參考文獻 |
[1] M. Ovaere, S. Proost, Cost-effective reduction of fossil energy use in the European transport sector: An assessment of the Fit for 55 Package, Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium, (2021).
[2] Global Power Semiconductors Market: Key Research Findings 2020. https://www.yanoresearch.com/en/press-release/show/press_id/2485
[3] Transistor Count Trends Continue to Track with Moore′s Law. https://www.design-reuse.com/news/47652/transistor-count-trends.html
[4] H. Lee, V. Smet, R. Tummala, A Review of SiC Power Module Packaging Technologies: Challenges, Advances, and Emerging Issues, IEEE Journal of Emerging and Selected Topics in Power Electronics, 8 (2020) 239-255.
[5] C. Chen, A Review of SiC Power Module Packaging: Layout, Material System and Integration, CPSS Transactions on Power Electronics and Applications, 2 (2017) 170-186.
[6] C. Chen, F. Luo, Y. Kang, A review of SiC power module packaging: Layout, material system and integration, CPSS Transactions on Power Electronics and Applications, 2 (2017) 170-186.
[7] H. Lee, V. Smet, R. Tummala, A review of SiC power module packaging technologies: Challenges, advances, and emerging issues, IEEE Journal of Emerging and Selected Topics in Power Electronics, 8 (2019) 239-255.
[8] F. Dugal, M. Ciappa, Study of thermal cycling and temperature aging on PbSnAg die attach solder joints for high power modules, Microelectronics Reliability, 54 (2014) 1856-1861.
[9] G. Khatibi, A.B. Kotas, M. Lederer, Effect of aging on mechanical properties of high temperature Pb-rich solder joints, Microelectronics Reliability, 85 (2018) 1-11.
[10] V. Chidambaram, J. Hattel, J. Hald, High-temperature lead-free solder alternatives, Microelectronic Engineering, 88 (2011) 981-989.
[11] S. Menon, E. George, M. Osterman, M. Pecht, High lead solder (over 85%) solder in the electronics industry: RoHS exemptions and alternatives, Journal of Materials Science: Materials in Electronics, 26 (2015) 4021-4030.
[12] H. Zhang, J. Minter, N.C. Lee, A brief review on high-temperature, Pb-free die-attach materials, Journal of Electronic Materials, 48 (2019) 201-210.
[13] K.S. Siow, Die-attach materials for high temperature applications in microelectronics packaging, Materials, Processes, Equipment, and Reliability, Springer, 2019.
[14] K.S. Siow, Die-Attach Materials for High Temperature Applications in Microelectronics Packaging, Materials, Process, Equipment, and Reliability, Springer International Publishing, (2019) 181-196.
[15] X. Wang, L. Zhang, M.l. Li, Structure and properties of Au–Sn lead-free solders in electronic packaging, Materials transactions, 63 (2022) 93-104.
[16] G. Ghosh, Phase stability and cohesive properties of Au–Sn intermetallics: A first-principles study, Journal of Materials Research, 23 (2008) 1398-1416.
[17] J. Peng, H. Liu, L. Fu, A. Shan, Multi-principal-element products enhancing Au–Sn-bonded joints, Journal of Alloys and Compounds, 852 (2021) 157015.
[18] H.G. Song, J. Morris, M. McCormack, The microstructure of ultrafine eutectic Au-Sn solder joints on Cu, Journal of electronic materials, 29 (2000) 1038-1046.
[19] J.F. Kuhmann, A. Preuss, B. Adolphi, K. Maly, T. Wirth, W. Oesterle, W. Pittroff, G. Weyer, M. Fanciulli, Oxidation and reduction kinetics of eutectic SnPb, InSn, and AuSn: A knowledge base for fluxless solder bonding applications, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part C, 21 (1998) 134-141.
[20] A. Akter, A. Sharif, R. Mahbub, Gold-Based Interconnect Systems for High-Temperature and Harsh Environments, Harsh Environment Electronics: Interconnect Materials and Performance Assessment, (2019).
[21] J. Xu, M. Wu, J. Pu, S. Xue, Novel Au‐Based Solder Alloys: A Potential Answer for Electrical Packaging Problem, Advances in Materials Science and Engineering, 2020 (2020) 4969647.
[22] V. Chidambaram, H.B. Yeung, G. Shan, Reliability of Au-Ge and Au-Si eutectic solder alloys for high-temperature electronics, Journal of electronic materials, 41 (2012) 2107-2117.
[23] F. Lang, H. Yamaguchi, H. Nakagawa, H. Sato, Solid-State interfacial reaction between eutectic Au− Ge solder and Cu/Ni (P)/Au metalized ceramic substrate and its suppression, Journal of Materials Science & Technology, 31 (2015) 445-452.
[24] N. Weyrich, C. Leinenbach, Low temperature TLP bonding of Al2O3–ceramics using eutectic Au–(Ge, Si) alloys, Journal of Materials Science, 48 (2013) 7115-7124.
[25] B. Drevet, S. Kalogeropoulou, N. Eustathopoulos, Wettability and interfacial bonding in Au/Si/SiC system, Acta metallurgica et materialia, 41 (1993) 3119-3126.
[26] J.S. Lin, C.C. Chen, E.W.G. Diau, T.F. Liu, Fabrication and characterization of eutectic gold–silicon (Au–Si) nanowires, journal of materials processing technology, 206 (2008) 425-430.
[27] R. Septimio, C.A. Silva, T.A. Costa, A. Garcia, N. Cheung, Hypereutectic Zn–Al Alloys: Microstructural Development under Unsteady-State Solidification Conditions, Eutectic Coupled Zone and Hardness, Metals, 12 (2022) 1076.
[28] K. Berent, J. Pstruś, T. Gancarz, Thermal and microstructure characterization of Zn-Al-Si alloys and chemical reaction with Cu substrate during spreading, Journal of Materials Engineering and Performance, 25 (2016) 3375-3383.
[29] Ž. Skoko, S. Popović, G. Štefanić, Microstructure of Al-Zn and Zn-Al Alloys, Croatica chemica acta, 82 (2009) 405-420.
[30] M. Babić, R. Ninković, Zn-Al alloys as tribomaterials, Tribology in industry, 26 (2004) 3-7.
[31] J.M. Rifkind, J.M. Heim, Interaction of zinc with hemoglobin: Binding of zinc and the oxygen affinity, Biochemistry, 16 (1977) 4438-4443.
[32] T. Gancarz, J. Pstruś, P. Fima, S. Mosińska, Thermal properties and wetting behavior of high temperature Zn-Al-In solders, Journal of materials engineering and performance, 21 (2012) 599-605.
[33] G. Zeng, S. McDonald, K. Nogita, Development of high-temperature solders, Microelectronics Reliability, 52 (2012) 1306-1322.
[34] M. Hasan, Effect of alloying on mechanical and electrical properties of zinc-based high temperature solders, (2014).
[35] B. Saatçi, N. Maraşlı, M. Gündüz, Thermal conductivities of solid and liquid phases in Pb–Cd and Sn–Zn binary eutectic alloys, Thermochimica Acta, 454 (2007) 128-134.
[36] K.L. Lin, T.P. Liu, High-temperature oxidation of a Sn-Zn-Al solder, Oxidation of metals, 50 (1998) 255-267.
[37] D.J. Fisher, Transient Liquid Phase Bonding, Materials Research Forum LLC, 2019.
[38] M. Locatelli, B. Dalgleish, K. Nakashima, A. Tomsia, A. Glaeser, New approaches to joining ceramics for high-temperature applications, Ceramics International, 23 (1997) 313-322.
[39] X. Cai, Y. Wang, Z. Yang, D. Wang, Y. Liu, Transient liquid phase (TLP) bonding of Ti2AlNb alloy using Ti/Ni interlayer: microstructure characterization and mechanical properties, Journal of Alloys and compounds, 679 (2016) 9-17.
[40] V. Jalilvand, H. Omidvar, H. Shakeri, M. Rahimipour, A study on the effect of process parameters on the properties of joint in TLP-bonded inconel 738LC superalloy, Metallurgical and Materials Transactions B, 44 (2013) 1222-1231.
[41] V. Maleki, H. Omidvar, M.R. Rahimipour, Influences of gap size and cyclic-thermal-shock treatment on mechanical properties of TLP bonded IN-738LC superalloy, Transactions of Nonferrous Metals Society of China, 28 (2018) 920-930.
[42] L. Sun, M.h. Chen, L. Zhang, Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints, Journal of Alloys and Compounds, 786 (2019) 677-687.
[43] H. Chen, T. Hu, M. Li, Z. Zhao, Cu@ Sn core–shell structure powder preform for high-temperature applications based on transient liquid phase bonding, IEEE Transactions on Power Electronics, 32 (2016) 441-451.
[44] H. Kang, A. Sharma, J.P. Jung, Recent progress in transient liquid phase and wire bonding technologies for power electronics, Metals, 10 (2020) 934.
[45] W. MacDonald, T. Eagar, Transient liquid phase bonding, Annual review of materials science, 22 (1992) 23-46.
[46] G. Crotwell, E. Knerr, W. Valka, C. Miller, Prototype Development of a TLP Production Riser Tieback Connector, Offshore Technology Conference, OTC, 1985, pp. OTC-4982-MS.
[47] G.O. Cook III, C.D. Sorensen, Overview of transient liquid phase and partial transient liquid phase bonding, Journal of materials science, 46 (2011) 5305-5323.
[48] O. Mokhtari, A review: Formation of voids in solder joint during the transient liquid phase bonding process-Causes and solutions, Microelectronics Reliability, 98 (2019) 95-105.
[49] L. Yang, Y. Xu, Y. Zhang, K. Lu, J. Qiao, Y. Yang, F. Xu, H. Gao, Effect of bonding time on the microstructure and shear property of Cu/SAC-15Ag/Cu 3D package solder joint fabricated by TLP, Journal of Materials Science: Materials in Electronics, 32 (2021) 8387-8395.
[50] Y.S. Tang, Y.J. Chang, K.N. Chen, Wafer-level Cu–Cu bonding technology, Microelectronics Reliability, 52 (2012) 312-320.
[51] W. Yang, M. Akaike, M. Fujino, T. Suga, A combined process of formic acid pretreatment for low-temperature bonding of copper electrodes, ECS Journal of Solid State Science and Technology, 2 (2013) P271.
[52] H. Park, S.E. Kim, Two-step plasma treatment on copper surface for low-temperature Cu thermo-compression bonding, IEEE Transactions on Components, Packaging and Manufacturing Technology, 10 (2019) 332-338.
[53] T. Kim, M. Howlader, T. Itoh, T. Suga, Room temperature Cu–Cu direct bonding using surface activated bonding method, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 21 (2003) 449-453.
[54] A. Sanz-Velasco, C. Rusu, I. Ferain, C. Colinge, M. Goorsky, Low-Temperature Direct Wafer Bonding, (2012).
[55] C. Okoro, J.W. Lau, F. Golshany, K. Hummler, Y.S. Obeng, A detailed failure analysis examination of the effect of thermal cycling on Cu TSV reliability, IEEE Transactions on Electron Devices, 61 (2013) 15-22.
[56] C.M. Liu, H.W. Lin, Y.S. Huang, Y.C. Chu, C. Chen, D.R. Lyu, K.N. Chen, K.N. Tu, Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu, Scientific reports, 5 (2015) 9734.
[57] H. Yan, P. Liang, Y. Mei, Z. Feng, Brief review of silver sinter-bonding processing for packaging high-temperature power devices, Chinese Journal of Electrical Engineering, 6 (2020) 25-34.
[58] H. Zhang, J. Minter, N.C. Lee, A brief review on high-temperature, Pb-free die-attach materials, Journal of Electronic Materials, 48 (2019) 201-210.
[59] Z. Fang, H. Wang, Densification and grain growth during sintering of nanosized particles, International Materials Reviews, 53 (2008) 326-352.
[60] P. Grammatikopoulos, M. Sowwan, J. Kioseoglou, Computational modeling of nanoparticle coalescence, Advanced Theory and Simulations, 2 (2019) 1900013.
[61] C. Wang, G. Li, L. Xu, J. Li, D. Zhang, T. Zhao, R. Sun, P. Zhu, Low temperature sintered silver nanoflake paste for power device packaging and its anisotropic sintering mechanism, ACS applied electronic materials, 3 (2021) 5365-5373.
[62] J. Yan, A review of sintering-bonding technology using Ag nanoparticles for electronic packaging, Nanomaterials, 11 (2021) 927.
[63] K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Low-temperature low-pressure die attach with hybrid silver particle paste, Microelectronics Reliability, 52 (2012) 375-380.
[64] H. Zhang, K. Suganuma, Sintered Silver for LED Applications, Die-Attach Materials for High Temperature Applications in Microelectronics Packaging: Materials, Processes, Equipment, and Reliability, (2019) 35-65.
[65] A. Deb, A.K. Chatterjee, The electronic structure and chemical bonding mechanism of silver oxide, Journal of Physics: Condensed Matter, 10 (1998) 11719.
[66] T. Matsuda, K. Inami, K. Motoyama, T. Sano, A. Hirose, Silver oxide decomposition mediated direct bonding of silicon-based materials, Scientific reports, 8 (2018) 10472.
[67] F. Mu, Z. Zhao, G. Zou, H. Bai, A. Wu, L. Liu, D. Zhang, Y.N. Zhou, Mechanism of low temperature sintering-bonding through in-situ formation of silver nanoparticles using silver oxide microparticles, Materials Transactions, 54 (2013) 872-878.
[68] S. Takata, T. Ogura, E. Ide, T. Morita, A. Hirose, Effects of solvents in the polyethylene glycol series on the bonding of copper joints using Ag 2 O paste, Journal of electronic materials, 42 (2013) 507-515.
[69] S.k. Lin, S. Nagao, E. Yokoi, C. Oh, H. Zhang, Y.C. Liu, S.G. Lin, K. Suganuma, Nano-volcanic eruption of silver, Scientific reports, 6 (2016) 34769.
[70] K.S. Siow, Are sintered silver joints ready for use as interconnect material in microelectronic packaging?, Journal of electronic materials, 43 (2014) 947-961.
[71] F. Yang, B. Hu, Y. Peng, C. Hang, H. Chen, C. Lee, J. Wei, M. Li, Ag microflake-reinforced nano-Ag paste with high mechanical reliability for high-temperature applications, Journal of Materials Science: Materials in Electronics, 30 (2019) 5526-5535.
[72] I. Radu, D. Landru, G. Gaudin, G. Riou, C. Tempesta, F. Letertre, L.D. Cioccio, P. Gueguen, T. Signamarcheix, C. Euvrard, Recent Developments of Cu-Cu non-thermo compression bonding for wafer-to-wafer 3D stacking, 2010 IEEE International 3D Systems Integration Conference (3DIC), IEEE, 2010, pp. 1-6.
[73] L.D. Carro, Sintering of copper nanoparticle pastes for microelectronic packaging, ETH Zurich, 2018.
[74] Y. Mou, H. Wang, Y. Peng, H. Cheng, Q. Sun, M. Chen, Enhanced heat dissipation of high-power light-emitting diodes by Cu nanoparticle paste, IEEE Electron Device Letters, 40 (2019) 949-952.
[75] W. Liu, H. Wang, K.S. Huang, C.M. Wang, A.T. Wu, Low temperature and pressureless Cu-to-Cu direct bonding by green synthesized Cu nanoparticles, Journal of the Taiwan Institute of Chemical Engineers, 125 (2021) 394-401.
[76] D. Ishikawa, H. Nakako, Y. Kawana, C. Sugama, M. Negishi, Y. Ejiri, S. Ueda, B.N. An, H. Wurst, B. Leyrer, Copper die-bonding sinter paste: Sintering and bonding properties, 2018 7th Electronic System-Integration Technology Conference (ESTC), IEEE, 2018, pp. 01-10.
[77] H. Ren, F. Mu, S. Shin, L. Liu, G. Zou, T. Suga, Low temperature Cu bonding with large tolerance of surface oxidation, AIP Advances, 9 (2019).
[78] X. Liu, H. Nishikawa, Low-pressure Cu-Cu bonding using in-situ surface-modified microscale Cu particles for power device packaging, Scripta materialia, 120 (2016) 80-84.
[79] Y. Gao, W. Li, C. Chen, H. Zhang, J. Jiu, C.F. Li, S. Nagao, K. Suganuma, Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere, Materials & Design, 160 (2018) 1265-1272.
[80] Y. Mou, Y. Peng, Y. Zhang, H. Cheng, M. Chen, Cu-Cu bonding enhancement at low temperature by using carboxylic acid surface-modified Cu nanoparticles, Materials Letters, 227 (2018) 179-183.
[81] J. Li, C. Cheng, T. Shi, J. Fan, X. Yu, S. Cheng, G. Liao, Z. Tang, Surface effect induced Cu-Cu bonding by Cu nanosolder paste, Materials Letters, 184 (2016) 193-196.
[82] J. Yeom, S. Nagao, C. Chen, T. Sugahara, H. Zhang, C. Choe, C.F. Li, K. Suganuma, Ag particles for sinter bonding: Flakes or spheres?, Applied Physics Letters, 114 (2019).
[83] S. Soichi, K. Suganuma, Low-temperature and low-pressure die bonding using thin Ag-flake and Ag-particle pastes for power devices, IEEE Transactions on Components, Packaging and Manufacturing Technology, 3 (2013) 923-929.
[84] J. Sopousek, J. Bursik, J. Zalesak, Z. Pesina, Silver nanoparticles sintering at low temperature on a copper substrate: In situ characterization under inert atmosphere and air, Journal of Mining and Metallurgy, Section B: Metallurgy, 48 (2012) 63-71.
[85] Y. Gao, H. Zhang, W. Li, J. Jiu, S. Nagao, T. Sugahara, K. Suganuma, Die bonding performance using bimodal Cu particle paste under different sintering atmospheres, Journal of Electronic Materials, 46 (2017) 4575-4581.
[86] S.K. Volkman, S. Yin, T. Bakhishev, K. Puntambekar, V. Subramanian, M.F. Toney, Mechanistic studies on sintering of silver nanoparticles, Chemistry of Materials, 23 (2011) 4634-4640.
[87] R. Gao, Die-attach Bonding Process Using Metallic, 博士論文, 2021.
[88] C.J. Du, X. Li, Y.H. Mei, G.Q. Lu, Bonding performance of sintered nanosilver joints on bare copper substrates with different grain structures, Journal of Materials Science: Materials in Electronics, 30 (2019) 12860-12868.
[89] T. Martens, M.L. Mears, Direct Sinter Bonding of Metal Injection-Molded Parts to Solid Substrate Through Use of Deformable Surface Microfeatures, Journal of Micro and Nano-Manufacturing, 1 (2013) 011008.
[90] M. Wang, Y. Mei, W. Hu, X. Li, G.Q. Lu, Pressureless sintered-silver as die attachment for bonding Si and SiC chips on silver, gold, copper, and nickel metallization for power electronics packaging: the practice and science, IEEE Journal of Emerging and Selected Topics in Power Electronics, 10 (2022) 2645-2655.
[91] M. Wang, Y. Mei, X. Li, R. Burgos, D. Boroyevich, G.Q. Lu, How to determine surface roughness of copper substrate for robust pressureless sintered silver in air, Materials Letters, 228 (2018) 327-330.
[92] C. Du, X. Li, Y. Mei, Study on Bonding Strength of Sintered Nano-silver Joints on Bare Copper Substrates with Different Grain Sizes, 2018 19th International Conference on Electronic Packaging Technology (ICEPT), IEEE, 2018, pp. 176-179.
[93] Z. Wei, W. Jiang, M. Song, C. Xiao, S.T. Tu, Effects of element diffusion on microstructure evolution and residual stresses in a brazed joint: Experimental and numerical modeling, Materialia, 4 (2018) 540-548.
[94] F.Z. Xuan, S.S. Shao, Z. Wang, S.T. Tu, Influence of residual stress on diffusion-induced bending in bilayered microcantilever sensors, Thin Solid Films, 518 (2010) 4345-4350.
[95] A. Horsfall, J.D. Santos, S. Soare, N. Wright, A. O′neill, S. Bull, A. Walton, A. Gundlach, J. Stevenson, Direct measurement of residual stress in sub-micron interconnects, semiconductor science and technology, 18 (2003) 992.
[96] T.M.D. Dang, T.T.T. Le, E. Fribourg-Blanc, M.C. Dang, Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method, Advances in Natural Sciences: Nanoscience and Nanotechnology, 2 (2011) 015009.
[97] A. Khan, A. Rashid, R. Younas, R. Chong, A chemical reduction approach to the synthesis of copper nanoparticles, International Nano Letters, 6 (2016) 21-26.
[98] W. Liu, 綠色還原法合成奈米銅粒子應用於低溫無壓銅對銅直接接合技術, National Central University, 2021.
[99] P. Khanna, S. Gaikwad, P. Adhyapak, N. Singh, R. Marimuthu, Synthesis and characterization of copper nanoparticles, Materials Letters, 61 (2007) 4711-4714.
[100] D. Field, L. Bradford, M. Nowell, T. Lillo, The role of annealing twins during recrystallization of Cu, Acta materialia, 55 (2007) 4233-4241.
[101] C.H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin solid films, 418 (2002) 73-78.
[102] W. Tyson, W. Miller, Surface free energies of solid metals: Estimation from liquid surface tension measurements, Surface Science, 62 (1977) 267-276.
[103] W. Seith, Diffusion of metals: exchange reactions, US Atomic Energy Commission, Division of Technical Information Extension, 1962.
[104] R. Ouyang, J.X. Liu, W.X. Li, Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions, Journal of the American Chemical Society, 135 (2013) 1760-1771.
[105] V. Gorshkov, V. Kuzmenko, V. Privman, Mechanisms of interparticle bridging in sintering of dispersed nanoparticles, Journal of Coupled Systems and Multiscale Dynamics, 2 (2014) 91-99.
[106] H. Zhu, Sintering processes of two nanoparticles: a study by molecular dynamics simulations, Philosophical Magazine Letters, 73 (1996) 27-33. |