F. M.; Jones, A. High-concentration zeta potential measurements using light-scattering techniques. Philos Trans A Math Phys Eng Sci 2010, 368 (1927), 4439-4451.
(61) He, Y.; Tang, Y. P.; Ma, D.; Chung, T.-S. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal. Journal of Membrane Science 2017, 541, 262-270.
(62) Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72, 248-254.
(63) de Moreno, M. R.; Smith, J. F.; Smith, R. V. Mechanism Studies of Coomassie Blue and Silver Staining of Proteins. Journal of Pharmaceutical Sciences 1986, 75 (9), 907-911.
(64) Jiang, Z. Y.; Woollard, A. C.; Wolff, S. P. Hydrogen peroxide production during experimental protein glycation. FEBS Lett 1990, 268 (1), 69-71.
(65) Chen, G.; Kou, X.; Huang, S.; Tong, L.; Shen, Y.; Zhu, W.; Zhu, F.; Ouyang, G. Modulating the Biofunctionality of Metal–Organic-Framework-Encapsulated Enzymes through Controllable Embedding Patterns. Angewandte Chemie International Edition 2020, 59 (7), 2867-2874.
(66) Chen, G.; Huang, S.; Kou, X.; Zhu, F.; Ouyang, G. Embedding Functional Biomacromolecules within Peptide-Directed Metal-Organic Framework (MOF) Nanoarchitectures Enables Activity Enhancement. Angewandte Chemie (International ed. in English) 2020, 59 (33), 13947-13954.
(67) Maddigan, N. K.; Tarzia, A.; Huang, D. M.; Sumby, C. J.; Bell, S. G.; Falcaro, P.; Doonan, C. J. Protein surface functionalisation as a general strategy for facilitating biomimetic mineralisation of ZIF-8. Chemical Science 2018, 9 (18), 4217-4223, 10.1039/C8SC00825F.
(68) Tong, L.; Huang, S.; Shen, Y.; Liu, S.; Ma, X.; Zhu, F.; Chen, G.; Ouyang, G. Atomically unveiling the structure-activity relationship of biomacromolecule-metal-organic frameworks symbiotic crystal. Nature Communications 2022, 13 (1), 951.
(69) Kumar, A.; Dixit, C. K. 3 - Methods for characterization of nanoparticles. In Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, Nimesh, S., Chandra, R., Gupta, N. Eds.; Woodhead Publishing, 2017; pp 43-58.
指導教授 謝發坤 審核日期 2024-9-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明