博碩士論文 108324049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:3.147.45.207
姓名 王虹(Hung Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 銅基板殘留應力對銅接點性質影響之研究
(Effect of Residual Stress in Cu Substrate on Joint Properties for Cu-to-Cu Bonding)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 近年來由於科技發展迅速,對於功率元件的需求上升,然而目前可應用於高溫的電子構裝材料卻相當有限。奈米銅膠因具有優良的熱導及電導性、高抗電遷移與電化學遷移、不會與接合之銅線產生介金屬化合物等特性,成為一種具備前瞻性的構裝材料,因而如何提升接點之可靠度便成為重要議題。奈米粒子具有高表面能,容易相互團聚並燒結,而與之接合的基板則為塊材,性質較穩定,但是多項因素如燒結之氣氛、粒子幾何形貌與基板微結構均將影響接點強度。若能提升粒子與基板的燒結程度,將對接點可靠度的發展帶來重要貢獻。
本研究旨在探討銅基板中的殘留應力對於接點強度的影響,並從原子擴散動力學之角度提供未來學理研究之基礎。藉由對基板進行不同時間的退火處理,可有效調整殘留應力。經推力測試與數值分析後,發現應力高低與接點強度有關。當退火時間愈長,殘留應力下降,接點強度亦隨之下降。此外,本研究更提出了詳細的機制,解釋殘留應力於燒結過程中如何影響原子擴散的行為。藉由深入討論材料的擴散機制,本研究具有重要意義,可進一步推動電子構裝領域的發展。
摘要(英) In recent years, due to the rapid development of technology, the demand for power devices has increased significantly. However, the materials currently available for high-temperature electronic packaging are quite limited. Among them, Cu nanoparticle (NP) paste has emerged as a promising packaging material owing to its excellent thermal and electrical conductivity, high electromigration and electrochemical migration, and its ability to prevent the formation of intermetallic compounds (IMCs) with the bonded copper wires. Therefore, enhancing the reliability of Cu sintering joints has become a crucial issue. Literature indicates that various factors such as the sintering atmosphere, particle geometry, and the microstructure of the substrate can all influence the joint strength. NPs have high surface energy, making them tend to aggregation and sintering, while the substrates they bond with are bulk materials with more stable properties. Improving the level of sintering between particles and the substrate would significantly contribute to the development of joint reliability.
This study aims to investigate the influence of residual stress in Cu substrates on joint strength and to provide a fundamental understanding from the perspective of atomic diffusion dynamics for future theoretical research. By annealing the substrate for different durations, the residual stress can be effectively adjusted. Through shear tests and numerical analysis, a correlation between the level of stress and joint strength is found. The results show that longer annealing time reduce residual stress, which in turn lowers the joint strength. Additionally, this study proposes a detailed mechanism for explaining how residual stress affects atomic diffusion behavior during the sintering process. Through an in-depth discussion of material, the findings of this research are significant and further advance the field of electronic packaging.
關鍵字(中) ★ 銅銅接合
★ 奈米顆粒
★ 殘留應力
關鍵字(英) ★ Cu-Cu bonding
★ Nanoparticle
★ Residual stress
論文目次 摘要 i
ABSTRACT ii
致謝 iii
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES ix
CHAPTER 1 INTRODUCTION 1
1-1 Background 1
1-2 Packaging techniques 4
1-2-1 Pb-free solders 5
1-2-2 TLP bonding 10
1-2-3 Cu-to-Cu bonding 12
1-2-4 Ag nanoparticle sintering 17
1-2-5 Cu nanoparticle sintering 20
1-3 Processing factors influencing nanoparticle paste sintering 23
1-3-1 Microstructures of nanoparticles 23
1-3-2 Atmosphere 28
1-3-3 Microstructures of substrates 32
CHAPTER 2 MOTIVATION 37
CHAPTER 3 EXPERIMENTAL PROCEDURE 38
3-1 Preparation of Cu NP paste 38
3-2 Pre-treatment of Cu substrate and bonding process 38
3-3 Analysis and characterization of Cu NPs 39
3-4 Measurement of residual stress in Cu substrates 39
3-5 Shear strength and fracture surface analysis of joints 41
CHAPTER 4 RESULTS AND DISCUSSION 42
4-1 Characterization of Cu NP and Cu substrate 42
4-2 Mechanical strength of Cu paste joints 48
4-3 Residual stress analysis 54
4-4 Calculations of chemical potential and driving force 56
CHAPTER 5 CONCLUSION 64
REFERENCE 65
參考文獻 [1] M. Ovaere, S. Proost, Cost-effective reduction of fossil energy use in the European transport sector: An assessment of the Fit for 55 Package, Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium, (2021).
[2] Global Power Semiconductors Market: Key Research Findings 2020. https://www.yanoresearch.com/en/press-release/show/press_id/2485
[3] Transistor Count Trends Continue to Track with Moore′s Law. https://www.design-reuse.com/news/47652/transistor-count-trends.html
[4] H. Lee, V. Smet, R. Tummala, A Review of SiC Power Module Packaging Technologies: Challenges, Advances, and Emerging Issues, IEEE Journal of Emerging and Selected Topics in Power Electronics, 8 (2020) 239-255.
[5] C. Chen, A Review of SiC Power Module Packaging: Layout, Material System and Integration, CPSS Transactions on Power Electronics and Applications, 2 (2017) 170-186.
[6] C. Chen, F. Luo, Y. Kang, A review of SiC power module packaging: Layout, material system and integration, CPSS Transactions on Power Electronics and Applications, 2 (2017) 170-186.
[7] H. Lee, V. Smet, R. Tummala, A review of SiC power module packaging technologies: Challenges, advances, and emerging issues, IEEE Journal of Emerging and Selected Topics in Power Electronics, 8 (2019) 239-255.
[8] F. Dugal, M. Ciappa, Study of thermal cycling and temperature aging on PbSnAg die attach solder joints for high power modules, Microelectronics Reliability, 54 (2014) 1856-1861.
[9] G. Khatibi, A.B. Kotas, M. Lederer, Effect of aging on mechanical properties of high temperature Pb-rich solder joints, Microelectronics Reliability, 85 (2018) 1-11.
[10] V. Chidambaram, J. Hattel, J. Hald, High-temperature lead-free solder alternatives, Microelectronic Engineering, 88 (2011) 981-989.
[11] S. Menon, E. George, M. Osterman, M. Pecht, High lead solder (over 85%) solder in the electronics industry: RoHS exemptions and alternatives, Journal of Materials Science: Materials in Electronics, 26 (2015) 4021-4030.
[12] H. Zhang, J. Minter, N.C. Lee, A brief review on high-temperature, Pb-free die-attach materials, Journal of Electronic Materials, 48 (2019) 201-210.
[13] K.S. Siow, Die-attach materials for high temperature applications in microelectronics packaging, Materials, Processes, Equipment, and Reliability, Springer, 2019.
[14] K.S. Siow, Die-Attach Materials for High Temperature Applications in Microelectronics Packaging, Materials, Process, Equipment, and Reliability, Springer International Publishing, (2019) 181-196.
[15] X. Wang, L. Zhang, M.l. Li, Structure and properties of Au–Sn lead-free solders in electronic packaging, Materials transactions, 63 (2022) 93-104.
[16] G. Ghosh, Phase stability and cohesive properties of Au–Sn intermetallics: A first-principles study, Journal of Materials Research, 23 (2008) 1398-1416.
[17] J. Peng, H. Liu, L. Fu, A. Shan, Multi-principal-element products enhancing Au–Sn-bonded joints, Journal of Alloys and Compounds, 852 (2021) 157015.
[18] H.G. Song, J. Morris, M. McCormack, The microstructure of ultrafine eutectic Au-Sn solder joints on Cu, Journal of electronic materials, 29 (2000) 1038-1046.
[19] J.F. Kuhmann, A. Preuss, B. Adolphi, K. Maly, T. Wirth, W. Oesterle, W. Pittroff, G. Weyer, M. Fanciulli, Oxidation and reduction kinetics of eutectic SnPb, InSn, and AuSn: A knowledge base for fluxless solder bonding applications, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part C, 21 (1998) 134-141.
[20] A. Akter, A. Sharif, R. Mahbub, Gold-Based Interconnect Systems for High-Temperature and Harsh Environments, Harsh Environment Electronics: Interconnect Materials and Performance Assessment, (2019).
[21] J. Xu, M. Wu, J. Pu, S. Xue, Novel Au‐Based Solder Alloys: A Potential Answer for Electrical Packaging Problem, Advances in Materials Science and Engineering, 2020 (2020) 4969647.
[22] V. Chidambaram, H.B. Yeung, G. Shan, Reliability of Au-Ge and Au-Si eutectic solder alloys for high-temperature electronics, Journal of electronic materials, 41 (2012) 2107-2117.
[23] F. Lang, H. Yamaguchi, H. Nakagawa, H. Sato, Solid-State interfacial reaction between eutectic Au− Ge solder and Cu/Ni (P)/Au metalized ceramic substrate and its suppression, Journal of Materials Science & Technology, 31 (2015) 445-452.
[24] N. Weyrich, C. Leinenbach, Low temperature TLP bonding of Al2O3–ceramics using eutectic Au–(Ge, Si) alloys, Journal of Materials Science, 48 (2013) 7115-7124.
[25] B. Drevet, S. Kalogeropoulou, N. Eustathopoulos, Wettability and interfacial bonding in Au/Si/SiC system, Acta metallurgica et materialia, 41 (1993) 3119-3126.
[26] J.S. Lin, C.C. Chen, E.W.G. Diau, T.F. Liu, Fabrication and characterization of eutectic gold–silicon (Au–Si) nanowires, journal of materials processing technology, 206 (2008) 425-430.
[27] R. Septimio, C.A. Silva, T.A. Costa, A. Garcia, N. Cheung, Hypereutectic Zn–Al Alloys: Microstructural Development under Unsteady-State Solidification Conditions, Eutectic Coupled Zone and Hardness, Metals, 12 (2022) 1076.
[28] K. Berent, J. Pstruś, T. Gancarz, Thermal and microstructure characterization of Zn-Al-Si alloys and chemical reaction with Cu substrate during spreading, Journal of Materials Engineering and Performance, 25 (2016) 3375-3383.
[29] Ž. Skoko, S. Popović, G. Štefanić, Microstructure of Al-Zn and Zn-Al Alloys, Croatica chemica acta, 82 (2009) 405-420.
[30] M. Babić, R. Ninković, Zn-Al alloys as tribomaterials, Tribology in industry, 26 (2004) 3-7.
[31] J.M. Rifkind, J.M. Heim, Interaction of zinc with hemoglobin: Binding of zinc and the oxygen affinity, Biochemistry, 16 (1977) 4438-4443.
[32] T. Gancarz, J. Pstruś, P. Fima, S. Mosińska, Thermal properties and wetting behavior of high temperature Zn-Al-In solders, Journal of materials engineering and performance, 21 (2012) 599-605.
[33] G. Zeng, S. McDonald, K. Nogita, Development of high-temperature solders, Microelectronics Reliability, 52 (2012) 1306-1322.
[34] M. Hasan, Effect of alloying on mechanical and electrical properties of zinc-based high temperature solders, (2014).
[35] B. Saatçi, N. Maraşlı, M. Gündüz, Thermal conductivities of solid and liquid phases in Pb–Cd and Sn–Zn binary eutectic alloys, Thermochimica Acta, 454 (2007) 128-134.
[36] K.L. Lin, T.P. Liu, High-temperature oxidation of a Sn-Zn-Al solder, Oxidation of metals, 50 (1998) 255-267.
[37] D.J. Fisher, Transient Liquid Phase Bonding, Materials Research Forum LLC, 2019.
[38] M. Locatelli, B. Dalgleish, K. Nakashima, A. Tomsia, A. Glaeser, New approaches to joining ceramics for high-temperature applications, Ceramics International, 23 (1997) 313-322.
[39] X. Cai, Y. Wang, Z. Yang, D. Wang, Y. Liu, Transient liquid phase (TLP) bonding of Ti2AlNb alloy using Ti/Ni interlayer: microstructure characterization and mechanical properties, Journal of Alloys and compounds, 679 (2016) 9-17.
[40] V. Jalilvand, H. Omidvar, H. Shakeri, M. Rahimipour, A study on the effect of process parameters on the properties of joint in TLP-bonded inconel 738LC superalloy, Metallurgical and Materials Transactions B, 44 (2013) 1222-1231.
[41] V. Maleki, H. Omidvar, M.R. Rahimipour, Influences of gap size and cyclic-thermal-shock treatment on mechanical properties of TLP bonded IN-738LC superalloy, Transactions of Nonferrous Metals Society of China, 28 (2018) 920-930.
[42] L. Sun, M.h. Chen, L. Zhang, Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints, Journal of Alloys and Compounds, 786 (2019) 677-687.
[43] H. Chen, T. Hu, M. Li, Z. Zhao, Cu@ Sn core–shell structure powder preform for high-temperature applications based on transient liquid phase bonding, IEEE Transactions on Power Electronics, 32 (2016) 441-451.
[44] H. Kang, A. Sharma, J.P. Jung, Recent progress in transient liquid phase and wire bonding technologies for power electronics, Metals, 10 (2020) 934.
[45] W. MacDonald, T. Eagar, Transient liquid phase bonding, Annual review of materials science, 22 (1992) 23-46.
[46] G. Crotwell, E. Knerr, W. Valka, C. Miller, Prototype Development of a TLP Production Riser Tieback Connector, Offshore Technology Conference, OTC, 1985, pp. OTC-4982-MS.
[47] G.O. Cook III, C.D. Sorensen, Overview of transient liquid phase and partial transient liquid phase bonding, Journal of materials science, 46 (2011) 5305-5323.
[48] O. Mokhtari, A review: Formation of voids in solder joint during the transient liquid phase bonding process-Causes and solutions, Microelectronics Reliability, 98 (2019) 95-105.
[49] L. Yang, Y. Xu, Y. Zhang, K. Lu, J. Qiao, Y. Yang, F. Xu, H. Gao, Effect of bonding time on the microstructure and shear property of Cu/SAC-15Ag/Cu 3D package solder joint fabricated by TLP, Journal of Materials Science: Materials in Electronics, 32 (2021) 8387-8395.
[50] Y.S. Tang, Y.J. Chang, K.N. Chen, Wafer-level Cu–Cu bonding technology, Microelectronics Reliability, 52 (2012) 312-320.
[51] W. Yang, M. Akaike, M. Fujino, T. Suga, A combined process of formic acid pretreatment for low-temperature bonding of copper electrodes, ECS Journal of Solid State Science and Technology, 2 (2013) P271.
[52] H. Park, S.E. Kim, Two-step plasma treatment on copper surface for low-temperature Cu thermo-compression bonding, IEEE Transactions on Components, Packaging and Manufacturing Technology, 10 (2019) 332-338.
[53] T. Kim, M. Howlader, T. Itoh, T. Suga, Room temperature Cu–Cu direct bonding using surface activated bonding method, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 21 (2003) 449-453.
[54] A. Sanz-Velasco, C. Rusu, I. Ferain, C. Colinge, M. Goorsky, Low-Temperature Direct Wafer Bonding, (2012).
[55] C. Okoro, J.W. Lau, F. Golshany, K. Hummler, Y.S. Obeng, A detailed failure analysis examination of the effect of thermal cycling on Cu TSV reliability, IEEE Transactions on Electron Devices, 61 (2013) 15-22.
[56] C.M. Liu, H.W. Lin, Y.S. Huang, Y.C. Chu, C. Chen, D.R. Lyu, K.N. Chen, K.N. Tu, Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu, Scientific reports, 5 (2015) 9734.
[57] H. Yan, P. Liang, Y. Mei, Z. Feng, Brief review of silver sinter-bonding processing for packaging high-temperature power devices, Chinese Journal of Electrical Engineering, 6 (2020) 25-34.
[58] H. Zhang, J. Minter, N.C. Lee, A brief review on high-temperature, Pb-free die-attach materials, Journal of Electronic Materials, 48 (2019) 201-210.
[59] Z. Fang, H. Wang, Densification and grain growth during sintering of nanosized particles, International Materials Reviews, 53 (2008) 326-352.
[60] P. Grammatikopoulos, M. Sowwan, J. Kioseoglou, Computational modeling of nanoparticle coalescence, Advanced Theory and Simulations, 2 (2019) 1900013.
[61] C. Wang, G. Li, L. Xu, J. Li, D. Zhang, T. Zhao, R. Sun, P. Zhu, Low temperature sintered silver nanoflake paste for power device packaging and its anisotropic sintering mechanism, ACS applied electronic materials, 3 (2021) 5365-5373.
[62] J. Yan, A review of sintering-bonding technology using Ag nanoparticles for electronic packaging, Nanomaterials, 11 (2021) 927.
[63] K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Low-temperature low-pressure die attach with hybrid silver particle paste, Microelectronics Reliability, 52 (2012) 375-380.
[64] H. Zhang, K. Suganuma, Sintered Silver for LED Applications, Die-Attach Materials for High Temperature Applications in Microelectronics Packaging: Materials, Processes, Equipment, and Reliability, (2019) 35-65.
[65] A. Deb, A.K. Chatterjee, The electronic structure and chemical bonding mechanism of silver oxide, Journal of Physics: Condensed Matter, 10 (1998) 11719.
[66] T. Matsuda, K. Inami, K. Motoyama, T. Sano, A. Hirose, Silver oxide decomposition mediated direct bonding of silicon-based materials, Scientific reports, 8 (2018) 10472.
[67] F. Mu, Z. Zhao, G. Zou, H. Bai, A. Wu, L. Liu, D. Zhang, Y.N. Zhou, Mechanism of low temperature sintering-bonding through in-situ formation of silver nanoparticles using silver oxide microparticles, Materials Transactions, 54 (2013) 872-878.
[68] S. Takata, T. Ogura, E. Ide, T. Morita, A. Hirose, Effects of solvents in the polyethylene glycol series on the bonding of copper joints using Ag 2 O paste, Journal of electronic materials, 42 (2013) 507-515.
[69] S.k. Lin, S. Nagao, E. Yokoi, C. Oh, H. Zhang, Y.C. Liu, S.G. Lin, K. Suganuma, Nano-volcanic eruption of silver, Scientific reports, 6 (2016) 34769.
[70] K.S. Siow, Are sintered silver joints ready for use as interconnect material in microelectronic packaging?, Journal of electronic materials, 43 (2014) 947-961.
[71] F. Yang, B. Hu, Y. Peng, C. Hang, H. Chen, C. Lee, J. Wei, M. Li, Ag microflake-reinforced nano-Ag paste with high mechanical reliability for high-temperature applications, Journal of Materials Science: Materials in Electronics, 30 (2019) 5526-5535.
[72] I. Radu, D. Landru, G. Gaudin, G. Riou, C. Tempesta, F. Letertre, L.D. Cioccio, P. Gueguen, T. Signamarcheix, C. Euvrard, Recent Developments of Cu-Cu non-thermo compression bonding for wafer-to-wafer 3D stacking, 2010 IEEE International 3D Systems Integration Conference (3DIC), IEEE, 2010, pp. 1-6.
[73] L.D. Carro, Sintering of copper nanoparticle pastes for microelectronic packaging, ETH Zurich, 2018.
[74] Y. Mou, H. Wang, Y. Peng, H. Cheng, Q. Sun, M. Chen, Enhanced heat dissipation of high-power light-emitting diodes by Cu nanoparticle paste, IEEE Electron Device Letters, 40 (2019) 949-952.
[75] W. Liu, H. Wang, K.S. Huang, C.M. Wang, A.T. Wu, Low temperature and pressureless Cu-to-Cu direct bonding by green synthesized Cu nanoparticles, Journal of the Taiwan Institute of Chemical Engineers, 125 (2021) 394-401.
[76] D. Ishikawa, H. Nakako, Y. Kawana, C. Sugama, M. Negishi, Y. Ejiri, S. Ueda, B.N. An, H. Wurst, B. Leyrer, Copper die-bonding sinter paste: Sintering and bonding properties, 2018 7th Electronic System-Integration Technology Conference (ESTC), IEEE, 2018, pp. 01-10.
[77] H. Ren, F. Mu, S. Shin, L. Liu, G. Zou, T. Suga, Low temperature Cu bonding with large tolerance of surface oxidation, AIP Advances, 9 (2019).
[78] X. Liu, H. Nishikawa, Low-pressure Cu-Cu bonding using in-situ surface-modified microscale Cu particles for power device packaging, Scripta materialia, 120 (2016) 80-84.
[79] Y. Gao, W. Li, C. Chen, H. Zhang, J. Jiu, C.F. Li, S. Nagao, K. Suganuma, Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere, Materials & Design, 160 (2018) 1265-1272.
[80] Y. Mou, Y. Peng, Y. Zhang, H. Cheng, M. Chen, Cu-Cu bonding enhancement at low temperature by using carboxylic acid surface-modified Cu nanoparticles, Materials Letters, 227 (2018) 179-183.
[81] J. Li, C. Cheng, T. Shi, J. Fan, X. Yu, S. Cheng, G. Liao, Z. Tang, Surface effect induced Cu-Cu bonding by Cu nanosolder paste, Materials Letters, 184 (2016) 193-196.
[82] J. Yeom, S. Nagao, C. Chen, T. Sugahara, H. Zhang, C. Choe, C.F. Li, K. Suganuma, Ag particles for sinter bonding: Flakes or spheres?, Applied Physics Letters, 114 (2019).
[83] S. Soichi, K. Suganuma, Low-temperature and low-pressure die bonding using thin Ag-flake and Ag-particle pastes for power devices, IEEE Transactions on Components, Packaging and Manufacturing Technology, 3 (2013) 923-929.
[84] J. Sopousek, J. Bursik, J. Zalesak, Z. Pesina, Silver nanoparticles sintering at low temperature on a copper substrate: In situ characterization under inert atmosphere and air, Journal of Mining and Metallurgy, Section B: Metallurgy, 48 (2012) 63-71.
[85] Y. Gao, H. Zhang, W. Li, J. Jiu, S. Nagao, T. Sugahara, K. Suganuma, Die bonding performance using bimodal Cu particle paste under different sintering atmospheres, Journal of Electronic Materials, 46 (2017) 4575-4581.
[86] S.K. Volkman, S. Yin, T. Bakhishev, K. Puntambekar, V. Subramanian, M.F. Toney, Mechanistic studies on sintering of silver nanoparticles, Chemistry of Materials, 23 (2011) 4634-4640.
[87] R. Gao, Die-attach Bonding Process Using Metallic, 博士論文, 2021.
[88] C.J. Du, X. Li, Y.H. Mei, G.Q. Lu, Bonding performance of sintered nanosilver joints on bare copper substrates with different grain structures, Journal of Materials Science: Materials in Electronics, 30 (2019) 12860-12868.
[89] T. Martens, M.L. Mears, Direct Sinter Bonding of Metal Injection-Molded Parts to Solid Substrate Through Use of Deformable Surface Microfeatures, Journal of Micro and Nano-Manufacturing, 1 (2013) 011008.
[90] M. Wang, Y. Mei, W. Hu, X. Li, G.Q. Lu, Pressureless sintered-silver as die attachment for bonding Si and SiC chips on silver, gold, copper, and nickel metallization for power electronics packaging: the practice and science, IEEE Journal of Emerging and Selected Topics in Power Electronics, 10 (2022) 2645-2655.
[91] M. Wang, Y. Mei, X. Li, R. Burgos, D. Boroyevich, G.Q. Lu, How to determine surface roughness of copper substrate for robust pressureless sintered silver in air, Materials Letters, 228 (2018) 327-330.
[92] C. Du, X. Li, Y. Mei, Study on Bonding Strength of Sintered Nano-silver Joints on Bare Copper Substrates with Different Grain Sizes, 2018 19th International Conference on Electronic Packaging Technology (ICEPT), IEEE, 2018, pp. 176-179.
[93] Z. Wei, W. Jiang, M. Song, C. Xiao, S.T. Tu, Effects of element diffusion on microstructure evolution and residual stresses in a brazed joint: Experimental and numerical modeling, Materialia, 4 (2018) 540-548.
[94] F.Z. Xuan, S.S. Shao, Z. Wang, S.T. Tu, Influence of residual stress on diffusion-induced bending in bilayered microcantilever sensors, Thin Solid Films, 518 (2010) 4345-4350.
[95] A. Horsfall, J.D. Santos, S. Soare, N. Wright, A. O′neill, S. Bull, A. Walton, A. Gundlach, J. Stevenson, Direct measurement of residual stress in sub-micron interconnects, semiconductor science and technology, 18 (2003) 992.
[96] T.M.D. Dang, T.T.T. Le, E. Fribourg-Blanc, M.C. Dang, Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method, Advances in Natural Sciences: Nanoscience and Nanotechnology, 2 (2011) 015009.
[97] A. Khan, A. Rashid, R. Younas, R. Chong, A chemical reduction approach to the synthesis of copper nanoparticles, International Nano Letters, 6 (2016) 21-26.
[98] W. Liu, 綠色還原法合成奈米銅粒子應用於低溫無壓銅對銅直接接合技術, National Central University, 2021.
[99] P. Khanna, S. Gaikwad, P. Adhyapak, N. Singh, R. Marimuthu, Synthesis and characterization of copper nanoparticles, Materials Letters, 61 (2007) 4711-4714.
[100] D. Field, L. Bradford, M. Nowell, T. Lillo, The role of annealing twins during recrystallization of Cu, Acta materialia, 55 (2007) 4233-4241.
[101] C.H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin solid films, 418 (2002) 73-78.
[102] W. Tyson, W. Miller, Surface free energies of solid metals: Estimation from liquid surface tension measurements, Surface Science, 62 (1977) 267-276.
[103] W. Seith, Diffusion of metals: exchange reactions, US Atomic Energy Commission, Division of Technical Information Extension, 1962.
[104] R. Ouyang, J.X. Liu, W.X. Li, Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions, Journal of the American Chemical Society, 135 (2013) 1760-1771.
[105] V. Gorshkov, V. Kuzmenko, V. Privman, Mechanisms of interparticle bridging in sintering of dispersed nanoparticles, Journal of Coupled Systems and Multiscale Dynamics, 2 (2014) 91-99.
[106] H. Zhu, Sintering processes of two nanoparticles: a study by molecular dynamics simulations, Philosophical Magazine Letters, 73 (1996) 27-33.
指導教授 吳子嘉(Albert T. Wu) 審核日期 2024-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明