博碩士論文 111324083 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.17.176.234
姓名 蔡亦林(I-Lin Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 製備不同形貌銅金屬奈米線結構陣列及其散熱性能之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要分成兩個部分進行研究,第一部分為利用陽極氧化鋁奈米模板製備準
直型及分岔型兩種不同型貌之銅金屬奈米線結構,而第二部分為探討所製備出之銅金
屬奈米線結構做為微型散熱元件之散熱性能分析。本研究利用單次及兩次陽極氧化處
理法製備出大面積奈米孔洞且具有不同通道型貌之陽極氧化鋁奈米模板,其中以草酸
電解液進行單次陽極氧化處理可製備出準直型之通道並具有約 51 nm 之孔徑,而以磷
酸及草酸電解液進行兩次陽極氧化處理可製備出不同孔徑大小之分岔型通道,其孔徑
大小分別以磷酸及草酸電解液製備出約 200 nm 及 49 nm 之孔徑。此外,本研究利用
電化學降電壓法成功減薄及移除陽極氧化鋁奈米模板底部之阻障層,進一步結合電化
學沉積法直接於鋁基材上製備出準直型及分岔型銅金屬奈米線,且為了提升微型散熱
元件之散熱能力進一步導入鹼性蝕刻製程技術,蝕刻部分陽極氧化鋁模板並保留金屬
奈米線根部的氧化鋁做為結構保護固定層,以提升散熱元件之比表面積及可撓曲性質。
經由穿透式電子顯微鏡 (TEM) 影像及其相對應之電子選區繞射 (SAED) 鑑定分析
可得知所製備出之大尺寸銅金屬奈米線與小尺寸銅金屬奈米線皆為單晶 FCC 晶體結
構。
在散熱性能分析方面,本研究將上述兩種型貌之銅金屬奈米線結構於自然對流及
強制對流環境下進行熱流計算以分析其降溫效果,再進一步將其結構應用於熱電元件
上分析其提升之輸出性能,根據不同的對流環境對於元件的散熱效果皆有所影響,最
後經由量測後發現蝕刻部分陽極氧化鋁模板的分岔型銅金屬奈米線結構由於其克服
準直型銅金屬奈米線頂部叢聚導致散熱不佳的缺點,具有較佳的降溫效果及優異的熱
電元件輸出電壓。另外,此元件也具備良好的彎曲能力,於曲率半徑 2.5 cm 的操作情
況下具有更優異之比表面積,相對於未彎曲狀態下擁有更加的散熱效果,因此本研究
提出之新穎製程可以達到優化散熱元件性能之目的。
摘要(英) This study consists of two parts. The first part involves creating aligned and branched
copper nanowires using anodic aluminum oxide (AAO) templates. The second part analyzes
the thermal performance of these nanowires as micro heat sink devices. Large-area AAO
templates with different channel morphologies were prepared using one-step and two-step
anodization processes. One-step anodization in oxalic acid produced aligned channels with
about 51 nm pore size, while two-step anodization in phosphoric and oxalic acids produced
branched channels with pore sizes of about 200 nm and 49 nm. The bottom barrier layer of
the AAO templates was thinned and removed using electrochemical reduction, allowing
direct deposition of copper nanowires onto the aluminum substrate. To enhance heat
dissipation, alkaline etching was used to partially etch the AAO template, preserving the
aluminum oxide layer at the root of the nanowires for structural support, increasing the
specific surface area and flexibility. Thermal performance was evaluated under natural and
forced convection. The branched nanowire structure, with partially etched AAO templates,
showed better cooling effects and thermoelectric output compared to the aligned structure,
which suffered from poor heat dissipation due to clustering. The branched structure also
demonstrated excellent bending capability, showing improved specific surface area and heat
dissipation under a curvature radius of 2.5 cm. Therefore, the novel process proposed
effectively optimizes heat dissipation device performance.
關鍵字(中) ★ 陽極氧化鋁奈米模板
★ 電化學沉積技術
★ 微型散熱元件
關鍵字(英) ★ Anodized Aluminum Oxide Nanotemplates
★ Electrochemical deposition
★ Micro heat sink
論文目次 目錄
第一章 前言及文獻回顧............................................................................................. 1
1-1 前言................................................................................................................. 1
1-2 電子元件之熱效應及熱管理......................................................................... 2
1-3 散熱元件種類及製備方式............................................................................. 3
1-3-1 傳統大型式散熱元件.......................................................................... 3
1-3-2 微型式散熱元件與結構設計.............................................................. 5
1-4 一維金屬奈米線結構..................................................................................... 6
1-4-1 一維金屬奈米線結構之製備.............................................................. 7
1-4-2 具有可撓曲基板之一維金屬奈米線結構之製備.............................. 9
1-5 陽極氧化鋁奈米模板................................................................................... 10
1-5-1 陽極氧化鋁奈米模板發展背景........................................................ 10
1-5-2 陽極氧化鋁奈米模板成長機制........................................................ 11
1-5-3 陽極氧化鋁奈米模板成長控制變因................................................ 13
1-5-4 多樣通道形貌之陽極氧化鋁奈米模板製程.................................... 15
1-6 陽極氧化鋁奈米模板法結合電化學沉積法製備可撓曲一維金屬奈米線結構
............................................................................................................................. 17
1-7 研究動機及目標........................................................................................... 18
第二章 實驗步驟及儀器設備................................................................................... 19
2-1 陽極氧化鋁奈米模板製程........................................................................... 19
2-1-1 高純度金屬鋁片之前處理................................................................ 19
2-1-2 高純度鋁片之電化學平坦化處理.................................................... 20
2-1-3 製備陽極氧化試片工作電極............................................................ 20
2-1-4 以磷酸製備準直型通道陽極氧化鋁奈米模板................................ 21
2-1-5 以草酸製備準直型通道陽極氧化鋁奈米模板................................ 21
2-1-6 以磷酸及草酸製備分岔型通道陽極氧化鋁奈米模板.................... 22
2-2 電化學沉積法製備一維銅金屬奈米線結構............................................... 23
2-3 實驗設備....................................................................................................... 24
2-3-1 陽極氧化鋁奈米模板製備系統........................................................ 24
2-3-2 電化學沉積系統................................................................................ 24
2-3-3 微型散熱元件散熱性能分析系統.................................................... 25
2-4 試片分析....................................................................................................... 26
2-4-1 掃描式電子顯微鏡............................................................................ 26
2-4-2 穿透式電子顯微鏡............................................................................ 26
第三章 結果與討論................................................................................................... 28
3-1 高純度鋁片電化學平坦化形貌分析........................................................... 28
3-2 陽極氧化鋁模板之製備............................................................................... 29
3-2-1 濕式蝕刻法移除阻障層製備準直型通道陽極氧化鋁奈米模板.... 30
3-2-2 電化學降電壓法移除阻障層製備準直型通道陽極氧化鋁奈米模板32
3-2-3 陽極氧化時間與氧化鋁奈米模板生成速率之關係....................... 34
3-2-4 電化學降電壓法移除阻障層製備分岔型通道陽極氧化鋁奈米模板35
3-3 陽極氧化鋁模板結合電化學沉積法製備銅金屬奈米線結構................... 37
3-3-1 直流電鍍法製備銅金屬奈米線........................................................ 37
3-3-2 脈衝電鍍法製備銅金屬奈米線........................................................ 38
3-3-3 鹼性蝕刻法製備可撓曲微型銅金屬奈米線結構陣列.................... 40
3-3-4 銅金屬奈米線之形貌與結構分析................................................... 40
3-4 可撓曲微型銅金屬奈米線散熱元件之散熱效能分析............................... 41
3-4-1 自然對流環境下可撓曲微型銅金屬奈米線散熱元件之降溫效能分析
..................................................................................................................... 41
3-4-2 強制對流環境下可撓曲微型銅金屬奈米線散熱元件之降溫效能分析
..................................................................................................................... 43
3-4-3 可撓曲微型銅金屬奈米線散熱元件對熱電元件輸出性能提升分析44
3-5 可撓曲微型銅金屬奈米線散熱元件於彎曲表面之散熱性能分析........... 47
第四章 結論與未來展望........................................................................................... 49
4-1 結論............................................................................................................... 49
4-2 未來展望....................................................................................................... 50
參考文獻..................................................................................................................... 51
圖目錄......................................................................................................................... 60
參考文獻 [1] R. Ekiciler, M.S.A. Çetinkaya, K. Arslan, "Heat transfer enhancement in an equilateral
triangular duct by using an Al 2 O 3/water nanofluid: Effect of nanoparticle shape and
volume fraction", Heat Transfer Research, 51 (2020).
[2] M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L.M. Liz-Marzán, "Shape control in gold
nanoparticle synthesis", Colloidal Synthesis of Plasmonic Nanometals, (2020) 197-220.
[3] D.A. Vajner, L. Rickert, T. Gao, K. Kaymazlar, T. Heindel, "Quantum communication
using semiconductor quantum dots", Advanced Quantum Technologies, 5 (2022)
2100116.
[4] A. Kaur, K. Pandey, R. Kaur, N. Vashishat, M. Kaur, "Nanocomposites of carbon quantum
dots and graphene quantum dots: environmental applications as sensors", Chemosensors,
10 (2022) 367.
[5] C.-C. Chuang, H.-C. Chu, S.-B. Huang, W.-S. Chang, H.-Y. Tuan, "Laser-induced
plasmonic heating in copper nanowire fabric as a photothermal catalytic reactor",
Chemical Engineering Journal, 379 (2020) 122285.
[6] D. Storan, S.A. Ahad, R. Forde, S. Kilian, T.E. Adegoke, T. Kennedy, H. Geaney, K.M.
Ryan, "Silicon nanowire growth on carbon cloth for flexible Li-ion battery anodes",
Materials Today Energy, 27 (2022) 101030.
[7] X. Hu, G. Chen, Z. Sheng, Y. Chen, D. Xu, X. Xu, "Chiral ZnO-CuO Nanorod Arrays for
Circularly Polarized Photodetection", ACS Applied Nano Materials, (2024).
[8] N. Berger, A. Laghrissi, Y.Y. Tay, T. Sritharan, J. Fiutowski, H.-G. Rubahn, M. Es-Souni,
"Formation of Si Nanorods and Discrete Nanophases by Axial Diffusion of Si from
Substrate into Au and AuPt Nanoalloy Nanorods", Nanomaterials, 10 (2020) 68.
[9] D. Verma, H. Rai, N.N. Gosvami, V. Balakrishnan, "Frictional Behavior of AluminaCoated Vertically Aligned Carbon Nanotube Forests: Implications for Micro and Nano
Electromechanical Devices", ACS Applied Nano Materials, 5 (2022) 8484-8490.
[10] M. Venkata Kamalakar, A.K. Raychaudhuri, "A novel method of synthesis of dense
arrays of aligned single crystalline copper nanotubes using electrodeposition in the
presence of a rotating electric field", Advanced Materials, 20 (2008) 149-154.
[11] N. Ulrich, A. Spende, L. Burr, N. Sobel, I. Schubert, C. Hess, C. Trautmann, M.E.
Toimil-Molares, "Conical nanotubes synthesized by atomic layer deposition of Al2O3,
TiO2, and SiO2 in etched ion-track nanochannels", Nanomaterials, 11 (2021) 1874.
[12] W. Zhang, J. Zhang, P. Wu, G. Chai, R. Huang, F. Ma, F. Xu, H. Cheng, Y. Chen, X. Ni,
"Parallel aligned nickel nanocone arrays for multiband microwave absorption", ACS
applied materials & interfaces, 12 (2020) 23340-23346.
[13] W. Tao, D. Pan, Z. Gong, X. Peng, "Nanoporous platinum electrode grown on anodic
aluminum oxide membrane: Fabrication, characterization, electrocatalytic activity
toward reactive oxygen and nitrogen species", Analytica Chimica Acta, 1035 (2018) 44-
50.
[14] G. Brindha, M. Mathankumar, J.-Y. Lin, S. Govindan, "Enhanced electrocatalytic
performance of electrodeposited NiCu alloy as an efficient Bi-functional electrode by
prolonged potentiostatic activation", Journal of Energy Storage, 71 (2023) 107996.
[15] B.T. Diroll, R.D. Schaller, "Intersubband Relaxation in CdSe Colloidal Quantum Wells",
ACS nano, 14 (2020) 12082-12090.
[16] H. Tidjani, A. Tosato, A. Ivlev, C. Déprez, S. Oosterhout, L. Stehouwer, A. Sammak, G.
Scappucci, M. Veldhorst, "Vertical gate-defined double quantum dot in a strained
germanium double quantum well", Physical Review Applied, 20 (2023) 054035.
[17] B.P.V. Kumar, N.M. Sharma, K.L. Kishore, N. Goel, 2012 Asia Pacific Conference on
Postgraduate Research in Microelectronics and Electronics, IEEE2012, pp. 19-24.
[18] K. Pierściński, D. Pierścińska, M. Bugajski, C. Manz, M. Rattunde, "Investigation of
thermal management in optically pumped, antimonide VECSELs", Microelectronics
journal, 40 (2009) 558-561.
[19] H. Rho, Y.S. Jang, H. Bae, A.-N. Cha, S.H. Lee, J.-S. Ha, "Fanless, porous graphenecopper composite heat sink for micro devices", Scientific Reports, 11 (2021) 17607.
[20] P.I. Prodanov, 2020 21st International Symposium on Electrical Apparatus &
Technologies (SIELA), IEEE2020, pp. 1-4.
[21] J.A. Depiver, S. Mallik, E.H. Amalu, "Thermal fatigue life of ball grid array (BGA)
solder joints made from different alloy compositions", Engineering Failure Analysis,
125 (2021) 105447.
[22] C. Albanakis, K. Yakinthos, K. Kritikos, D. Missirlis, A. Goulas, P. Storm, "The effect
of heat transfer on the pressure drop through a heat exchanger for aero engine
applications", Applied Thermal Engineering, 29 (2009) 634-644.
[23] J. Li, L. Yang, "Recent Development of Heat Sink and Related Design Methods",
Energies, 16 (2023) 7133.
[24] https://www.winsharethermalloy.com/about-maintaining-the-heat-sink-in-new-energyvehicles-what-you-must-know.html.
[25] A. Genc, H. Dogan, I.B. Basyigit, S. Helhel, "A review of the emi effect on natural
convection heatsinks", IETE Journal of Research, 69 (2023) 3550-3560.
[26] I. Nazzal, T. Salem, R. Al Doury, IOP Conference Series: Materials Science and
Engineering, IOP Publishing2021, pp. 012087.
[27] M. Ha, S. Graham, "Development of a thermal resistance model for chip-on-board
packaging of high power LED arrays", Microelectronics Reliability, 52 (2012) 836-844.
[28] S. Lv, W. He, Q. Jiang, Z. Hu, X. Liu, H. Chen, M. Liu, "Study of different heat exchange
technologies influence on the performance of thermoelectric generators", Energy
Conversion and Management, 156 (2018) 167-177.
[29] S. Kang, D. Miller, J. Cennamo, International Electronic Packaging Technical
Conference and Exhibition2007, pp. 509-515.
[30] M. Maaza, T. Khamliche, M. Akbari, N. Kana, N. Tandjigora, P. Beukes, A. Genu, K.
Kaviyarasu, J. K. Cloete, M. Lekala, "A novel approach for engineering efficient
nanofluids by radiolysis", Scientific Reports, 12 (2022) 10767.
[31] D. Jang, S.-J. Park, S.-J. Yook, K.-S. Lee, "The orientation effect for cylindrical heat
sinks with application to LED light bulbs", International Journal of Heat and Mass
Transfer, 71 (2014) 496-502.
[32] CPU 銅金屬散熱器 https://www.trentonsystems.com/en-us/resource-hub/blog/what-isa-heat-sink.
[33] Liquid Metal Thermal Paste Explained & The Dangers Explored- 銀散熱器
https://digitaladvisor.com/cpu/liquid-thermal/.
[34] S. Lee, "Optimum design and selection of heat sinks", IEEE Transactions on
Components, Packaging, and Manufacturing Technology: Part A, 18 (1995) 812-817.
[35] V.Y. Lee, G. Henderson, A. Reip, T.G. Karayiannis, "Flow boiling characteristics in plain
and porous coated microchannel heat sinks", International Journal of Heat and Mass
Transfer, 183 (2022) 122152.
[36] D. Zhang, J. Liu, S. Sun, S. Huang, J. Bao, N. Wang, J. Liu, X. Lu, 2016 17th
International Conference on Electronic Packaging Technology (ICEPT), IEEE2016, pp.
1355-1359.
[37] X. Li, M. Fang, W. Wang, S. Guo, W. Liu, H. Liu, X. Wang, "Graphene heat dissipation
film for thermal management of hot spot in electronic device", Journal of Materials
Science: Materials in Electronics, 27 (2016) 7715-7721.
[38] J. Zhao, Y. Wang, G. Ding, Y. Sun, G. Wang, "Design, fabrication and measurement of
a microchannel heat sink with a pin-fin array and optimal inlet position for alleviating
the hot spot effect", Journal of Micromechanics and Microengineering, 24 (2014)
115013.
[39] H. Cho, H. Rho, J.H. Kim, S.-H. Chae, T.V. Pham, T.H. Seo, H.Y. Kim, J.-S. Ha, H.C.
Kim, S.H. Lee, "Graphene–carbon–metal composite film for a flexible heat sink", ACS
applied materials & interfaces, 9 (2017) 40801-40809.
[40] M. Goyal, "Shape, size and phonon scattering effect on the thermal conductivity of
nanostructures", Pramana, 91 (2018) 1-5.
[41] B. Fu, G. Tang, Y. Li, "Electron–phonon scattering effect on the lattice thermal
conductivity of silicon nanostructures", Physical Chemistry Chemical Physics, 19 (2017)
28517-28526.
[42] Z. Huang, M. Gao, T. Pan, Y. Zhang, B. Zeng, W. Liang, F. Liao, Y. Lin, "Microstructure
dependence of heat sink constructed by carbon nanotubes for chip cooling", Journal of
Applied Physics, 117 (2015).
[43] L. Micheli, K. Reddy, T.K. Mallick, "Experimental comparison of micro-scaled platefins and pin-fins under natural convection", International Communications in Heat and
Mass Transfer, 75 (2016) 59-66.
[44] H. Tang, H. Feng, H. Wang, X. Wan, J. Liang, Y. Chen, "Highly conducting MXene–
silver nanowire transparent electrodes for flexible organic solar cells", ACS applied
materials & interfaces, 11 (2019) 25330-25337.
[45] H. Kang, J.S. Kim, S.-R. Choi, Y.-H. Kim, D.H. Kim, J.-G. Kim, T.-W. Lee, J.H. Cho,
"Electroplated core–shell nanowire network electrodes for highly efficient organic lightemitting diodes", Nano Convergence, 9 (2022) 1-8.
[46] I. Cho, Y.C. Sim, M. Cho, Y.-H. Cho, I. Park, "Monolithic micro light-emitting
diode/metal oxide nanowire gas sensor with microwatt-level power consumption", ACS
sensors, 5 (2020) 563-570.
[47] M.B. Gebeyehu, T.F. Chala, S.-Y. Chang, C.-M. Wu, J.-Y. Lee, "Synthesis and highly
effective purification of silver nanowires to enhance transmittance at low sheet
resistance with simple polyol and scalable selective precipitation method", RSC
advances, 7 (2017) 16139-16148.
[48] B. Bari, J. Lee, T. Jang, P. Won, S.H. Ko, K. Alamgir, M. Arshad, L.J. Guo, "Simple
hydrothermal synthesis of very-long and thin silver nanowires and their application in
high quality transparent electrodes", Journal of Materials Chemistry A, 4 (2016) 11365-
11371.
[49] F. Qian, P.C. Lan, M.C. Freyman, W. Chen, T. Kou, T.Y. Olson, C. Zhu, M.A. Worsley,
E.B. Duoss, C.M. Spadaccini, "Ultralight conductive silver nanowire aerogels", Nano
letters, 17 (2017) 7171-7176.
[50] H.E. Lim, Y. Nakanishi, Z. Liu, J. Pu, M. Maruyama, T. Endo, C. Ando, H. Shimizu, K.
Yanagi, S. Okada, "Wafer-Scale Growth of One-Dimensional Transition-Metal Telluride
Nanowires", Nano Letters, 21 (2020) 243-249.
[51] H. Zeng, G. Zhang, K. Nagashima, T. Takahashi, T. Hosomi, T. Yanagida, "Metal–oxide
nanowire molecular sensors and their promises", Chemosensors, 9 (2021) 41.
[52] E.C. Walter, M.P. Zach, F. Favier, B.J. Murray, K. Inazu, J.C. Hemminger, R.M. Penner,
"Metal nanowire arrays by electrodeposition", ChemPhysChem, 4 (2003) 131-138.
[53] C. Xiang, S.-C. Kung, D.K. Taggart, F. Yang, M.A. Thompson, A.G. Guell, Y. Yang,
R.M. Penner, "Lithographically patterned nanowire electrodeposition: A method for
patterning electrically continuous metal nanowires on dielectrics", Acs Nano, 2 (2008)
1939-1949.
[54] F. Völklein, H. Reith, T. Cornelius, M. Rauber, R. Neumann, "The experimental
investigation of thermal conductivity and the Wiedemann–Franz law for single metallic
nanowires", Nanotechnology, 20 (2009) 325706.
[55] K. Kamiya, K. Kayama, M. Nobuoka, S. Sakaguchi, T. Sakurai, M. Kawata, Y. Tsutsui,
M. Suda, A. Idesaki, H. Koshikawa, "Ubiquitous organic molecule-based free-standing
nanowires with ultra-high aspect ratios", Nature Communications, 12 (2021) 4025.
[56] J.I. Lee, S.H. Cho, S.-M. Park, J.K. Kim, J.K. Kim, J.-W. Yu, Y.C. Kim, T.P. Russell,
"Highly aligned ultrahigh density arrays of conducting polymer nanorods using block
copolymer templates", Nano letters, 8 (2008) 2315-2320.
[57] E. Bertero, C.V. Manzano, G. Bürki, L. Philippe, "Stainless steel-like FeCrNi
nanostructures via electrodeposition into AAO templates using a mixed-solvent Cr (III)-
based electrolyte", Materials & Design, 190 (2020) 108559.
[58] A. Ganapathi, P. Swaminathan, L. Neelakantan, "Anodic aluminum oxide template
assisted synthesis of copper nanowires using a galvanic displacement process for
electrochemical denitrification", ACS Applied Nano Materials, 2 (2019) 5981-5988.
[59] W. Wang, N. Li, X. Li, W. Geng, S. Qiu, "Synthesis of metallic nanotube arrays in porous
anodic aluminum oxide template through electroless deposition", Materials research
bulletin, 41 (2006) 1417-1423.
[60] M. Irshad, F. Ahmad, N. Mohamed, M. Abdullah, "Preparation and structural
characterization of template assisted electrodeposited copper nanowires", International
Journal of Electrochemical Science, 9 (2014) 2548-2555.
[61] H.M. Elmoughni, O. Atalay, K. Ozlem, A.K. Menon, "Thermoelectric Clothing for Body
Heat Harvesting and Personal Cooling: Design and Fabrication of a Textile‐Integrated
Flexible and Vertical Device", Energy Technology, 10 (2022) 2200528.
[62] Y. Eom, D. Wijethunge, H. Park, S.H. Park, W. Kim, "Flexible thermoelectric power
generation system based on rigid inorganic bulk materials", Applied energy, 206 (2017)
649-656.
[63] Y. Pang, R. Chandrasekar, "Cylindrical and spherical membranes of anodic aluminum
oxide with highly ordered conical nanohole arrays", Natural Science, 7 (2015) 232.
[64] S. Yun, S.-J. Kim, J. Youn, H. Kim, J. Ryu, C. Bae, K. No, S. Hong, "Flexible 3D
Electrodes of Free-Standing TiN Nanotube Arrays Grown by Atomic Layer Deposition
with a Ti Interlayer as an Adhesion Promoter", Nanomaterials, 10 (2020) 409.
[65] Y. Li, J. Xu, H. Liu, J. Song, Y. Li, B. Cheng, J. Li, X. Li, "A template/electrochemical
deposition method for fabricating silver nanorod arrays based on porous anodic
alumina", Nanomaterials and Nanotechnology, 7 (2017) 1847980417717543.
[66] C. Hong, T. Tang, R. Pan, W. Fang, 2011 IEEE 24th International Conference on Micro
Electro Mechanical Systems, IEEE2011, pp. 107-110.
[67] C. Hong, W. Fang, B.-Y. Shew, 2013 International Conference on Optical MEMS and
Nanophotonics (OMN), IEEE2013, pp. 135-136.
[68] N. Guan, N. Amador-Mendez, A. Kunti, A. Babichev, S. Das, A. Kapoor, N. Gogneau,
J. Eymery, F.H. Julien, C. Durand, "Heat dissipation in flexible nitride nanowire lightemitting diodes", Nanomaterials, 10 (2020) 2271.
[69] X. Li, P. Li, Z. Wu, D. Luo, H.-Y. Yu, Z.-H. Lu, "Review and perspective of materials
for flexible solar cells", Materials Reports: Energy, 1 (2021) 100001.
[70] C. Jeong, J. Jung, K. Sheppard, C.-H. Choi, "Control of the Nanopore Architecture of
Anodic Alumina via Stepwise Anodization with Voltage Modulation and Pore
Widening", Nanomaterials, 13 (2023) 342.
[71] W. Tang, Z. Chen, Z. Song, C. Wang, Z.a. Wan, C.L.J. Chan, Z. Chen, W. Ye, Z. Fan,
"Microheater integrated nanotube array gas sensor for parts-per-trillion level gas
detection and single sensor-based gas discrimination", ACS nano, 16 (2022) 10968-
10978.
[72] A.G. Ricciardulli, S. Yang, G.J.A. Wetzelaer, X. Feng, P.W. Blom, "Hybrid silver
nanowire and graphene‐based solution‐processed transparent electrode for organic
optoelectronics", Advanced Functional Materials, 28 (2018) 1706010.
[73] J.L. Duan, D.Y. Lei, F. Chen, S.P. Lau, W.I. Milne, M. Toimil-Molares, C. Trautmann, J.
Liu, "Vertically-aligned single-crystal nanocone arrays: controlled fabrication and
enhanced field emission", ACS Applied Materials & Interfaces, 8 (2016) 472-479.
[74] F. Wang, X. Feng, N. Wang, H. Guan, S. Bian, X. Hao, Y. Chen, "In-situ grown nickelcobalt bimetallic nanowire arrays for efficient hydrogen evolution reaction", Colloids
and Surfaces A: Physicochemical and Engineering Aspects, 615 (2021) 126205.
[75] O. Jessensky, F. Müller, U. Gösele, "Self-organized formation of hexagonal pore arrays
in anodic alumina", Applied physics letters, 72 (1998) 1173-1175.
[76] G. Thompson, "Porous anodic alumina: fabrication, characterization and applications",
Thin solid films, 297 (1997) 192-201.
[77] A. Ruiz-Clavijo, O. Caballero-Calero, M. Martín-González, "Revisiting anodic alumina
templates: From fabrication to applications", Nanoscale, 13 (2021) 2227-2265.
[78] F. Li, L. Zhang, R.M. Metzger, "On the growth of highly ordered pores in anodized
aluminum oxide", Chemistry of materials, 10 (1998) 2470-2480.
[79] K. Chahrour, P. Choon Ooi, A.A. Hamzah, "Influence of the Voltage on Pore Diameter
and Growth Rate of Thin Anodic Aluminium Oxide (AAO) Pattern on Silicon Substrate",
Journal of Applied Sciences and Nanotechnology, 1 (2021) 10-15.
[80] A.-P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele, "Hexagonal pore arrays with a 50–
420 nm interpore distance formed by self-organization in anodic alumina", Journal of
applied physics, 84 (1998) 6023-6026.
[81] Y. Li, Y. Qin, S. Jin, X. Hu, Z. Ling, Q. Liu, J. Liao, C. Chen, Y. Shen, L. Jin, "A new
self-ordering regime for fast production of long-range ordered porous anodic aluminum
oxide films", Electrochimica Acta, 178 (2015) 11-17.
[82] M. Iwai, T. Kikuchi, R.O. Suzuki, "Self-ordered nanospike porous alumina fabricated
under a new regime by an anodizing process in alkaline media", Scientific reports, 11
(2021) 7240.
[83] W. Lee, S.-J. Park, "Porous anodic aluminum oxide: anodization and templated synthesis
of functional nanostructures", Chemical reviews, 114 (2014) 7487-7556.
[84] P. Michal, A. Vagaská, E. Fechová, M. Gombár, D. Kozak, "Effect of electrolyte
temperature on the thickness of anodic aluminium oxide (AAO) layer", Metalurgija, 55
(2016) 403-406.
[85] L. Zaraska, W.J. Stępniowski, E. Ciepiela, G.D. Sulka, "The effect of anodizing
temperature on structural features and hexagonal arrangement of nanopores in alumina
synthesized by two-step anodizing in oxalic acid", Thin Solid Films, 534 (2013) 155-
161.
[86] K.M. Chahrour, N.M. Ahmed, M. Hashim, N.G. Elfadill, W. Maryam, M. Ahmad, M.
Bououdina, "Effects of the voltage and time of anodization on modulation of the pore
dimensions of AAO films for nanomaterials synthesis", Superlattices and
Microstructures, 88 (2015) 489-500.
[87] L. Zaraska, G.D. Sulka, M. Jaskuła, "Anodic alumina membranes with defined pore
diameters and thicknesses obtained by adjusting the anodizing duration and pore
opening/widening time", Journal of Solid State Electrochemistry, 15 (2011) 2427-2436.
[88] U.S. Kim, J.W. Park, "High-quality surface finishing of industrial three-dimensional
metal additive manufacturing using electrochemical polishing", International Journal of
Precision Engineering and Manufacturing-Green Technology, 6 (2019) 11-21.
[89] A. Brudzisz, D. Rajska, M. Gajewska, G.D. Sulka, A. Brzózka, "Controlled synthesis
and characterization of AgPd nanowire arrays for electrocatalytic applications", Journal
of Electroanalytical Chemistry, 873 (2020) 114373.
[90] M. Guo, C. Cui, W. Yang, "Fabrication and magnetic properties of Tb–Fe–B nanotubes
prepared by electrochemical deposition", Journal of Materials Science: Materials in
Electronics, 31 (2020) 3976-3985.
[91] G. Meng, Y.J. Jung, A. Cao, R. Vajtai, P.M. Ajayan, "Controlled fabrication of
hierarchically branched nanopores, nanotubes, and nanowires", Proceedings of the
National Academy of Sciences, 102 (2005) 7074-7078.
[92] X. Li, G. Meng, Q. Xu, M. Kong, X. Zhu, Z. Chu, A.-P. Li, "Controlled synthesis of
germanium nanowires and nanotubes with variable morphologies and sizes", Nano
letters, 11 (2011) 1704-1709.
[93] L. Zaraska, E. Kurowska, G.D. Sulka, M. Jaskuła, "Porous alumina membranes with
branched nanopores as templates for fabrication of Y-shaped nanowire arrays", Journal
of Solid State Electrochemistry, 16 (2012) 3611-3619.
[94] G.D. Sulka, A. Brzózka, L. Liu, "Fabrication of diameter-modulated and ultrathin porous
nanowires in anodic aluminum oxide templates", Electrochimica Acta, 56 (2011) 4972-
4979.
[95] M.A. Zeeshan, R. Grisch, E. Pellicer, K.M. Sivaraman, K.E. Peyer, J. Sort, B. Özkale,
M.S. Sakar, B.J. Nelson, S. Pané, "Hybrid helical magnetic microrobots obtained by 3D
template‐assisted electrodeposition", Small, 10 (2014) 1284-1288.
[96] G. Williams, M. Hunt, B. Boehm, A. May, M. Taverne, D. Ho, S. Giblin, D. Read, J.
Rarity, R. Allenspach, "Two-photon lithography for 3D magnetic nanostructure
fabrication", Nano Research, 11 (2018) 845-854.
[97] M. Rauber, I. Alber, S. Müller, R. Neumann, O. Picht, C. Roth, A. Schökel, M.E. ToimilMolares, W. Ensinger, "Highly-ordered supportless three-dimensional nanowire
networks with tunable complexity and interwire connectivity for device integration",
Nano letters, 11 (2011) 2304-2310.
[98] T. da Câmara Santa Clara Gomes, N. Marchal, F. Abreu Araujo, Y. Velázquez Galván, J.
de la Torre Medina, L. Piraux, "Magneto-transport in flexible 3D networks made of
interconnected magnetic nanowires and nanotubes", Nanomaterials, 11 (2021) 221.
[99] M. Hunt, M. Taverne, J. Askey, A. May, A. Van Den Berg, Y.-L.D. Ho, J. Rarity, S. Ladak,
"Harnessing multi-photon absorption to produce three-dimensional magnetic structures
at the nanoscale", Materials, 13 (2020) 761.
[100] S. Ruiz-Gómez, C. Fernández-González, L. Perez, "Electrodeposition as a tool for
nanostructuring magnetic materials", Micromachines, 13 (2022) 1223.
[101] M.R. Lukatskaya, Y. Gogotsi, "Three-dimensional nanostructures from porous anodic
alumina", MRS Communications, 2 (2012) 51-54.
[102] A. Yadav, M. Bobji, S.J. Bull, "Controlled growth of highly aligned Cu nanowires by
pulse electrodeposition in nanoporous alumina", Journal of Nanoscience and
Nanotechnology, 19 (2019) 4254-4259.
[103] X. Zhao, S.-K. Seo, U.-J. Lee, K.-H. Lee, "Controlled electrochemical dissolution of
anodic aluminum oxide for preparation of open-through pore structures", Journal of the
Electrochemical Society, 154 (2007) C553.
[104] N. Winkler, J. Leuthold, Y. Lei, G. Wilde, "Large-scale highly ordered arrays of
freestanding magnetic nanowires", Journal of Materials Chemistry, 22 (2012) 16627-
16632.
[105] W. Cheng, M. Steinhart, U. Gösele, R.B. Wehrspohn, "Tree-like alumina nanopores
generated in a non-steady-state anodization", Journal of Materials Chemistry, 17 (2007)
3493-3495.
[106] W.J. Stępniowski, W. Florkiewicz, M. Michalska-Domańska, M. Norek, T. Czujko, "A
comparative study of electrochemical barrier layer thinning for anodic aluminum oxide
grown on technical purity aluminum", Journal of Electroanalytical Chemistry, 741
(2015) 80-86.
[107] M. Montero-Rama, A. Viterisi, C. Eckstein, J. Ferré-Borrull, L. Marsal, "In-situ
removal of thick barrier layer in nanoporous anodic alumina by constant current Reanodization", Surface and Coatings Technology, 380 (2019) 125039.
[108] C. Sousa, D. Leitao, M. Proenca, A. Apolinario, J. Correia, J. Ventura, J. Araujo,
"Tunning pore filling of anodic alumina templates by accurate control of the bottom
barrier layer thickness", Nanotechnology, 22 (2011) 315602.
[109] P.G. Schiavi, P. Altimari, A. Rubino, F. Pagnanelli, "Electrodeposition of cobalt
nanowires into alumina templates generated by one-step anodization", Electrochimica
Acta, 259 (2018) 711-722.
[110] C. Shuoshuo, L. Zhiyuan, H. Xing, Y. Hui, L. Yi, "Competitive growth of branched
channels inside AAO membranes", Journal of Materials Chemistry, 20 (2010) 1794-
1798.
[111] Y. Wang, C. Xu, X. Yu, H. Zhang, M. Han, "Multilayer flexible electronics:
Manufacturing approaches and applications", Materials Today Physics, 23 (2022)
100647.
[112] S. Wang, Y. Tian, C. Wang, C. Hang, H. Zhang, Y. Huang, Z. Zheng, "One-step
fabrication of copper nanopillar array-filled AAO films by pulse electrodeposition for
anisotropic thermal conductive interconnectors", ACS omega, 4 (2019) 6092-6096.
[113] S.A. El-Sayed, S.M. Mohamed, A.A. Abdel-latif, E.A. Abdel-hamid, "Experimental
study of heat transfer and fluid flow in longitudinal rectangular-fin array located in
different orientations in fluid flow", Experimental Thermal and Fluid Science, 29 (2004)
113-128.
[114] S. Chingulpitak, S. Wongwises, "A review of the effect of flow directions and behaviors
on the thermal performance of conventional heat sinks", International Journal of Heat and Mass Transfer, 81 (2015) 10-18.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2024-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明