博碩士論文 111324025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.135.208.76
姓名 何宗倫(Zong-Lun He)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 製備單晶鎳矽化物奈米管結構陣列及其自驅動近紅外光感測特性之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本研究中,我們在室溫下利用聚苯乙烯奈米球微影術結合金屬輔助電化學蝕刻法,在(001)矽晶基材上成功的以一步驟、低成本且安全的方式製備出大面積規則有序且準直排列之矽單晶奈米管陣列結構,藉由調控奈米球之尺寸大小與蝕刻時間可以分別控制矽單晶奈米管的外徑以及長度,接著以濺鍍沉積鎳金屬薄膜於矽單晶奈米管結構表面,再結合高溫熱處理製備出鎳矽化物奈米管陣列結構。藉由SEM、TEM與其相對應之電子選區繞射圖譜鑑定分析可證明所製備出之矽單晶奈米管結構及NiSi2奈米管結構之形貌及其單晶結構並具備高度準直性。
利用光譜儀量測上述結構其光學性質,從其結果可發現濺鍍鎳金屬薄膜於結構表面可改善矽晶基材於近紅外光波段之光吸收,且經由高溫熱處理形成鎳矽化物後又可進一步提升,因此以鎳矽化物為基礎,使用940 nm之近紅外光波段之光源照射,對所製備之矽基紅外光感測元件進行光感測性質量測,在不施加額外電壓下可展現自驅動感測特性,並分析探討近紅外光響應度、靈敏度及響應與恢復時間等特性。
摘要(英) In this study, we successfully fabricated large-area, well-ordered, and vertically aligned single-crystalline silicon nanotube arrays on (001) silicon substrates at room temperature using polystyrene nanosphere lithography combined with metal-assisted electrochemical etching. This method is a one-step, low-cost, and safe process. By adjusting the size of the nanospheres and the etching time, we could control the outer diameter and length of the silicon nanotubes, respectively. Subsequently, we deposited a nickel thin film onto the surface of the silicon nanotube structures via sputtering, followed by high-temperature annealing to produce nickel silicide nanotube arrays. The morphology and single-crystalline structure of the fabricated silicon nanotube structures and NiSi2 nanotube structures, as well as their high vertical alignment, were confirmed through SEM, TEM, and corresponding selected area electron diffraction (SAED) analysis.
Using a spectrometer, we measured the optical properties of the aforementioned structures. The results revealed that sputtering a nickel thin film onto the structure′s surface improved the silicon substrate′s light absorption in the near-infrared region. Moreover, after forming nickel silicide through high-temperature annealing, the light absorption further increased. Consequently, using nickel silicide as the basis, we used a 940 nm near-infrared light source to measure the photo-sensing properties of the fabricated silicon-based infrared photodetectors. These detectors exhibited self-powered sensing characteristics without the application of an external voltage. We analyzed and discussed the near-infrared responsivity, sensitivity, and response and recovery times of these photodetectors.
關鍵字(中) ★ 矽晶奈米管
★ 鎳矽化物
★ 近紅外光感測元件
關鍵字(英)
論文目次 第一章 前言及文獻回顧 1
1-1 前言 1
1-2 一維矽單晶奈米結構 2
1-2-1 一維矽單晶奈米線結構之製備及應用 2
1-2-2 一維矽單晶奈米管結構之製備及應用 4
1-3 電化學蝕刻法製備一維矽晶奈米結構 6
1-3-1 一維矽晶奈米孔洞製備 6
1-3-2電化學金屬催化蝕刻法製備一維矽晶奈米線結構 7
1-4 光感測元件 8
1-4-1 金屬與半導體接觸理論 8
1-4-2 蕭基接面之光感測機制 10
1-5 金屬矽化物 11
1-5-1金屬矽化物之製程與應用 11
1-5-2金屬矽化物之紅外線光感測應用 12
1-6 研究動機與目標 13
第二章 實驗步驟及儀器設備 15
2-1實驗步驟 15
2-1-1 矽單晶基材使用前處理 15
2-1-2 自組裝奈米球陣列模板製備 15
2-1-3 蒸鍍純金薄膜 15
2-1-4 電化學蝕刻製備矽單晶奈米線陣列 16
2-1-5 濕式化學蝕刻製備矽單晶奈米尖孔洞陣列 16
2-1-6 電化學蝕刻製備矽單晶奈米孔洞通道陣列 16
2-1-7 電化學蝕刻製備矽單晶奈米管陣列 17
2-1-8 鎳矽化物奈米管陣列製備 17
2-1-9 濺鍍純鋁薄膜 18
2-1-10 光感測元件之製備 18
2-2 試片分析 18
2-2-1掃描式電子顯微鏡 18
2-2-2 穿透式電子顯微鏡 19
2-2-3 可見光-近紅外光光譜儀 19
2-2-4 影像式水滴接觸角量測儀 20
2-2-5 近紅外光偵測系統 20
第三章 結果與討論 21
3-1 單層自組裝奈米球模板陣列製備 21
3-2 規則排列之矽單晶奈米線與奈米管陣列 22
3-2-1 奈米球微影術結合金屬輔助電化學蝕刻法製備矽單晶奈米線陣列 22
3-2-2 奈米球微影術結合濕式化學蝕刻法製備矽單晶奈米孔洞陣列 24
3-2-3電化學蝕刻法製備矽單晶奈米孔洞通道陣列 24
3-2-4 奈米球微影術結合金屬輔助電化學蝕刻法製備矽單晶奈米管陣列 25
3-2-5可見光-近紅外光積分球光譜儀分析 27
3-3 鎳矽化物奈米管陣列 28
3-3-1鎳矽化物奈米管陣列製備 28
3-3-2可見光-近紅外光量測與分析 30
3-4矽基蕭基近紅外光感測元件 31
3-4-1蕭基近紅外光感測元件之特性分析與探討 31
3-4-2 蕭基近紅外光感測元件之靈敏度、響應度與響應時間 34
第四章 結論與未來展望 37
參考文獻 38
表目錄 46
圖目錄 48
參考文獻 [1] G.E. Moore, "Cramming more components onto integrated circuits", Proceedings of the IEEE, 86 (1998) 82-85.
[2] O. Mohsen, A. Lueansaramwong, S. Valluri, V. Korampally, P. Piot, S. Chattopadhyay, "Field emission from silicon nanocones cathodes", 2018 IEEE Advanced Accelerator Concepts Workshop (AAC), (2018) 1-5.
[3] T. Basu, T. Som, "Probing local work function of electron emitting Si-nanofacets", Applied Surface Science, 418 (2017) 340-345.
[4] F. Xu, H. Wu, "Experimental study of water flow and heat transfer in silicon micro-pin-fin heat sinks", Journal of Heat Transfer, 140 (2018) 122401.
[5] Y. Zhang, A. Dembla, M.S. Bakir, "Silicon micropin-fin heat sink with integrated TSVs for 3-D ICs: Tradeoff analysis and experimental testing", IEEE Transactions on Components, Packaging and Manufacturing Technology, 3 (2013) 1842-1850.
[6] B. Shao, Z. Song, X. Chen, Y. Wu, Y. Li, C. Song, F. Yang, T. Song, Y. Wang, S.-T. Lee, "Bioinspired hierarchical nanofabric electrode for silicon hydrovoltaic device with record power output", ACS Nano, 15 (2021) 7472-7481.
[7] B. Shao, Y. Wu, X. Chen, Z. Song, Y. Li, Z. Hong, F. Yang, T. Song, Y. Wang, B. Sun, "Electron‐selective passivation contacts for high‐efficiency nanostructured silicon hydrovoltaic devices", Advanced Materials Interfaces, 8 (2021) 2101213.
[8] Y. Qin, Y. Wang, Y. Liu, "Vertically aligned silicon nanowires with rough surface and its NO 2 sensing properties", Journal of Materials Science: Materials in Electronics, 27 (2016) 11319-11324.
[9] C. Samanta, A. Ghatak, A. Raychaudhuri, B. Ghosh, "ZnO/Si nanowires heterojunction array-based nitric oxide (NO) gas sensor with noise-limited detectivity approaching 10 ppb", Nanotechnology, 30 (2019) 305501.
[10] Y. Zhai, Y. Li, J. Ji, Z. Wu, Q. Wang, "Hot electron generation in silicon micropyramids covered with nanometer-thick gold films for near-infrared photodetectors", ACS Applied Nano Materials, 3 (2020) 149-155.
[11] S. Li, Z. Pei, F. Zhou, Y. Liu, H. Hu, S. Ji, C. Ye, "Flexible Si/PEDOT: PSS hybrid solar cells", Nano Research, 8 (2015) 3141-3149.
[12] A.M. Itsuno, J.D. Phillips, S. Velicu, "Mid-wave infrared HgCdTe nBn photodetector", Applied Physics Letters, 100 (2012).
[13] P. Binetti, X. Leijtens, T. De Vries, Y. Oei, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, J. Van Campenhout, D. Van Thourhout, P. Van Veldhoven, "InP/InGaAs photodetector on SOI photonic circuitry", IEEE Photonics Journal, 2 (2010) 299-305.
[14] Y. An, A. Behnam, E. Pop, A. Ural, "Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions", Applied Physics Letters, 102 (2013).
[15] N. Van Toan, K. Ito, T.T.K. Tuoi, M. Toda, P.-H. Chen, M.F.M. Sabri, J. Li, T. Ono, "Micro-heat sink based on silicon nanowires formed by metal-assisted chemical etching for heat dissipation enhancement to improve performance of micro-thermoelectric generator", Energy Conversion and Management, 267 (2022) 115923.
[16] Y. Qin, Y. Wang, X. Sun, Y. Li, H. Xu, Y. Tan, Y. Li, T. Song, B. Sun, "Constant electricity generation in nanostructured silicon by evaporation‐driven water flow", Angewandte Chemie, 132 (2020) 10706-10712.
[17] F. Yu, G. Liu, Z. Chen, L. Zhang, X. Liu, Q. Zhang, L. Wu, X. Wang, "All-weather freshwater and electricity simultaneous generation by coupled solar energy and convection", ACS Applied Materials & Interfaces, 14 (2022) 40082-40092.
[18] Y. Qin, D. Liu, T. Zhang, Z. Cui, "Ultrasensitive silicon nanowire sensor developed by a special Ag modification process for rapid NH3 detection", ACS Applied Materials & Interfaces, 9 (2017) 28766-28773.
[19] S. Huang, B. Zhang, Y. Lin, C.-S. Lee, X. Zhang, "Compact biomimetic hair sensors based on single silicon nanowires for ultrafast and highly-sensitive airflow detection", Nano Letters, 21 (2021) 4684-4691.
[20] U. Ray, D. Banerjee, B. Das, N. Das, S. Sinha, K. Chattopadhyay, "Aspect ratio dependent cold cathode emission from vertically aligned hydrophobic silicon nanowires", Materials Research Bulletin, 97 (2018) 232-237.
[21] V. Kumar, S.K. Saxena, V. Kaushik, K. Saxena, A. Shukla, R. Kumar, "Silicon nanowires prepared by metal induced etching (MIE): good field emitters", RSC Advances, 4 (2014) 57799-57803.
[22] S.A. Moiz, A. Alahmadi, A.J. Aljohani, "Design of silicon nanowire array for PEDOT: PSS-silicon nanowire-based hybrid solar cell", Energies, 13 (2020) 3797.
[23] P. Yu, J. Wu, S. Liu, J. Xiong, C. Jagadish, Z.M. Wang, "Design and fabrication of silicon nanowires towards efficient solar cells", Nano Today, 11 (2016) 704-737.
[24] I. Mihalache, A. Radoi, R. Pascu, C. Romanitan, E. Vasile, M. Kusko, "Engineering graphene quantum dots for enhanced ultraviolet and visible light p-Si nanowire-based photodetector", ACS Applied Materials & Interfaces, 9 (2017) 29234-29247.
[25] C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, "Core–shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors", Acs Nano, 8 (2014) 4015-4022.
[26] S. Misra, L. Yu, W. Chen, M. Foldyna, P.R. i Cabarrocas, "A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells", Journal of Physics D: Applied Physics, 47 (2014) 393001.
[27] A. Uesugi, T. Horita, K. Sugano, Y. Isono, "Vapor–liquid–solid growth of silicon nanowires from surface nanoholes formed with metal-assisted chemical etching", Japanese Journal of Applied Physics, 60 (2021) 055502.
[28] D. Yu, Y. Xing, Q. Hang, H. Yan, J. Xu, Z. Xi, S.-Q. Feng, "Controlled growth of oriented amorphous silicon nanowires via a solid–liquid–solid (SLS) mechanism", Physica E: Low-dimensional Systems and Nanostructures, 9 (2001) 305-309.
[29] T. Nguyen, C.H. Hsu, D.H. Lien, Y.S. Su, "Economical Silicon Nanowire Growth via Cooling Controlled Solid–Liquid–Solid Mechanism", Advanced Materials Interfaces, 10 (2023) 2202247.
[30] R.A. Puglisi, C. Bongiorno, S. Caccamo, E. Fazio, G. Mannino, F. Neri, S. Scalese, D. Spucches, A. La Magna, "Chemical vapor deposition growth of silicon nanowires with diameter smaller than 5 nm", ACS Omega, 4 (2019) 17967-17971.
[31] B. Liu, P. Huang, Z. Xie, Q. Huang, "Large-scale production of a silicon nanowire/graphite composites anode via the CVD method for high-performance lithium-ion batteries", Energy & Fuels, 35 (2021) 2758-2765.
[32] M. Naffeti, P.A. Postigo, R. Chtourou, M.A. Zaïbi, "Elucidating the effect of etching time key-parameter toward optically and electrically-active silicon nanowires", Nanomaterials, 10 (2020) 404.
[33] N. Chhetri, S. Haldar, S. Chatterjee, "Morphological and electrical study of p-type silicon nanowires synthesised by Ag-assisted electroless chemical etching", Materials Research Express, 6 (2020) 1250i1252.
[34] S.M. Thalluri, J. Borme, D. Xiong, J. Xu, W. Li, I. Amorim, P. Alpuim, J. Gaspar, H. Fonseca, L. Qiao, "Highly-ordered silicon nanowire arrays for photoelectrochemical hydrogen evolution: an investigation on the effect of wire diameter, length and inter-wire spacing", Sustainable Energy & Fuels, 2 (2018) 978-982.
[35] A.D. Refino, N. Yulianto, I. Syamsu, A.P. Nugroho, N.H. Hawari, A. Syring, E. Kartini, F. Iskandar, T. Voss, A. Sumboja, "Versatilely tuned vertical silicon nanowire arrays by cryogenic reactive ion etching as a lithium-ion battery anode", Scientific Reports, 11 (2021) 19779.
[36] F.J. Wendisch, M. Rey, N. Vogel, G.R. Bourret, "Large-scale synthesis of highly uniform silicon nanowire arrays using metal-assisted chemical etching", Chemistry of Materials, 32 (2020) 9425-9434.
[37] M. Rey, F.J. Wendisch, E.S.A. Goerlitzer, J.S.J. Tang, R.S. Bader, G.R. Bourret, N. Vogel, "Anisotropic silicon nanowire arrays fabricated by colloidal lithography", Nanoscale Advances, 3 (2021) 3634-3642.
[38] W. Wang, L. Gu, H. Qian, M. Zhao, X. Ding, X. Peng, J. Sha, Y. Wang, "Carbon-coated silicon nanotube arrays on carbon cloth as a hybrid anode for lithium-ion batteries", Journal of Power Sources, 307 (2016) 410-415.
[39] R. Khare, M.A. More, D. Chakravarty, "Transformation of ZnO nanorods into nanotubes and their field emission studies", Modern Physics Letters B, 29 (2015) 1540044.
[40] Y. Zhang, H. Wang, Z. Liu, B. Zou, C. Duan, T. Yang, X. Zhang, C. Zheng, X. Zhang, "Optical absorption and photoelectrochemical performance enhancement in Si tube array for solar energy harvesting application", Applied Physics Letters, 102 (2013).
[41] C. Mu, Y. Yu, W. Liao, X. Zhao, D. Xu, X. Chen, D. Yu, "Controlling growth and field emission properties of silicon nanotube arrays by multistep template replication and chemical vapor deposition", Applied Physics Letters, 87 (2005).
[42] A. Morata, M. Pacios, G. Gadea, C. Flox, D. Cadavid, A. Cabot, A. Tarancón, "Large-area and adaptable electrospun silicon-based thermoelectric nanomaterials with high energy conversion efficiencies", Nature Communications, 9 (2018) 4759.
[43] Y.-L. Sun, X.-D. Zheng, W. Jevasuwan, N. Fukata, "Silicon Nanotubes fabricated by wet chemical etching of ZnO/Si core–shell nanowires", Nanomaterials, 10 (2020) 2535.
[44] N. Shpaisman, U. Givan, M. Kwiat, A. Pevzner, R. Elnathan, F. Patolsky, "Controlled synthesis of ferromagnetic semiconducting silicon nanotubes", The Journal of Physical Chemistry C, 116 (2012) 8000-8007.
[45] Z. Zhang, L. Liu, T. Shimizu, S. Senz, U. Gösele, "Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template", Nanotechnology, 21 (2009) 055603.
[46] A. Nan, X. Bai, S.J. Son, S.B. Lee, H. Ghandehari, "Cellular uptake and cytotoxicity of silica nanotubes", Nano Letters, 8 (2008) 2150-2154.
[47] Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, H. Duan, "Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching", Nanotechnology, 27 (2016) 365302.
[48] Y.Y. Kim, H.J. Kim, J.H. Jeong, J. Lee, J.H. Choi, J.Y. Jung, J.H. Lee, H. Cheng, K.W. Lee, D.G. Choi, "Facile Fabrication of Silicon Nanotube Arrays and Their Application in Lithium‐Ion Batteries", Advanced Engineering Materials, 18 (2016) 1349-1353.
[49] C. Wang, J. Wen, F. Luo, B. Quan, H. Li, Y. Wei, C. Gu, J. Li, "Anisotropic expansion and size-dependent fracture of silicon nanotubes during lithiation", Journal of Materials Chemistry A, 7 (2019) 15113-15122.
[50] Y. Tseng, R. Gu, S. Cheng, "Design and fabrication of vertically aligned single-crystalline Si nanotube arrays and their enhanced broadband absorption properties", Applied Surface Science, 508 (2020) 145223.
[51] M.S. Choi, H.G. Na, A. Mirzaei, J.H. Bang, W. Oum, S. Han, S.-W. Choi, M. Kim, C. Jin, S.S. Kim, "Room-temperature NO2 sensor based on electrochemically etched porous silicon", Journal of Alloys and Compounds, 811 (2019) 151975.
[52] A.M. Alwan, A.B. Dheyab, "Room temperature CO2 gas sensors of AuNPs/mesoPSi hybrid structures", Applied Nanoscience, 7 (2017) 335-341.
[53] K. Nishio, S. Tagawa, T. Fukushima, H. Masuda, "Highly ordered nanoporous Si for negative electrode of rechargeable lithium-ion battery", Electrochemical and Solid-State Letters, 15 (2012) A41.
[54] S. Cho, H.Y. Jang, I. Jung, L. Liu, S. Park, "Synthesis of embossing Si nanomesh and its application as an anode for lithium ion batteries", Journal of Power Sources, 362 (2017) 270-277.
[55] S.H. Altinoluk, H.E. Ciftpinar, O. Demircioglu, F. Es, G. Baytemir, O. Akar, A. Aydemir, A. Sarac, T. Akin, R. Turan, "Light trapping by micro and nano-hole texturing of single-crystalline silicon solar cells", Energy Procedia, 92 (2016) 291-296.
[56] C. Deng, X. Tan, L. Jiang, Y. Tu, M. Ye, Y. Yi, "Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications", Optics Communications, 407 (2018) 199-203.
[57] J. Yang, L. Tang, W. Luo, J. Shen, D. Zhou, S. Feng, X. Wei, H. Shi, "Light trapping in conformal graphene/silicon nanoholes for high-performance photodetectors", ACS Applied Materials & Interfaces, 11 (2019) 30421-30429.
[58] P. Varasteanu, A. Radoi, O. Tutunaru, A. Ficai, R. Pascu, M. Kusko, I. Mihalache, "Plasmon-enhanced photoresponse of self-powered Si nanoholes photodetector by metal nanowires", Nanomaterials, 11 (2021) 2460.
[59] R. Liu, F. Zhang, C. Con, B. Cui, B. Sun, "Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching", Nanoscale Research Letters, 8 (2013) 1-8.
[60] S. Thiyagu, H. Syu, C. Hsueh, C. Liu, T. Lin, C. Lin, "Optical trapping enhancement from high density silicon nanohole and nanowire arrays for efficient hybrid organic-inorganic solar cells, RSC Adv. 5 (2015) 13224–13233".
[61] X. Yang, F. Xi, X. Chen, S. Li, X. Wan, W. Ma, P. Dong, J. Duan, Y. Chang, "Porous Silicon Fabrication and Surface Cracking Behavior Research Based on Anodic Electrochemical Etching", Fuel Cells, 21 (2021) 52-57.
[62] A.S. Islam, M.A. Sobhan, A.B.M. Ismail, "Performance Enhancement of Bulk Heterojunction Hybrid Solar Cell Using Macroporous Silicon", Raj. Uni. J. Sc. Engn, 43 (2015).
[63] H. Kim, N. Cho, "Morphological and nanostructural features of porous silicon prepared by electrochemical etching", Nanoscale Research Letters, 7 (2012) 1-8.
[64] V. Lehmann, H. Föll, "Formation mechanism and properties of electrochemically etched trenches in n‐type silicon", Journal of the Electrochemical Society, 137 (1990) 653.
[65] K. Ding, M. Zhang, J. Mao, P. Xiao, X. Zhang, D. Wu, X. Zhang, J. Jie, "High-resolution image patterned silicon wafer with inverted pyramid micro-structure arrays for decorative solar cells", Materials Today Energy, 18 (2020) 100493.
[66] C. Cozzi, G. Polito, L.M. Strambini, G. Barillaro, "Electrochemical preparation of in-silicon hierarchical networks of regular out-of-plane macropores interconnected by secondary in-plane pores through controlled inhibition of breakdown effects", Electrochimica Acta, 187 (2016) 552-559.
[67] J.-Y. Choi, C.B. Honsberg, "Sub-wavelength scale Si inverted pyramid fabrication with enhanced size control by using silica sphere lithography technique", Applied Sciences, 8 (2018) 1720.
[68] J. Wang, P. Dong, D. Di, J. Chen, C. Wang, H. Wang, X. Wu, "Antireflection characteristics of inverted nanopyramid arrays fabricated by low-cost nanosphere lithography technology", Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 227 (2013) 57-62.
[69] J. Xu, A.D. Refino, A. Delvallée, S. Seibert, C. Schwalb, P.E. Hansen, M. Foldyna, L. Siaudinyte, G. Hamdana, H.S. Wasisto, "Deep-reactive ion etching of silicon nanowire arrays at cryogenic temperatures", Applied Physics Reviews, 11 (2024).
[70] S. Wang, H. Liu, J. Han, "Comprehensive study of Au nano-mesh as a catalyst in the fabrication of silicon nanowires arrays by metal-assisted chemical etching", Coatings, 9 (2019) 149.
[71] C.Q. Lai, W. Zheng, W. Choi, C.V. Thompson, "Metal assisted anodic etching of silicon", Nanoscale, 7 (2015) 11123-11134.
[72] H.-S. Seo, X. Li, H.-D. Um, B. Yoo, J.-H. Kim, K.-P. Kim, Y.W. Cho, J.-H. Lee, "Fabrication of precisely controlled silicon wire and cone arrays by electrochemical etching", Materials Letters, 63 (2009) 2567-2569.
[73] R. Ning, Y. Jiang, Y. Zeng, H. Gong, J. Zhao, J. Weisse, X. Shi, T.M. Gill, X. Zheng, "On-demand production of hydrogen by reacting porous silicon nanowires with water", Nano Research, 13 (2020) 1459-1464.
[74] P.-J. Chien, T.-C. Wei, C.-Y. Chen, "High-speed and direction-controlled formation of silicon nanowire arrays assisted by electric field", Nanoscale Research Letters, 15 (2020) 1-8.
[75] P.S. Priambodo, N.R. Poespawati, D. Hartanto, "Solar Cell", Chapters, (2011).
[76] Y. Huang, H. Liang, Y. Zhang, S. Yin, C. Cai, W. Liu, T. Jia, "Vertical tip-to-tip interconnection p–n silicon nanowires for plasmonic hot electron-enhanced broadband photodetectors", ACS Applied Nano Materials, 4 (2021) 1567-1575.
[77] Q. Wu, G. Cen, Y. Liu, Z. Ji, W. Mai, "A simple-structured silicon photodetector possessing asymmetric Schottky junction for NIR imaging", Physics Letters A, 412 (2021) 127586.
[78] F. Hu, L. Wu, X. Dai, S. Li, M. Lu, J. Sun, "Achieving high-responsivity near-infrared detection at room temperature by nano-Schottky junction arrays via a black silicon/platinum contact approach", Photonics Research, 9 (2021) 1324-1329.
[79] D. Periyanagounder, P. Gnanasekar, P. Varadhan, J.-H. He, J. Kulandaivel, "High performance, self-powered photodetectors based on a graphene/silicon Schottky junction diode", Journal of Materials Chemistry C, 6 (2018) 9545-9551.
[80] C.-Y. Wu, Z.-Q. Pan, Y.-Y. Wang, C.-W. Ge, Y.-Q. Yu, J.-Y. Xu, L. Wang, L.-B. Luo, "Core–shell silicon nanowire array–Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector", Journal of Materials Chemistry C, 4 (2016) 10804-10811.
[81] H.J. Geipel, N. Hsieh, M.H. Ishaq, C.W. Koburger, F.R. White, "Composite silicide gate electrodes-interconnections for VLSI device technologies", IEEE Journal of Solid-State Circuits, 15 (1980) 482-489.
[82] M. Tsai, H. Chao, L. Ephrath, B. Crowder, A. Cramer, R. Bennett, C. Lucchese, M. Wordeman, "One‐Micron Polycide (WSi2 on Poly‐Si) MOSFET Technology", Journal of the Electrochemical Society, 128 (1981) 2207.
[83] M.E. Alperin, T.C. Hollaway, R.A. Haken, C.D. Gosmeyer, R.V. Karnaugh, W.D. Parmantie, "Development of the self-aligned titanium silicide process for VLSI applications", IEEE Journal of Solid-State Circuits, 20 (1985) 61-69.
[84] H. Iwai, T. Ohguro, S.-i. Ohmi, "NiSi salicide technology for scaled CMOS", Microelectronic Engineering, 60 (2002) 157-169.
[85] H.-F. Hsu, P.-C. Tsai, K.-C. Lu, "Single-crystalline chromium silicide nanowires and their physical properties", Nanoscale Research Letters, 10 (2015) 1-8.
[86] W.-J. Huang, S.-M. Yang, T.-T. Liao, K.-C. Lu, "Synthesis of morphology-improved single-crystalline iron silicide nanowires with enhanced physical characteristics", CrystEngComm, 23 (2021) 3270-3275.
[87] Y.-W. Ok, T.-Y. Seong, C.-J. Choi, K.-N. Tu, "Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing", Applied Physics Letters, 88 (2006).
[88] J.-Y. Lin, H.-M. Hsu, K.-C. Lu, "Growth of single-crystalline nickel silicide nanowires with excellent physical properties", CrystEngComm, 17 (2015) 1911-1916.
[89] C. Chuang, S. Cheng, "Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures", Nano Research, 7 (2014) 1592-1603.
[90] S. Lv, Z. Li, J. Liao, Z. Zhang, W. Miao, "Well-aligned NiSi/Si heterostructured nanowire arrays as field emitters", Journal of Vacuum Science & Technology B, 33 (2015).
[91] M. Currie, S. Samavedam, T. Langdo, C. Leitz, E. Fitzgerald, "Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing", Applied physics letters, 72 (1998) 1718-1720.
[92] R.R. Grote, K. Padmaraju, B. Souhan, J.B. Driscoll, K. Bergman, R.M. Osgood, "10 Gb/s Error-Free Operation of All-Silicon Ion-Implanted-Waveguide Photodiodes at 1.55$mu {
m m} $", IEEE Photonics Technology Letters, 25 (2012) 67-70.
[93] Z. Qi, Y. Zhai, L. Wen, Q. Wang, Q. Chen, S. Iqbal, G. Chen, J. Xu, Y. Tu, "Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection", Nanotechnology, 28 (2017) 275202.
[94] F. Hu, X.-Y. Dai, Z.-Q. Zhou, X.-Y. Kong, S.-L. Sun, R.-J. Zhang, S.-Y. Wang, M. Lu, J. Sun, "Black silicon Schottky photodetector in sub-bandgap near-infrared regime", Optics Express, 27 (2019) 3161-3168.
[95] F.L. Gonzalez, M.J. Gordon, "Enhancing near-infrared light absorption in PtSi thin films for Schottky barrier IR detectors using moth-eye surface structures", Optics Letters, 40 (2015) 1512-1515.
[96] A. Mehrfar, A. Eslami Majd, "Enhancement of the photoresponse in the platinum silicide photodetector by a graphene layer", Journal of Electrical and Computer Engineering Innovations (JECEI), 10 (2022) 363-370.
[97] B.-Y. Tsaur, M.M. Weeks, R. Trubiano, P.W. Pellegrini, T.-R. Yew, "IrSi Schottky-barrier infrared detectors with 10-mu m cutoff wavelength", IEEE Electron Device Letters, 9 (1988) 650-653.
[98] E. Kerimov, "Photoelectric and optical properties of Schottky-barrier photodiodes based on IrSi–Si", Russian Microelectronics, 45 (2016) 112-118.
[99] S. Zhu, M. Yu, G. Lo, D. Kwong, "Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications", Applied Physics Letters, 92 (2008).
[100] S. Roy, K. Midya, S. Duttagupta, D. Ramakrishnan, "Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation", Journal of Applied Physics, 116 (2014).
[101] L. Romano, J. Vila-Comamala, K. Jefimovs, M. Stampanoni, "Effect of isopropanol on gold assisted chemical etching of silicon microstructures", Microelectronic Engineering, 177 (2017) 59-65.
[102] M. Koyama, N. Shigemori, K. Ozawa, K. Tachi, K. Kakushima, O. Nakatsuka, K. Ohmori, K. Tsutsui, A. Nishiyama, N. Sugii, "Si/Ni-Silicide Schottky junctions with atomically flat interfaces using NiSi 2 source", 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC), (2011) 231-234.
[103] L. Wang, S.-J. He, K.-Y. Wang, H.-H. Luo, J.-G. Hu, Y.-Q. Yu, C. Xie, C.-Y. Wu, L.-B. Luo, "Dual-plasmonic Au/graphene/Au-enhanced ultrafast, broadband, self-driven silicon Schottky photodetector", Nanotechnology, 29 (2018) 505203.
[104] S. Chaoudhary, A. Dewasi, V. Rastogi, R.N. Pereira, A. Sinopoli, B. Aïssa, A. Mitra, "Laser ablation fabrication of a p-nio/n-si heterojunction for broadband and self-powered UV–visible–nir photodetection", Nanotechnology, 33 (2022) 255202.
[105] Y. Wang, Y. Zhu, H. Gu, X. Wang, "Enhanced Performances of n-ZnO Nanowires/p-Si Heterojunctioned Pyroelectric Near–Infrared Photodetectors via the Plasmonic Effect", ACS Applied Materials & Interfaces, 13 (2021) 57750-57758.
[106] Y.-T. Wu, C.-W. Huang, C.-H. Chiu, C.-F. Chang, J.-Y. Chen, T.-Y. Lin, Y.-T. Huang, K.-C. Lu, P.-H. Yeh, W.-W. Wu, "Nickel/platinum dual silicide axial nanowire heterostructures with excellent photosensor applications", Nano Letters, 16 (2016) 1086-1091.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2024-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明