博碩士論文 111324045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.220.194.186
姓名 江奕昀(Yi-Yun Chiang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 使用分子動力學模擬探討甲烷/二氧化碳/氮氣混合水合物的成核與生長
(Studying the Nucleation and Growth of CH4/CO2/N2 Mixed Hydrates Using Molecular Dynamics Simulation)
相關論文
★ 使用機器學習決定不鏽鋼耐腐蝕性的關鍵因素★ 多孔材料的BET表面積測定:限制和改進
★ 二維凡德瓦材料和異質結構中熱傳輸的計算研究★ 利用密度泛函理論探討鐵合金中間隙元素的影響
★ 利用密度泛函理論開發高效率矽鍺錫熱電合金★ 研究多孔材料的孔徑分布:BJH方法的探討與機 器學習方法的應用潛力
★ 利用密度泛函理論計算探討元素摻雜對g-C3N4光催化效率的提升
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 氣體水合物
是一種結晶化合物,在低溫和極高壓力下由水 形成籠狀結構包覆 氣體
分子 。 由於甲烷水合物在全球的大陸棚和海底沉積物中廣泛存在,因此被視為一
種極具發展潛力的新興能源 。 科學家 們 提出 使 用 二氧化碳取代水合物中的甲烷,
可以 將二氧化碳以水合物形式封存在海底並將置換出來的甲烷當作能源使用 ,既
可以 減緩溫室氣體效應 ,還能應對能源挑戰 。而利用煙氣替代開採甲烷水合物是
近年來提出的新方法,煙氣為燃燒發電後的廢氣其主要成份為二氧化碳與氮氣,
使用煙氣置換甲烷水合物不僅可以降低分離二氧化碳的成本, 氮氣 還 可以 置換 二
氧化碳難以 取代的 水 合物結構 ,以提高甲烷回收率。然而目前對 混合 氣體分子在
水合物形成過程中 成核情況 的了解 非常有限。
在本研究中使用分子動力學模擬來探討發生在液態水與氣體分子
(甲烷、二氧化
碳和氮氣 )系統中 形成水合物的成核競爭以及氣體類型和比例對 成核速率的影響。
研究 結果顯示純二氧化碳水合物的成核速率比純甲烷水合物與純 氮氣水合物快,
與氮氣水合物相比,加入二氧化碳對甲烷水合物有更顯著的促進成核效果。在雙
成分甲烷 /二氧化碳水合物中,初始成核 為 包覆甲烷 的 512籠 (由水分子形成的 十
二個五邊形面 )。在三成分甲烷 /二氧化碳 /氮氣水合物 中 ,觀察到氮氣 也有機會 存
在 於 初始成核 的 512籠 中 。 另外,計算發現 水合物形成的比例 會 與混合氣體比例
之間存在線性 關係 ,其中氮氣與甲烷 容易 形成 512籠 ,而二氧化碳 較容易 形成
4151062籠 (由水分子形成的一個正方形面、十個五邊形面和兩個六邊形面 )則 有所
不同 。另外 模擬結果顯示當系統 沒有固體水合物時 ,水合物 會 在系統中某處形
成第一個穩定水合物後才開始快速生長 而 當 系統存在 固體水合物時,水合物會
從固體 水合物 與液體的 界 面開始生長 且生長的 水合物 結構 與固體水合物相似
證明了封存煙氣的可行性 。
摘要(英) Clathrate hydrates are crystalline compounds where water forms cage-like structures around gas molecules at low temperatures and very high pressures. Due to the widespread presence of methane (CH4) hydrates in the continental shelves and seabed sediments, they are regarded as a highly promising emerging energy source. A replacement of CH4 by carbon dioxide (CO2) in hydrates, allowing CO2 to be stored as hydrates on the seafloor while the released CH4 can be used as energy, was proposed to both mitigate greenhouse gas effects and address energy challenges. In addition, a novel method involves using flue gas to extract CH4 hydrates was suggested. Flue gas, the exhaust gas from power generation, primarily consists of CO2 and nitrogen (N2). Using flue gas to replace CH4 hydrates can reduce the cost of separating CO2, and N2 can replace hydrate structures that are difficult for CO2 to replace, thus enhancing CH4 recovery rates. However, the current understanding of the nucleation process of mixed gas molecules in hydrate formation is still limited.
In this study, molecular dynamics (MD) simulations were used to investigate the nucleation competition of hydrate formation in systems of liquid water and gas molecules (CH4, CO2, and N2) and the effect of gas types and gas ratio on nucleation rates. The results showed that the nucleation rate of pure CO2 hydrates is faster than that of pure CH4 and pure N2 hydrates. Adding CO2 significantly promotes the nucleation of CH4 hydrates compared to N2 hydrates. In a binary CH4/CO2 gas system, the initial nucleation 512 cage (with 12 pentagonal faces formed by water molecules) always encapsulates CH4. In a ternary CH4/CO2/N2 gas system, N2 can also be encapsulated in the initial 512 cage. The proportion of hydrates formed shows a linear correlation with the ratio of mixed gases. CH4 and N2 form 512 cages, while CO2 forms 4151062 cages (with 1 square face, 10 pentagonal face, and 2 hexagonal faces formed by water molecules). Additionally, simulation results indicated that without solid hydrates, hydrate growth only accelerates after the first stable hydrate forms somewhere in the system. In contrast, with solid hydrates present, growth begins at the interface between solid hydrates and the liquid, and the structure of the growing hydrate resembles that of the solid hydrate, demonstrating the feasibility of storing flue gas.
關鍵字(中) ★ 分子動力學
★ 氣體水合物
★ 結晶
★ 二氧化碳封存
★ 煙氣置換
關鍵字(英) ★ MD
★ clathrate hydrates
★ crystallization
★ carbon dioxide sequestration
★ flue gas replacement
論文目次 摘要i
Abstract iii
Contents v
List of Figures vii
List of Tables xv
1 Introduction 1
1.1 Clathrate hydrates 1
1.2 CH4 hydrates 4
1.3 Flue gas replacement of CH4 hydrates 6
1.4 Motivation 8
2 Methods and Simulation Settings 10
2.1 Molecular dynamics (MD) simulations 10
2.2 Molecular dynamics software package 12
2.2.1 Large-scale atomic/molecular massively parallel simulator (LAMMPS) 13
2.3 F4 order parameter 14
2.4 Computational details 15
2.5 Studied system 16
3 Results and Discussion 20
3.1 Single-component gas hydrate 20
3.1.1 CH4 hydrates 20
3.1.2 CO2 hydrates 22
3.1.3 N2 hydrates 25
3.2 Binary gas hydrates 26
3.2.1 CH4/CO2 hydrates 26
3.2.2 CH4/N2 hydrates 32
3.2.3 CO2/N2 hydrates 32
3.3 Ternary gas hydrates 34
3.3.1 CH4/CO2/N2 hydrates 34
3.3.2 With hydrates interface 39
4 Conclusion 46
5 Future Work 48
Bibliography 50
參考文獻 1. Sloan Jr, E. D. & Koh, C. A. Clathrate hydrates of natural gases (CRC Press, 2007).
2. Davy, H. The Bakerian Lecture. On some of the combinations of oxymuriatic gas and oxygen, and
on the chemical relations of these principles, to inflammable bodies in Abstracts of the Papers
Printed in the Philosophical Transactions of the Royal Society of London (1832), 385–388.
3. Hammerschmidt, E. Formation of gas hydrates in natural gas transmission lines. Industrial & Engineering
Chemistry 26, 851–855 (1934).
4. Sloan, E. D. Natural gas hydrates in flow assurance (Gulf Professional Publishing, 2010).
5. Lu, H. et al. Complex gas hydrate from the Cascadia margin. Nature 445, 303–306 (2007).
6. Hu, Y. H. & Ruckenstein, E. Clathrate hydrogen hydrate—a promising material for hydrogen storage.
Angewandte Chemie International Edition 45, 2011–2013 (2006).
7. Yi, L. et al. Molecular Dynamics Simulation Study on the Growth of Structure II Nitrogen Hydrate.
The Journal of Physical Chemistry B 123, 9180–9186 (2019).
8. Sum, A. K., Burruss, R. C. & Sloan, E. D. Measurement of clathrate hydrates via Raman spectroscopy.
The Journal of Physical Chemistry B 101, 7371–7377 (1997).
9. Ripmeester, J. & Ratcliffe, C. On the contributions of NMR spectroscopy to clathrate science. Journal
of Structural Chemistry 40, 654–662 (1999).
10. Udachin, K. A., Ratcliffe, C. I. & Ripmeester, J. A. Structure, composition, and thermal expansion
of CO2 hydrate from single crystal X-ray diffraction measurements. The Journal of Physical
Chemistry B 105, 4200–4204 (2001).
11. Park, K.-n. et al. A new apparatus for seawater desalination by gas hydrate process and removal
characteristics of dissolved minerals (Na+, Mg2+, Ca2+, K+, B3+). Desalination 274, 91–96 (2011).
12. Florusse, L. J. et al. Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate.
Science 306, 469–471 (2004).
13. Saji, A. et al. Fixation of carbon dioxide by clathrate-hydrate. Energy Conversion and Management
33, 643–649 (1992).
14. Eslamimanesh, A., Mohammadi, A. H., Richon, D., Naidoo, P. & Ramjugernath, D. Application
of gas hydrate formation in separation processes: A review of experimental studies. The Journal of
Chemical Thermodynamics 46, 62–71 (2012).
15. Bhattacharjee, G., Kumar, A., Sakpal, T. & Kumar, R. Carbon dioxide sequestration: influence of
porous media on hydrate formation kinetics. American Chemical Society Sustainable Chemistry &
Engineering 3, 1205–1214 (2015).
16. Goel, N. In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge
and issues. Journal of Petroleum Science and Engineering 51, 169–184 (2006).
17. Mao, W. L. et al. Hydrogen clusters in clathrate hydrate. Science 297, 2247–2249 (2002).
18. Shin, K. et al. Tetra-n-butylammonium borohydride semiclathrate: A hybrid material for hydrogen
storage. The Journal of Physical Chemistry A 113, 6415–6418 (2009).
19. Sugahara, T. et al. Large-cage occupancies of hydrogen in binary clathrate hydrates dependent on
pressures and guest concentrations. The Journal of Physical Chemistry C 114, 15218–15222 (2010).
20. Majid, A. A., Worley, J. & Koh, C. A. Thermodynamic and kinetic promoters for gas hydrate
technological applications. Energy & Fuels 35, 19288–19301 (2021).
21. Claypool, G. E. & Kaplan, I. R. The origin and distribution of methane in marine sediments. Natural
Gases in Marine Sediments, 99–139 (1974).
22. Meyer, R. F. Long-term energy resources. Volume III tech. rep. (Pitman, Boston, MA, 1981).
23. Borowski, W. S., Paull, C. K. & Ussler III, W. Marine pore-water sulfate profiles indicate in situ
methane flux from underlying gas hydrate. Geology 24, 655–658 (1996).
24. Xu, W. & Ruppel, C. Predicting the occurrence, distribution, and evolution of methane gas hydrate
in porous marine sediments. Journal of Geophysical Research: Solid Earth 104, 5081–5095 (1999).
25. Makogon, Y. F. Hydrates of hydrocarbons (1997).
26. Clennell, M. B., Hovland, M., Booth, J. S., Henry, P. & Winters, W. J. Formation of natural gas
hydrates in marine sediments: 1. Conceptual model of gas hydrate growth conditioned by host
sediment properties. Journal of Geophysical Research: Solid Earth 104, 22985–23003 (1999).
27. Moridis, G. J. et al. Toward production from gas hydrates: current status, assessment of resources,
and simulation-based evaluation of technology and potential. SPE Reservoir Evaluation & Engineering
12, 745–771 (2009).
28. Ginsburg, G., Soloviev, V., Matveeva, T. & Andreeva, I. 24. Sediment grain-size control on gas
hydrate presence, sites 994, 995 and 997 in Proceedings of the Ocean Drilling Program, Scientific
Results, College Station, TX (2000).
29. Ruppel, C. Permafrost-associated gas hydrate: Is it really approximately 1% of the global system?
Journal of Chemical & Engineering Data 60, 429–436 (2015).
30. Lachenbruch, A. H., Sass, J., Marshall, B. & Moses Jr, T. Permafrost, heat flow, and the geothermal
regime at Prudhoe Bay, Alaska. Journal of Geophysical Research: Solid Earth 87, 9301–9316
(1982).
31. Rachold, V. et al. Nearshore Arctic subsea permafrost in transition. Eos, Transactions American
Geophysical Union 88, 149–150 (2007).
32. Judge, A. & Majorowicz, J. Geothermal conditions for gas hydrate stability in the Beaufort-Mackenzie
area: the global change aspect. Palaeogeography, Palaeoclimatology, Palaeoecology 98, 251–263
(1992).
33. Boswell, R. & Collett, T. S. Current perspectives on gas hydrate resources. Energy & Environmental
Science 4, 1206–1215 (2011).
34. Archer, D., Buffett, B. & Brovkin, V. Ocean methane hydrates as a slow tipping point in the global
carbon cycle. Proceedings of the National Academy of Sciences 106, 20596–20601 (2009).
35. Max, M. D. & Johnson, A. H. Diagenetic methane hydrate formation in permafrost: A new gas
play? in OTC Arctic Technology Conference (2011).
36. Pinero, E., Marquardt, M., Hensen, C., Haeckel, M. & Wallmann, K. Estimation of the global inventory
of methane hydrates in marine sediments using transfer functions. Biogeosciences 10, 959–
975 (2013).
37. Koh, C. A., Sloan, E. D., Sum, A. K. & Wu, D. T. Fundamentals and applications of gas hydrates.
Annual Review of Chemical and Biomolecular Engineering 2, 237–257 (2011).
38. Holder, G., Angert, P. F., John, V. & Yen, S. A thermodynamic evaluation of thermal recovery of
gas from hydrates in the earth (includes associated papers 11863 and 11924). Journal of Petroleum
Technology 34, 1127–1132 (1982).
39. Cranganu, C. In-situ thermal stimulation of gas hydrates. Journal of Petroleum Science and Engineering
65, 76–80 (2009).
40. Song, Y. et al. Evaluation of gas production from methane hydrates using depressurization, thermal
stimulation and combined methods. Applied Energy 145, 265–277 (2015).
41. Wang, B. et al. Evaluation of thermal stimulation on gas production from depressurized methane
hydrate deposits￿. Applied Energy 227, 710–718 (2018).
42. Ohgaki, K., Takano, K., Sangawa, H., Matsubara, T. & Nakano, S. Methane exploitation by carbon
dioxide from gas hydrates—phase equilibria for CO2-CH4 mixed hydrate system—. Journal of
Chemical Engineering of Japan 29, 478–483 (1996).
43. Brewer, P. G., Orr, F. M., Friederich, G., Kvenvolden, K. A. & Orange, D. L. Gas hydrate formation
in the deep sea: In situ experiments with controlled release of methane, natural gas, and carbon
dioxide. Energy & Fuels 12, 183–188 (1998).
44. Yezdimer, E. M., Cummings, P. T. & Chialvo, A. A. Determination of the Gibbs free energy of gas
replacement in SI clathrate hydrates by molecular simulation. The Journal of Physical Chemistry
A 106, 7982–7987 (2002).
45. Dornan, P., Alavi, S. & Woo, T. Free energies of carbon dioxide sequestration and methane recovery
in clathrate hydrates. The Journal of Chemical Physics 127 (2007).
46. Lee, H., Seo, Y., Seo, Y.-T., Moudrakovski, I. L. & Ripmeester, J. A. Recovering methane from
solid methane hydrate with carbon dioxide. Angewandte Chemie 115, 5202–5205 (2003).
47. Yuan, Q. et al. Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a
three-dimensional middle-size reactor. Energy 40, 47–58 (2012).
48. Xie, Y. et al. Replacement in CH4-CO2 hydrate below freezing point based on abnormal selfpreservation
differences of CH4 hydrate. Chemical Engineering Journal 403, 126283 (2021).
49. Cha, M. et al. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture
using in situ NMR spectroscopy. Environmental Science & Technology 49, 1964–1971 (2015).
50. Hendriks, C., Blok, K. & Turkenburg, W. The recovery of carbon dioxide from power plants. Climate
and Energy: The Feasibility of Controlling CO2 Emissions, 125–142 (1989).
51. Park, Y. et al. Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates.
Proceedings of the National Academy of Sciences 103, 12690–12694 (2006).
52. Shin, K. et al. Swapping phenomena occurring in deep-sea gas hydrates. Energy & Fuels 22, 3160–
3163 (2008).
53. Matsui, H., Jia, J., Tsuji, T., Liang, Y. & Masuda, Y. Microsecond simulation study on the replacement
of methane in methane hydrate by carbon dioxide, nitrogen, and carbon dioxide–nitrogen
mixtures. Fuel 263, 116640 (2020).
54. Schoderbek, D., Martin, K. L., Howard, J., Silpngarmlert, S. & Hester, K. North slope hydrate
fieldtrial: CO2/CH4 exchange in OTC Arctic Technology Conference (2012), OTC–23725.
55. Lim, D. et al. Thermodynamic stability and guest distribution of CH4/N2/CO2 mixed hydrates for
methane hydrate production using N2/CO2 injection. The Journal of Chemical Thermodynamics
106, 16–21 (2017).
56. Koh, C. A., Wisbey, R. P., Wu, X., Westacott, R. E. & Soper, A. K. Water ordering around methane
during hydrate formation. The Journal of Chemical Physics 113, 6390–6397 (2000).
57. Báez, L. A. & Clancy, P. Computer simulation of the crystal growth and dissolution of natural gas
hydrates a. Annals of the New York Academy of SCiences 715, 177–186 (1994).
58. Radhakrishnan, R. & Trout, B. L. A new approach for studying nucleation phenomena using molecular
simulations: Application to CO2 hydrate clathrates. The Journal of Chemical Physics 117,
1786–1796 (2002).
59. Moon, C., Taylor, P. C. & Rodger, P. M. Molecular dynamics study of gas hydrate formation.
Journal of the American Chemical Society 125, 4706–4707 (2003).
60. Anderson, B. J., Tester, J. W., Borghi, G. P. & Trout, B. L. Properties of inhibitors of methane
hydrate formation via molecular dynamics simulations. Journal of the American Chemical Society
127, 17852–17862 (2005).
61. English, N. J., Johnson, J. & Taylor, C. E. Molecular-dynamics simulations of methane hydrate
dissociation. The Journal of Chemical Physics 123 (2005).
62. Bai, D., Chen, G., Zhang, X. & Wang, W. Microsecond molecular dynamics simulations of the
kinetic pathways of gas hydrate formation from solid surfaces. Langmuir 27, 5961–5967 (2011).
63. Frenkel, D. & Smit, B. Understanding molecular simulation: from algorithms to applications (Elsevier,
2023).
64. González, M. A. Force fields and molecular dynamics simulations. École thématique de la Société
Française de la Neutronique 12, 169–200 (2011).
65. Vanommeslaeghe, K. et al. CHARMM general force field: A force field for drug-like molecules
compatible with the CHARMM all-atom additive biological force fields. Journal of Computational
Chemistry 31, 671–690 (2010).
66. Van Duin, A. C., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive force field for
hydrocarbons. The Journal of Physical Chemistry A 105, 9396–9409 (2001).
67. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom
force field on conformational energetics and properties of organic liquids. Journal of the American
Chemical Society 118, 11225–11236 (1996).
68. Potoff, J. J. & Siepmann, J. I. Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide,
and nitrogen. American Institute of Chemical Engineers Journal 47, 1676–1682 (2001).
69. Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Oxford university press, 2017).
70. Sugita, Y. & Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chemical
Physics Letters 314, 141–151 (1999).
71. Thompson, A. P. et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at
the atomic, meso, and continuum scales. Computer Physics Communications 271, 108171 (2022).
72. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational
Physics 117, 1–19 (1995).
73. Rodger, P., Forester, T. & Smith, W. Simulations of the methane hydrate/methane gas interface
near hydrate forming conditions conditions. Fluid Phase Equilibria 116, 326–332 (1996).
74. Mahmoudinobar, F. & Dias, C. L. GRADE: A code to determine clathrate hydrate structures. Computer
Physics Communications 244, 385–391 (2019).
75. Abascal, J., Sanz, E., García Fernández, R. & Vega, C. A potential model for the study of ices and
amorphous water: TIP4P/Ice. The Journal of Chemical Physics 122 (2005).
76. García Fernández, R., Abascal, J. L. & Vega, C. The melting point of ice Ih for common water
models calculated from direct coexistence of the solid-liquid interface. The Journal of Chemical
Physics 124 (2006).
77. Michalis, V. K., Costandy, J., Tsimpanogiannis, I. N., Stubos, A. K. & Economou, I. G. Prediction
of the phase equilibria of methane hydrates using the direct phase coexistence methodology. The
Journal of Chemical Physics 142 (2015).
78. Costandy, J., Michalis, V. K., Tsimpanogiannis, I. N., Stubos, A. K. & Economou, I. G. The role
of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates.
The Journal of Chemical Physics 143 (2015).
79. Walsh, M. R. et al. Methane hydrate nucleation rates from molecular dynamics simulations: Effects
of aqueous methane concentration, interfacial curvature, and system size. The Journal of Physical
Chemistry C 115, 21241–21248 (2011).
80. Walsh, M. R., Koh, C. A., Sloan, E. D., Sum, A. K. & Wu, D. T. Microsecond simulations of
spontaneous methane hydrate nucleation and growth. Science 326, 1095–1098 (2009).
81. Walsh, M. R. et al. The cages, dynamics, and structuring of incipient methane clathrate hydrates.
Physical Chemistry Chemical Physics 13, 19951–19959 (2011).
82. Jacobson, L. C., Hujo, W. & Molinero, V. Amorphous precursors in the nucleation of clathrate
hydrates. Journal of the American Chemical Society 132, 11806–11811 (2010).
83. He, Z., Linga, P. & Jiang, J. What are the key factors governing the nucleation of CO2 hydrate?
Physical Chemistry Chemical Physics 19, 15657–15661 (2017).
84. Daniel-David, D., Guerton, F., Dicharry, C., Torré, J.-P. & Broseta, D. Hydrate growth at the interface
between water and pure or mixed CO2/CH4 gases: Influence of pressure, temperature, gas
composition and water-soluble surfactants. Chemical Engineering Science 132, 118–127 (2015).
85. Uchida, T. et al. Kinetics and stability of CH4–CO2 mixed gas hydrates during formation and longterm
storage. ChemPhysChem 6, 646–654 (2005).
86. Lundgaard, L. & Mollerup, J. Calculation of phase diagrams of gas-hydrates. Fluid Phase Equilibria
76, 141–149 (1992).
87. Lee, Y., Kim, Y., Lee, J., Lee, H. & Seo, Y. CH4 recovery and CO2 sequestration using flue gas in
natural gas hydrates as revealed by a micro-differential scanning calorimeter. Applied Energy 150,
120–127 (2015).
指導教授 簡思佳(Szu-Chia Chien) 審核日期 2024-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明