博碩士論文 111324030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.16.50.224
姓名 徐聖庭(Sheng-Ting Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 製備銀奈米粒子/多孔隙之字型矽晶奈米線/導電銅基材結構及其散熱性質之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究中將藉由兩步驟金屬輔助蝕刻製程
藉由調控蝕刻 液之 組成 成份 以及
改變 製程之 蝕刻時間 在 p-type(111)晶面上之矽 基材上製備 大面積之字型矽單晶奈
米線結構 。接著利用加熱之銅柱來模擬電腦之發熱元件 並利用銅柱兩端溫度差來
計算矽 奈米線 微型散熱器 之熱流變化來進行 散熱性能測定。 此外,為提升 元件之 散
熱 能力,進一步導入酸蝕刻製程技術,製備出多孔隙 之字 型矽 奈米線結構,以提高
矽奈米線 散熱 元件之比表面積,並在最佳 製程 條件之 字 型矽奈米線上 運 用無電鍍 法
沉積 銀奈米粒子, 來 製備銀 多孔隙之字型奈米線複合材料 利 用銀奈米粒子之高導
熱性來進一步提升元件散熱性能 。 銀 多孔隙之字型奈米線複合材料 相較於一般常
見之準直型矽晶奈米線結構相比 其散熱效果有顯著提升。此外 由於矽晶基材本
身 硬脆特性及其熱導率不如金屬等限制,使在矽晶基材表面製備完成之矽 奈米線散
熱元件 之實際應用範圍受到限制 ,無法應用於彎曲表面 上 因此 研究 中 將製備完成
之字型奈米線結構放置於過氧化氫濃度較高之蝕刻溶液中 藉由之字型奈米線底部
殘留之銀奈米粒子催化側向蝕刻 掏空矽晶奈米線底部結構 並利用可撓曲導電銅
膠帶將結構黏附至銅基材上 同時不改變原始矽晶奈米線形貌 。 轉附至導電銅膠帶
之字型矽晶奈米線結構 因 銅基材導熱性較佳之優勢使散熱元件之散熱效率有更近
一步提升 。最後 將製備完成之矽 奈米線散熱元件應用於熱電元件冷端表面 藉由元
件比表面積大及金屬 矽複合材料等優勢 提升熱電元件兩端溫度差 以提升熱電元
件輸出功率 。
摘要(英) In this study, we employed a multi-step metal-assisted chemical etching method to prepare large-area, zigzag-shaped silicon nanowires on p-type (111) silicon substrates by adjusting the etching solution and varying the etching time. Subsequently, we used heated copper columns and calculated the thermal performance of the silicon nanowire based on the temperature difference across the copper columns. Furthermore, to enhance the heat dissipation capability of the devices, we introduced an acidic etching process to fabricate porous zigzag-shaped silicon nanowires. This increased the specific surface area of the silicon nanowire heat dissipation devices. Then we coated silver nanoparticles on these zigzag-shaped nanowires using electroless deposition, creating silver/porous zigzag-shaped nanowire composite materials. The high thermal conductivity of silver nanoparticles further improved the heat dissipation performance of the devices. Due to limitations such as lower thermal conductivity of silicon substrates, application of silicon nanowire heat dissipation devices on curved surfaces is restricted. Therefore, we immersed the zigzag-shaped nanowires in a high-concentration hydrogen peroxide etching solution. The remaining silver nanoparticles hollow out the bottom structure of the silicon nanowires. We then adhered these structures to a copper substrate using flexible conductive copper tape without altering the original morphology of the silicon nanowires. The superior thermal conductivity of the copper substrate further enhances the heat dissipation efficiency of the devices. Finally, we applied the fabricated silicon nanowire heat dissipation devices to the cold side surface of thermoelectric generators. Advantages such as a larger specific surface area and the metal-silicon composite material, we enhanced the temperature difference across the thermoelectric generators to increase their output power.
關鍵字(中) ★ 之字型矽晶奈米線
★ 金屬輔助蝕刻法轉附矽晶奈米線
★ 微型散熱元件
關鍵字(英)
論文目次 第一章前言及文獻回顧 1
1-1 前言 1
1-2電子元件熱管理 2
1-2-1 常見散熱裝置設計 2
1-2-2微型散熱元件及材料設計 3
1-2-3一維奈米結構散熱元件 4
1-2-4 可撓曲散熱元件 6
1-3 一維奈米結構製備 7
1-3-1矽晶奈米線製備方式 8
1-3-2之字型矽晶奈米線 10
1-3-3之字型矽晶奈米線反應機制 10
1-4 可撓曲電子元件 11
1-4-1可撓曲電子元件之製備方式 11
1-4-2可撓曲電子元件應用 14
1-5 研究動機及目標 14
第二章 實驗步驟及儀器設備 15
2-1實驗步驟 15
2-1-1矽基材使用前清洗處理 16
2-1-2兩步驟金屬輔助化學蝕刻法製備準直型與之字型矽晶奈米線 16
2-1-3酸性橫向蝕刻法製備準直型與多孔隙之字型矽晶奈米線 17
2-1-4無電鍍銀奈米粒子披覆多孔隙準直型與之字型矽晶奈米線 17
2-1-5金屬輔助化學蝕刻結合金屬粒子分散法轉附矽晶奈米線結構 17
2-1-6製備可撓曲銀奈米粒子/多孔隙準直型與之字型矽晶奈米線/導電銅基材結構 18
2-1-7散熱元件製備與量測 18
2-2試片分析 19
2-2-1掃描式電子顯微鏡 19
2-2-2穿透式電子顯微鏡 19
2-2-3微型散熱元件量測系統 20
2-2-4熱電元件性能量測系統 20
第三章 結果與討論 20
3-1製備矽晶奈米線結構 20
3-1-1準直型矽晶奈米線結構製備 21
3-1-2多孔隙矽晶奈米線結構製備 21
3-1-3無電鍍銀奈米粒子披覆多孔隙矽晶奈米線結構製備 22
3-1-4銀/多孔隙之字型矽晶奈米線結構製備 23
3-2矽晶奈米線微型散熱元件之散熱性能分析 25
3-2-1銀奈米粒子/多孔隙準直型矽晶奈米線微型散熱元件熱流分析 26
3-2-2銀奈米粒子/多孔隙之字型矽晶奈米線微型散熱元件熱流分析 27
3-2-3矽晶奈米線微型散熱元件於強制對流環境散熱性能分析 28
3-3導電銅基材轉附矽晶奈米線結構製備 29
3-3-1矽晶奈米線/導電銅基材結構製備 29
3-3-2多孔隙矽晶奈米線/導電銅基材結構製備 30
3-3-3銀奈米粒子/多孔隙矽晶奈米線/導電銅基材結構製備 30
3-3-4銀奈米粒子/多孔隙之字型矽晶奈米線/導電銅基材結構製備 31
3-4導電銅基材微型散熱元件性能分析 31
3-4-1銀奈米粒子/多孔隙之字型矽晶奈米線/導電銅基材微型散熱元件熱流分析 32
3-5散熱元件應用於熱電元件輸出性能分析 32
3-5-1銀奈米粒子/多孔隙之字型矽奈米線微型散熱元件應用於熱電元件輸出性能分析 33
3-5-2銀奈米粒子/多孔隙之字型矽晶奈米線/導電銅基材結構散熱元件應用於熱電元件輸出性能分析 34
3-5-3銀奈米粒子/多孔隙之字型矽晶奈米線/導電銅基材結構散熱元件於強制對流環境應用於熱電元件輸出性能分析 34
3-5-4銀奈米粒子/多孔隙之字型矽晶奈米線/導電銅基材結構散熱元件應用於熱電元件輸出功率分析 35
3-6 彎曲表面散熱性能分析 36
3-6-1銀奈米粒子/多孔隙之字型矽晶奈米線/導電銅基材微型散熱元件彎曲表面熱流分析 36
第四章 結論與未來展望 37
4-1結論 37
4-2未來展望 38
參考文獻 39
圖目錄 46
參考文獻 [1] N. Jaziri, A. Schulz, H. Bartsch, J. Müller, and F. Tounsi, "A Novel 2-in-1 Heat Management and Recovery System for Sustainable Electronics," Energy Conversion and Management 303 (2024) 118171.
[2] Y. Ji, S. Han, Q. Zhang, H. Wu, S. Guo, F. Zhang, and J. Qiu, "Constructing a Highly Vertically Aligned Network of H-BN/CF in Silicone Rubber Composites: Achieving Superior Through-plane Thermal Conductivity and Electrical Insulation," Composites Part B: Engineering 266 (2023) 111024.
[3] C. Bailey, "Thermal Management Technologies for Electronic Packaging: Current Capabilities and Future Challenges for Modelling Tools, " in 2008 10th Electronics Packaging Technology Conference (2008) 527 .
[4] M. Kumar, "Dynamic Power Dissipation Analysis in CMOS VLSI Circuit Design with Scaling down in Technology," Journal of Active & Passive Electronic Devices 12 (2017) 55.
[5] V.J. Fesharaki, M. Dehghani, J.J. Fesharaki, and H. Tavasoli, "The Effect of Temperature on Photovoltaic Cell Efficiency, " in Proceedings of the 1st International Conference on Emerging Trends in Energy Conservation 20 (2011) 20.
[6] C.P. Feng, L.B. Chen, G.L. Tian, S.S. Wan, L. Bai, R.Y. Bao, Z.Y. Liu, M.B. Yang, and W. Yang, "Multifunctional Thermal Management Materials with Excellent Heat Dissipation and Generation Capability for Future Electronics," ACS Applied Materials and Interfaces 11 (2019) 18739.
[7] N. Zhao, J. Li, W. Wang, W. Gao, and H. Bai, "Isotropically Ultrahigh Thermal Conductive Polymer Composites by Assembling Anisotropic Boron Nitride Nanosheets into a Biaxially Oriented Network," ACS Nano 16 (2022) 18959.
[8] B. Yao, L. An, H. Zhu, Z. Wang, C. Luo, Y. Liu, P. Lin, Y. Chen, M. An, W. Ma, and X. Zhang, "Thermal Management and Waste Heat Recovery of Electronics Enabled by Highly Thermoconductive Aramid Composites with Bridge-Type 1D/2D Liquid-Crystalline Thermal Conduction Networks," Energy Conversion and Management 276 (2023) 116603.
[9] D. Miller, "Closed Loop Liquid Cooling for High Performance Computer Systems," International Electronic Packaging Technical Conference and Exhibition 42789 (2007) 509.
[10] W.L. Staats, "Active Heat Transfer Enhancement in Integrated Fan Heat Sinks", Massachusetts Institute of Technology 2012.
[11] A. Bar-Cohen and P. Wang, "Thermal Management of On-chip Hot Spot", in International Conference on Micro/Nanoscale Heat Transfer 43918 (2009) 553.
[12] K. Kordas, G. Tóth, P. Moilanen, M. Kumpumäki, J. Vähäkangas, A. Uusimäki, R. Vajtai, and P. Ajayan, "Chip Cooling with Integrated Carbon Nanotube Microfin Architectures," Applied Physics Letters 90 (2007) 123105.
[13] V. Sessi, M. Simon, H. Mulaosmanovic, D. Pohl, M. Loeffler, T. Mauersberger, F.P. Fengler, T. Mittmann, C. Richter, and S. Slesazeck, "A Silicon Nanowire Ferroelectric Field‐Effect Transistor," Advanced Electronic Materials 6 (2020) 1901244.
[14] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, "One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications," Advanced materials 15 (2003) 353.
[15] T.K. Adhila, H. Elangovan, K. Chattopadhyay, and H.C. Barshilia, "Kinked Silicon Nanowires Prepared by Two-Step MACE Process: Synthesis Strategies and Luminescent Properties," Materials Research Bulletin 140 (2021) 111308.
[16] Y. Yang, W. Yuan, W. Kang, Y. Ye, Q. Pan, X. Zhang, Y. Ke, C. Wang, Z. Qiu, and Y. Tang, "A Review on Silicon Nanowire-Based Anodes for Next-Generation High-Performance Lithium-Ion Batteries from a Material-Based Perspective," Sustainable Energy & Fuels 4 (2020) 1577.
[17] N.K. Mahan, E.M. Ali, and A.N. Abd, "Synthesis of Cds: Cu5% Thin Films by Chemical Method Based on Silicon for Gas Sensor Applications," Materials Today: Proceedings 45 (2021) 5800.
[18] J.Y. Oh, H.-J. Jang, W.-J. Cho, and M.S. Islam, "Highly Sensitive Electrolyte-Insulator-Semiconductor Ph Sensors Enabled by Silicon Nanowires with Al₂O₃/SiO₂ Sensing Membrane," Sensors & Actuators: B. Chemical 171 (2012) 238.
[19] R. Smith, S.M. Geary, and A.K. Salem, "Silicon Nanowires and Their Impact on Cancer Detection and Monitoring," ACS Applied Nano Materials 3 (2020) 8522.
[20] Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, "Temperature Dependence of Electrical and Thermal Conduction in Single Silver Nanowire," Scientific Report 5 (2015) 10718.
[21] M. Munoz Rojo, B. Abad, C.V. Manzano, P. Torres, X. Cartoixa, F.X. Alvarez, and M. Martin Gonzalez, "Thermal Conductivity of Bi2Te3 Nanowires: How Size Affects Phonon Scattering," Nanoscale 9 (2017) 6741.
[22] B. Qiu, L. Sun, and X. Ruan, "Lattice Thermal Conductivity Reduction in Bi2Te3quantum Wires with Smooth and Rough Surfaces: A Molecular Dynamics Study," Physical Review B 83 (2011) 35312.
[23] X. Li, and J. Chen, "Microembossed Copper Microchannel Heat Sink for High‐Density Cooling in Electronics," Micro & Nano Letters 14 (2019) 1258.
[24] J. Khan, M.Y. Ali, F. Yang, R. Fang, and C. Li, "Thermohydraulic Characteristics of a Single-Phase Microchannel Heat Sink Coated with Copper Nanowires," Frontiers in Heat and Mass Transfer 2 (2011) 33003.
[25] Y. Wu, C. Liu, H. Huang, and S. Fan, "Effects of Surface Metal Layer on the Thermal Contact Resistance of Carbon Nanotube Arrays," Applied Physics Letters 87 (2005) 213108.
[26] Z. Huang, T. Pan, M. Gao, and Y. Lin, "Chip Cooling with Carbon Nanotube Heat Sink," in 2014 15th International Conference on Electronic Packaging Technology (2014) 183.
[27] B. Munkhbayar, M.R. Tanshen, J. Jeoun, H. Chung, and H. Jeong, "Surfactant-Free Dispersion of Silver Nanoparticles into MWCNT-Aqueous Nanofluids Prepared by One-Step Technique and Their Thermal Characteristics," Ceramics International 39 (2013) 6415.
[28] S. Iyahraja, and J.S. Rajadurai, "Study of Thermal Conductivity Enhancement of Aqueous Suspensions Containing Silver Nanoparticles," AIP Advances 5 (2015) 57103.
[29] K. Xu, Y. Lu, and K. Takei, "Multifunctional Skin‐Inspired Flexible Sensor Systems for Wearable Electronics," Advanced Materials Technologies 4 (2019).
[30] H. Gebavi, V. Gasparic, D. Risovic, N. Baran, P.H. Albrycht, and M. Ivanda, "Features and Advantages of Flexible Silicon Nanowires for Sensers Applications," Beilstein Journal of Nanotechnology 10 (2019) 1800628.
[31] S.F. Madlul, N.K. Mahan, E.M. Ali, and A.N. Abd, "Synthesis of Cds:Cu5% Thin Films by Chemical Method Based on Silicon for Gas Sensor Applications," Materials Today: Proceedings 45 (2021) 5800.
[32] J.-S. Huang, C.-Y. Hsiao, S.-J. Syu, J.-J. Chao, and C.-F. Lin, "Well-Aligned Single-Crystalline Silicon Nanowire Hybrid Solar Cells on Glass," Solar Energy Materials and Solar Cells 93 (2009) 621.
[33] M. Triplett, H. Nishimura, M. Ombaba, V.J. Logeeswarren, M. Yee, K.G. Polat, J.Y. Oh, T. Fuyuki, F. Léonard, and M.S. Islam, "High-Precision Transfer-Printing and Integration of Vertically Oriented Semiconductor Arrays for Flexible Device Fabrication," Nano Research 7 (2014) 998.
[34] N. Guan, N. Amador-Mendez, A. Kunti, A. Babichev, S. Das, A. Kapoor, N. Gogneau, J. Eymery, F.H. Julien, C. Durand, and M. Tchernycheva, "Heat Dissipation in Flexible Nitride Nanowire Light-Emitting Diodes," Nanomaterials (Basel) 10 (2020) 2271.
[35] M. Zhang, H. Ling, W. Zhang, H. Bian, H. Lin, T. Wang, Z. Li, and A. Meng, "Preparation, Superior Field Emission Properties and First Principles Calculation of Electronic Structure of SiC Nanowire Arrays on Si Substrate," Materials Characterization 180 (2021) 111413.
[36] H. Yu, Y. Tian, M. Dirican, D. Fang, C. Yan, J. Xie, D. Jia, Y. Liu, C. Li, M. Cui, H. Liu, G. Chen, X. Zhang, and J. Tao, "Flexible, Transparent and Tough Silver Nanowire/Nanocellulose Electrodes for Flexible Touch Screen Panels," Carbohydrate Polymer 273 (2021) 118539.
[37] L. Balaghi, S. Shan, I. Fotev, F. Moebus, R. Rana, T. Venanzi, R. Hübner, T. Mikolajick, H. Schneider, M. Helm, A. Pashkin, and E. Dimakis, "High Electron Mobility in Strained Gaas Nanowires," Nature Communications 12(2021) 6642.
[38] M. Hasan, M.F. Huq, and Z.H. Mahmood, "A Review on Electronic and Optical Properties of Silicon Nanowire and Its Different Growth Techniques," SpringerPlus 2 (2013) 1.
[39] Y. Qin, Y. Wang, and Y. Liu, "Vertically Aligned Silicon Nanowires with Rough Surface and Its NO2 Sensing Properties," Journal of Materials Science: Materials in Electronics 27 (2016) 11319.
[40] Y. Qin, Z. Cui, T. Zhang, and D. Liu, "Polypyrrole Shell (Nanoparticles)-Functionalized Silicon Nanowires Array with Enhanced NH3-Sensing Response," Sensors and Actuators B: Chemical 258 (2018) 246.
[41] Y. Qin, D. Liu, T. Zhang, and Z. Cui, "Ultrasensitive Silicon Nanowire Sensor Developed by a Special Ag Modification Process for Rapid NH3 Detection," ACS Applied Material Interfaces 9 (2017) 28766.
[42] S. Elyamny, E. Dimaggio, S. Magagna, D. Narducci, and G. Pennelli, "High Power Thermoelectric Generator Based on Vertical Silicon Nanowires," Nano Letter 20 (2020) 4748.
[43] J. Ho and R. E, "Templated Si-Based Nanowires Via Solid-Liquid-solid (SLS) and Vapor-Liquid-Solid (VLS) Growth: Novel Growth Mode, Synthesis, Morphology Control, Characteristics, and Electrical Transport", in Cutting Edge Nanotechnology (2010).
[44] T. Nguyen, C.H. Hsu, D.H. Lien, and Y.S. Su, "Economical Silicon Nanowire Growth Via Cooling Controlled Solid–Liquid–Solid Mechanism," Advanced Materials Interfaces 10 (2022) 2202247.
[45] X. Li and P.W. Bohn, "Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon," Applied Physics Letters 77 (2000) 2572.
[46] S. Chattopadhyay, X. Li, and P.W. Bohn, "In-Plane Control of Morphology and Tunable Photoluminescence in Porous Silicon Produced by Metal-Assisted Electroless Chemical Etching," Journal of Applied Physics 91 (2002) 6134.
[47] K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. Lee, "Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanowires in Aqueous Fluoride Solution," Chemistry 12 (2006) 7942.
[48] T. Qiu, X. Wu, G. Siu, and P.K. Chu, "Intergrowth Mechanism of Silicon Nanowires and Silver Dendrites," Journal of Electronic Materials 35 (2006) 1879.
[49] A.-H. Chiou, T.-C. Chien, C.-K. Su, J.-F. Lin, and C.-Y. Hsu, "The Effect of Differently Sized Ag Catalysts on the Fabrication of a Silicon Nanowire Array Using Ag-Assisted Electroless Etching," Current Applied Physics 13 (2013) 717.
[50] A. Mirzaei, S.Y. Kang, S.-W. Choi, Y.J. Kwon, M.S. Choi, J.H. Bang, S.S. Kim, and H.W. Kim, "Fabrication and Gas Sensing Properties of Vertically Aligned Si Nanowires," Applied Surface Science 427 (2018) 215.
[51] Y. Qin, Y. Jiang, and L. Zhao, "Modulation of Agglomeration of Vertical Porous Silicon Nanowires and the Effect on Gas‐Sensing Response,"Advanced Engineering Materials 20 (2017) 1700893.
[52] H. Fang, X. Li, S. Song, Y. Xu, and J. Zhu, "Fabrication of Slantingly-Aligned Silicon Nanowire Arrays for Solar Cell Applications," Nanotechnology 19 (2008) 255703.
[53] M.-L. Zhang, K.-Q. Peng, X. Fan, J.-S. Jie, R.-Q. Zhang, S.-T. Lee, and N.-B. Wong, "Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching," The Journal of Physical Chemistry C 112 (2008) 4444.
[54] C.Y. Chen, C.S. Wu, C.J. Chou, and T. J. Yen, "Morphological Control of Single‐Crystalline Silicon Nanowire Arrays near Room Temperature," Advanced Materials 20 (2008) 3811.
[55] H. Chen, H. Wang, X.H. Zhang, C.S. Lee, and S.T. Lee, "Wafer-Scale Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled Turning Angles," Nano Letter 10 (2010) 864.
[56] V.A. Sivakov, F. Voigt, A. Berger, G. Bauer, and S.H. Christiansen, "Roughness of Silicon Nanowire Sidewalls and Room Temperature Photoluminescence," Physical Review B 82 (2010) 125446.
[57] V. Sivakov, G. Bronstrup, B. Pecz, A. Berger, G. Radnoczi, M. Krause, and S. Christiansen, "Realization of Vertical and Zigzag Single Crystalline Silicon Nanowire Architectures," The Journal of Physical Chemistry C 114 (2010) 3798.
[58] T.K. Adhila, H. Elangovan, S. John, K. Chattopadhyay, and H.C. Barshilia, "Engineering the Microstructure of Silicon Nanowires by Controlling the Shape of the Metal Catalyst and Composition of the Etchant in a Two-Step Mace Process: An in-Depth Analysis of the Growth Mechanism," Langmuir 36 (2020) 9388.
[59] S.-L. Wu, T. Zhang, R.-T. Zheng, and G.-A. Cheng, "Facile Morphological Control of Single-Crystalline Silicon Nanowires," Applied Surface Science 258 (2012) 9792.
[60] Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Gosele, "Oxidation Rate Effect on the Direction of Metal-Assisted Chemical and Electrochemical Etching of Silicon," The Journal of Physical Chemistry C 114 (2010) 10683.
[61] X. Leng, C. Wang, and Z. Yuan, "Progress in Metal-Assisted Chemical Etching of Silicon Nanostructures," Procedia CIRP 89 (2020) 26.
[62] J. Kim, H. Han, Y.H. Kim, S.-H. Choi, J.-C. Kim, and W. Lee, "Au/Ag Bilayered Metal Mesh as a Si Etching Catalyst for Controlled Fabrication of Si Nanowires," ACS nano 5 (2011) 3222.
[63] X. He, S. Li, W. Ma, Z. Ding, J. Yu, B. Qin, J. Yang, Y. Zou, and J. Qiu, "A Simple and Low-Cost Chemical Etching Method for Controllable Fabrication of Large-Scale Kinked Silicon Nanowires," Materials Letters 196 (2017) 269.
[64] Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, and U. GöSele, "Ordered Arrays of Vertically Aligned [110] Silicon Nanowires by Suppressing the Crystallographically Preferred <100> Etching Directions," Nano Letters 9 (2009) 2519.
[65] R. Walczak and J.A. Dziuban, "Microwave Enhanced Wet Anisotropic Etching of Silicon Utilizing a Memory Effect of KOH Activation—a Remote E2MSi Process," Sensors and Actuators A: Physical 116 (2004) 161.
[66] H. Tanaka, S. Yamashita, Y. Abe, M. Shikida, and K. Sato, "Fast Etching of Silicon with a Smooth Surface in High Temperature Ranges near the Boiling Point of KOH Solution," Sensors and Actuators A: Physical 114 (2004) 516.
[67] K. Lan, Z. Wang, X. Yang, J. Wei, Y. Qin, and G. Qin, "Flexible Silicon Nanowires Sensor for Acetone Detection on Plastic Substrates," Nanotechnology 33 (2022) 155502.
[68] T. Kim and J. Lee, "Fabrication and Characterization of Silicon-on-Insulator Wafers," Micro and Nano Systems Letters 11 (2023) 15.
[69] F. Bai, M. Li, D. Song, H. Yu, B. Jiang, and Y. Li, "Metal-Assisted Homogeneous Etching of Single Crystal Silicon: A Novel Approach to Obtain an Ultra-Thin Silicon Wafer," Applied Surface Science 273 (2013) 107.
[70] S.-C. Shiu, S.-C. Hung, J.-J. Chao, and C.-F. Lin, "Massive Transfer of Vertically Aligned Si Nanowire Array onto Alien Substrates and Their Characteristics," Applied Surface Science 255 (2009) 8566.
[71] J.M. Weisse, D.R. Kim, C.H. Lee, and X. Zheng, "Vertical Transfer of Uniform Silicon Nanowire Arrays via Crack Formation," Nano Letter 11 (2011) 1300.
[72] G. Farid, Y. Yang, A. Mateen, C. Huo, H. Wang, and K.-Q. Peng, "Rapid Formation of Uniform Cracks in Metal-Assisted Etched Silicon Nanowire Array Membranes: Implications for Transfer of Nanowires and Flexible Devices," ACS Applied Nano Materials 5 (2022) 2779.
[73] Y. Yu, W. Zhu, Y. Wang, P. Zhu, K. Peng, and Y. Deng, "Towards High Integration and Power Density: Zigzag-Type Thin-Film Thermoelectric Generator Assisted by Rapid Pulse Laser Patterning Technique," Applied Energy 275 (2020) 115405.
[74] Y. Cho, N. Okamoto, S. Yamamoto, S. Obokata, K. Nishioka, H. Benten, and M. Nakamura, "Carbon Nanotube/Biomolecule Composite Yarn for Wearable Thermoelectric Applications," ACS Applied Energy Materials 5 (2022) 3698.
[75] R.A. Kishore, A. Nozariasbmarz, B. Poudel, M. Sanghadasa, and S. Priya, "Ultra-High Performance Wearable Thermoelectric Coolers with Less Materials," Nature Communications 10 (2019) 1765.
[76] C.S. Kim, H.M. Yang, J. Lee, G.S. Lee, H. Choi, Y.J. Kim, S.H. Lim, S.H. Cho, and B.J. Cho, "Self-Powered Wearable Electrocardiography Using a Wearable Thermoelectric Power Generator," ACS Energy Letters 3 (2018) 501.
[77] S. Khan, J. Kim, K. Roh, G. Park, and W. Kim, "High Power Density of Radiative-Cooled Compact Thermoelectric Generator Based on Body Heat Harvesting," Nano Energy 87 (2021) 106180.
[78] A. Yusuf, Y. Demirci, T. Maras, S.E. Moon, J. Pil-Im, J.H. Kim, and S. Ballikaya, "Experimental and Theoretical Investigation of the Effect of Filler Material on the Performance of Flexible and Rigid Thermoelectric Generators," ACS Applied Materials & Interfaces 13 (2021) 61275.
[79] W. Ren, Y. Sun, D. Zhao, A. Aili, S. Zhang, C. Shi, J. Zhang, H. Geng, J. Zhang, and L. Zhang, "High-Performance Wearable Thermoelectric Generator with Self-Healing, Recycling, and Lego-Like Reconfiguring Capabilities," Science advances 7 (2021) 586.
[80] V. Karthikeyan, J.U. Surjadi, J.C. Wong, V. Kannan, K.-H. Lam, X. Chen, Y. Lu, and V.A. Roy, "Wearable and Flexible Thin Film Thermoelectric Module for Multi-Scale Energy Harvesting," Journal of Power Sources 455 (2020) 227983.
[81] M. Hyland, H. Hunter, J. Liu, E. Veety, and D. Vashaee, "Wearable Thermoelectric Generators for Human Body Heat Harvesting," Applied Energy 182 (2016)
[82] Y. Wang, Y. Shi, D. Mei, and Z. Chen, "Wearable Thermoelectric Generator to Harvest Body Heat for Powering a Miniaturized Accelerometer," Applied Energy 215 (2018) 518.
[83] S. Bao, W. Zhu, Y. Yu, L. Liang, and Y. Deng, "Wearable Thermoelectric Generator with Cooling-Enhanced Electrode Design for High-Efficient Human Body Heat Harvesting," ACS Applied Engineering Materials 1 (2022) 660.
[84] Y. H. Cho, J. Park , N. Chang & J. Kim, "Comparison of Cooling Methods for A Thermoelectric Generator with Forced Convection, " Energies 13 (2020) 3185.
[85] S. A. El-Sayed, S. M. Mohamed , A. A. Abdel-latif & E. A.A bdel-hamid, "Experimental Study of Heat Transfer and Fluid Flow in Longitudinal Rectangular-fin Array Located in Different Orientations in Fluid Flow," Experimental Thermal and Fluid Science 29 (2004) 113.
[86] S. Chingulpitak & S. Wongwises, "A Review of The Effect of Flow Directions and Behaviors on The Thermal Performance of Conventional Heat Sinks,"International Journal of Heat and Mass Transfer 81 (2015) 10.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2024-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明