參考文獻 |
1. Sloan Jr, E. D. & Koh, C. A. Clathrate hydrates of natural gases (CRC Press, 2007).
2. Davy, H. The Bakerian Lecture. On some of the combinations of oxymuriatic gas and oxygen, and
on the chemical relations of these principles, to inflammable bodies in Abstracts of the Papers
Printed in the Philosophical Transactions of the Royal Society of London (1832), 385–388.
3. Hammerschmidt, E. Formation of gas hydrates in natural gas transmission lines. Industrial & Engineering
Chemistry 26, 851–855 (1934).
4. Sloan, E. D. Natural gas hydrates in flow assurance (Gulf Professional Publishing, 2010).
5. Lu, H. et al. Complex gas hydrate from the Cascadia margin. Nature 445, 303–306 (2007).
6. Hu, Y. H. & Ruckenstein, E. Clathrate hydrogen hydrate—a promising material for hydrogen storage.
Angewandte Chemie International Edition 45, 2011–2013 (2006).
7. Yi, L. et al. Molecular Dynamics Simulation Study on the Growth of Structure II Nitrogen Hydrate.
The Journal of Physical Chemistry B 123, 9180–9186 (2019).
8. Sum, A. K., Burruss, R. C. & Sloan, E. D. Measurement of clathrate hydrates via Raman spectroscopy.
The Journal of Physical Chemistry B 101, 7371–7377 (1997).
9. Ripmeester, J. & Ratcliffe, C. On the contributions of NMR spectroscopy to clathrate science. Journal
of Structural Chemistry 40, 654–662 (1999).
10. Udachin, K. A., Ratcliffe, C. I. & Ripmeester, J. A. Structure, composition, and thermal expansion
of CO2 hydrate from single crystal X-ray diffraction measurements. The Journal of Physical
Chemistry B 105, 4200–4204 (2001).
11. Park, K.-n. et al. A new apparatus for seawater desalination by gas hydrate process and removal
characteristics of dissolved minerals (Na+, Mg2+, Ca2+, K+, B3+). Desalination 274, 91–96 (2011).
12. Florusse, L. J. et al. Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate.
Science 306, 469–471 (2004).
13. Saji, A. et al. Fixation of carbon dioxide by clathrate-hydrate. Energy Conversion and Management
33, 643–649 (1992).
14. Eslamimanesh, A., Mohammadi, A. H., Richon, D., Naidoo, P. & Ramjugernath, D. Application
of gas hydrate formation in separation processes: A review of experimental studies. The Journal of
Chemical Thermodynamics 46, 62–71 (2012).
15. Bhattacharjee, G., Kumar, A., Sakpal, T. & Kumar, R. Carbon dioxide sequestration: influence of
porous media on hydrate formation kinetics. American Chemical Society Sustainable Chemistry &
Engineering 3, 1205–1214 (2015).
16. Goel, N. In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge
and issues. Journal of Petroleum Science and Engineering 51, 169–184 (2006).
17. Mao, W. L. et al. Hydrogen clusters in clathrate hydrate. Science 297, 2247–2249 (2002).
18. Shin, K. et al. Tetra-n-butylammonium borohydride semiclathrate: A hybrid material for hydrogen
storage. The Journal of Physical Chemistry A 113, 6415–6418 (2009).
19. Sugahara, T. et al. Large-cage occupancies of hydrogen in binary clathrate hydrates dependent on
pressures and guest concentrations. The Journal of Physical Chemistry C 114, 15218–15222 (2010).
20. Majid, A. A., Worley, J. & Koh, C. A. Thermodynamic and kinetic promoters for gas hydrate
technological applications. Energy & Fuels 35, 19288–19301 (2021).
21. Claypool, G. E. & Kaplan, I. R. The origin and distribution of methane in marine sediments. Natural
Gases in Marine Sediments, 99–139 (1974).
22. Meyer, R. F. Long-term energy resources. Volume III tech. rep. (Pitman, Boston, MA, 1981).
23. Borowski, W. S., Paull, C. K. & Ussler III, W. Marine pore-water sulfate profiles indicate in situ
methane flux from underlying gas hydrate. Geology 24, 655–658 (1996).
24. Xu, W. & Ruppel, C. Predicting the occurrence, distribution, and evolution of methane gas hydrate
in porous marine sediments. Journal of Geophysical Research: Solid Earth 104, 5081–5095 (1999).
25. Makogon, Y. F. Hydrates of hydrocarbons (1997).
26. Clennell, M. B., Hovland, M., Booth, J. S., Henry, P. & Winters, W. J. Formation of natural gas
hydrates in marine sediments: 1. Conceptual model of gas hydrate growth conditioned by host
sediment properties. Journal of Geophysical Research: Solid Earth 104, 22985–23003 (1999).
27. Moridis, G. J. et al. Toward production from gas hydrates: current status, assessment of resources,
and simulation-based evaluation of technology and potential. SPE Reservoir Evaluation & Engineering
12, 745–771 (2009).
28. Ginsburg, G., Soloviev, V., Matveeva, T. & Andreeva, I. 24. Sediment grain-size control on gas
hydrate presence, sites 994, 995 and 997 in Proceedings of the Ocean Drilling Program, Scientific
Results, College Station, TX (2000).
29. Ruppel, C. Permafrost-associated gas hydrate: Is it really approximately 1% of the global system?
Journal of Chemical & Engineering Data 60, 429–436 (2015).
30. Lachenbruch, A. H., Sass, J., Marshall, B. & Moses Jr, T. Permafrost, heat flow, and the geothermal
regime at Prudhoe Bay, Alaska. Journal of Geophysical Research: Solid Earth 87, 9301–9316
(1982).
31. Rachold, V. et al. Nearshore Arctic subsea permafrost in transition. Eos, Transactions American
Geophysical Union 88, 149–150 (2007).
32. Judge, A. & Majorowicz, J. Geothermal conditions for gas hydrate stability in the Beaufort-Mackenzie
area: the global change aspect. Palaeogeography, Palaeoclimatology, Palaeoecology 98, 251–263
(1992).
33. Boswell, R. & Collett, T. S. Current perspectives on gas hydrate resources. Energy & Environmental
Science 4, 1206–1215 (2011).
34. Archer, D., Buffett, B. & Brovkin, V. Ocean methane hydrates as a slow tipping point in the global
carbon cycle. Proceedings of the National Academy of Sciences 106, 20596–20601 (2009).
35. Max, M. D. & Johnson, A. H. Diagenetic methane hydrate formation in permafrost: A new gas
play? in OTC Arctic Technology Conference (2011).
36. Pinero, E., Marquardt, M., Hensen, C., Haeckel, M. & Wallmann, K. Estimation of the global inventory
of methane hydrates in marine sediments using transfer functions. Biogeosciences 10, 959–
975 (2013).
37. Koh, C. A., Sloan, E. D., Sum, A. K. & Wu, D. T. Fundamentals and applications of gas hydrates.
Annual Review of Chemical and Biomolecular Engineering 2, 237–257 (2011).
38. Holder, G., Angert, P. F., John, V. & Yen, S. A thermodynamic evaluation of thermal recovery of
gas from hydrates in the earth (includes associated papers 11863 and 11924). Journal of Petroleum
Technology 34, 1127–1132 (1982).
39. Cranganu, C. In-situ thermal stimulation of gas hydrates. Journal of Petroleum Science and Engineering
65, 76–80 (2009).
40. Song, Y. et al. Evaluation of gas production from methane hydrates using depressurization, thermal
stimulation and combined methods. Applied Energy 145, 265–277 (2015).
41. Wang, B. et al. Evaluation of thermal stimulation on gas production from depressurized methane
hydrate deposits. Applied Energy 227, 710–718 (2018).
42. Ohgaki, K., Takano, K., Sangawa, H., Matsubara, T. & Nakano, S. Methane exploitation by carbon
dioxide from gas hydrates—phase equilibria for CO2-CH4 mixed hydrate system—. Journal of
Chemical Engineering of Japan 29, 478–483 (1996).
43. Brewer, P. G., Orr, F. M., Friederich, G., Kvenvolden, K. A. & Orange, D. L. Gas hydrate formation
in the deep sea: In situ experiments with controlled release of methane, natural gas, and carbon
dioxide. Energy & Fuels 12, 183–188 (1998).
44. Yezdimer, E. M., Cummings, P. T. & Chialvo, A. A. Determination of the Gibbs free energy of gas
replacement in SI clathrate hydrates by molecular simulation. The Journal of Physical Chemistry
A 106, 7982–7987 (2002).
45. Dornan, P., Alavi, S. & Woo, T. Free energies of carbon dioxide sequestration and methane recovery
in clathrate hydrates. The Journal of Chemical Physics 127 (2007).
46. Lee, H., Seo, Y., Seo, Y.-T., Moudrakovski, I. L. & Ripmeester, J. A. Recovering methane from
solid methane hydrate with carbon dioxide. Angewandte Chemie 115, 5202–5205 (2003).
47. Yuan, Q. et al. Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a
three-dimensional middle-size reactor. Energy 40, 47–58 (2012).
48. Xie, Y. et al. Replacement in CH4-CO2 hydrate below freezing point based on abnormal selfpreservation
differences of CH4 hydrate. Chemical Engineering Journal 403, 126283 (2021).
49. Cha, M. et al. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture
using in situ NMR spectroscopy. Environmental Science & Technology 49, 1964–1971 (2015).
50. Hendriks, C., Blok, K. & Turkenburg, W. The recovery of carbon dioxide from power plants. Climate
and Energy: The Feasibility of Controlling CO2 Emissions, 125–142 (1989).
51. Park, Y. et al. Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates.
Proceedings of the National Academy of Sciences 103, 12690–12694 (2006).
52. Shin, K. et al. Swapping phenomena occurring in deep-sea gas hydrates. Energy & Fuels 22, 3160–
3163 (2008).
53. Matsui, H., Jia, J., Tsuji, T., Liang, Y. & Masuda, Y. Microsecond simulation study on the replacement
of methane in methane hydrate by carbon dioxide, nitrogen, and carbon dioxide–nitrogen
mixtures. Fuel 263, 116640 (2020).
54. Schoderbek, D., Martin, K. L., Howard, J., Silpngarmlert, S. & Hester, K. North slope hydrate
fieldtrial: CO2/CH4 exchange in OTC Arctic Technology Conference (2012), OTC–23725.
55. Lim, D. et al. Thermodynamic stability and guest distribution of CH4/N2/CO2 mixed hydrates for
methane hydrate production using N2/CO2 injection. The Journal of Chemical Thermodynamics
106, 16–21 (2017).
56. Koh, C. A., Wisbey, R. P., Wu, X., Westacott, R. E. & Soper, A. K. Water ordering around methane
during hydrate formation. The Journal of Chemical Physics 113, 6390–6397 (2000).
57. Báez, L. A. & Clancy, P. Computer simulation of the crystal growth and dissolution of natural gas
hydrates a. Annals of the New York Academy of SCiences 715, 177–186 (1994).
58. Radhakrishnan, R. & Trout, B. L. A new approach for studying nucleation phenomena using molecular
simulations: Application to CO2 hydrate clathrates. The Journal of Chemical Physics 117,
1786–1796 (2002).
59. Moon, C., Taylor, P. C. & Rodger, P. M. Molecular dynamics study of gas hydrate formation.
Journal of the American Chemical Society 125, 4706–4707 (2003).
60. Anderson, B. J., Tester, J. W., Borghi, G. P. & Trout, B. L. Properties of inhibitors of methane
hydrate formation via molecular dynamics simulations. Journal of the American Chemical Society
127, 17852–17862 (2005).
61. English, N. J., Johnson, J. & Taylor, C. E. Molecular-dynamics simulations of methane hydrate
dissociation. The Journal of Chemical Physics 123 (2005).
62. Bai, D., Chen, G., Zhang, X. & Wang, W. Microsecond molecular dynamics simulations of the
kinetic pathways of gas hydrate formation from solid surfaces. Langmuir 27, 5961–5967 (2011).
63. Frenkel, D. & Smit, B. Understanding molecular simulation: from algorithms to applications (Elsevier,
2023).
64. González, M. A. Force fields and molecular dynamics simulations. École thématique de la Société
Française de la Neutronique 12, 169–200 (2011).
65. Vanommeslaeghe, K. et al. CHARMM general force field: A force field for drug-like molecules
compatible with the CHARMM all-atom additive biological force fields. Journal of Computational
Chemistry 31, 671–690 (2010).
66. Van Duin, A. C., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive force field for
hydrocarbons. The Journal of Physical Chemistry A 105, 9396–9409 (2001).
67. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom
force field on conformational energetics and properties of organic liquids. Journal of the American
Chemical Society 118, 11225–11236 (1996).
68. Potoff, J. J. & Siepmann, J. I. Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide,
and nitrogen. American Institute of Chemical Engineers Journal 47, 1676–1682 (2001).
69. Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Oxford university press, 2017).
70. Sugita, Y. & Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chemical
Physics Letters 314, 141–151 (1999).
71. Thompson, A. P. et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at
the atomic, meso, and continuum scales. Computer Physics Communications 271, 108171 (2022).
72. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational
Physics 117, 1–19 (1995).
73. Rodger, P., Forester, T. & Smith, W. Simulations of the methane hydrate/methane gas interface
near hydrate forming conditions conditions. Fluid Phase Equilibria 116, 326–332 (1996).
74. Mahmoudinobar, F. & Dias, C. L. GRADE: A code to determine clathrate hydrate structures. Computer
Physics Communications 244, 385–391 (2019).
75. Abascal, J., Sanz, E., García Fernández, R. & Vega, C. A potential model for the study of ices and
amorphous water: TIP4P/Ice. The Journal of Chemical Physics 122 (2005).
76. García Fernández, R., Abascal, J. L. & Vega, C. The melting point of ice Ih for common water
models calculated from direct coexistence of the solid-liquid interface. The Journal of Chemical
Physics 124 (2006).
77. Michalis, V. K., Costandy, J., Tsimpanogiannis, I. N., Stubos, A. K. & Economou, I. G. Prediction
of the phase equilibria of methane hydrates using the direct phase coexistence methodology. The
Journal of Chemical Physics 142 (2015).
78. Costandy, J., Michalis, V. K., Tsimpanogiannis, I. N., Stubos, A. K. & Economou, I. G. The role
of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates.
The Journal of Chemical Physics 143 (2015).
79. Walsh, M. R. et al. Methane hydrate nucleation rates from molecular dynamics simulations: Effects
of aqueous methane concentration, interfacial curvature, and system size. The Journal of Physical
Chemistry C 115, 21241–21248 (2011).
80. Walsh, M. R., Koh, C. A., Sloan, E. D., Sum, A. K. & Wu, D. T. Microsecond simulations of
spontaneous methane hydrate nucleation and growth. Science 326, 1095–1098 (2009).
81. Walsh, M. R. et al. The cages, dynamics, and structuring of incipient methane clathrate hydrates.
Physical Chemistry Chemical Physics 13, 19951–19959 (2011).
82. Jacobson, L. C., Hujo, W. & Molinero, V. Amorphous precursors in the nucleation of clathrate
hydrates. Journal of the American Chemical Society 132, 11806–11811 (2010).
83. He, Z., Linga, P. & Jiang, J. What are the key factors governing the nucleation of CO2 hydrate?
Physical Chemistry Chemical Physics 19, 15657–15661 (2017).
84. Daniel-David, D., Guerton, F., Dicharry, C., Torré, J.-P. & Broseta, D. Hydrate growth at the interface
between water and pure or mixed CO2/CH4 gases: Influence of pressure, temperature, gas
composition and water-soluble surfactants. Chemical Engineering Science 132, 118–127 (2015).
85. Uchida, T. et al. Kinetics and stability of CH4–CO2 mixed gas hydrates during formation and longterm
storage. ChemPhysChem 6, 646–654 (2005).
86. Lundgaard, L. & Mollerup, J. Calculation of phase diagrams of gas-hydrates. Fluid Phase Equilibria
76, 141–149 (1992).
87. Lee, Y., Kim, Y., Lee, J., Lee, H. & Seo, Y. CH4 recovery and CO2 sequestration using flue gas in
natural gas hydrates as revealed by a micro-differential scanning calorimeter. Applied Energy 150,
120–127 (2015). |