博碩士論文 111324009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:105 、訪客IP:3.148.112.250
姓名 陳泓賓(Hung-Ping Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 製備銀奈米粒子/多孔隙矽晶奈米線/矽晶微米孔洞異質結構及其水蒸發發電特性之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以兩步驟金屬輔助化學蝕刻法,成功地在N-type(001)晶面之矽單晶基材上製備出具備高深寬比、大面積準直型矽晶奈米線結構,再由去離子水來驗證水蒸發發電之趨勢變化及發電機制。除此之外,又進一步利用酸性橫向蝕刻法製備多孔隙矽晶奈米線結構,多孔隙矽晶奈米線結構相較於矽晶奈米線結構擁有更優異之比表面積性質,並透過水蒸發發電量測之結果證明其可大幅提升對於水蒸發發電元件之性能,再透過無電鍍披覆技術將銀奈米粒子以網絡狀的形式均勻披在多孔隙矽晶奈米線結構上,網絡狀之銀奈米粒子電極能夠擁有良好收集電荷的能力。銀奈米粒子/多孔隙矽晶奈米線結構之水蒸發發電元件在一般環境進行量測輸出電壓及輸出電流。最後,將具有最佳製程條件直接與薄化矽單晶基材結合。
本研究以一步驟金屬輔助化學蝕刻法成功製備出均勻薄化之矽單晶基材,再透過上述之最佳製程條件製備出可撓曲銀奈米粒子多孔隙矽單晶奈米線結構,並展現出十分優秀的可撓曲性質,可應用於不同彎曲程度之水蒸發發電。
為克服水源無法源源不絕供給之問題,本研究以多步驟金屬輔助化學蝕刻法成功製備出於均勻薄化之矽單晶基材背面製備矽晶微米孔洞結構,正面再結合上述製備銀奈米粒子多孔隙矽單晶奈米線之最佳製程技術製備出可撓曲銀奈米粒子多孔隙矽單晶奈米線/矽晶微米孔洞異質結構,能夠使液體由下往上輸送,能夠不再需要透過間歇性補水之方式,將其置於含有水之液面上,可透過毛細作用力將水導入置本實驗結構之上,藉此達到長時間發電,達到水蒸發發電元件之性能優化。
摘要(英) This study successfully fabricated vertically aligned silicon nanowire structures with high aspect ratios and large areas on N-type (001) silicon substrates using a two-step met-al-assisted chemical etching method. The trend and mechanism of electricity generation from water evaporation were verified using deionized water. Furthermore, porous silicon nanowire structures were fabricated using an acidic lateral etching method. Compared to silicon nanowire structures, the porous silicon nanowire structures exhibited superior spe-cific surface area properties. The measurement results of electricity generation from water evaporation demonstrated that these structures significantly enhanced the performance of water evaporation power generation devices. Additionally, by employing an electroless plating technique, silver nanoparticles were uniformly coated in a network form on the porous silicon nanowire structures. The networked silver nanoparticle electrodes exhibited excellent charge collection capabilities. The water evaporation power generation device with silver nanoparticle-coated porous silicon nanowire structures was measured for output voltage and current in a general environment. Finally, the optimized process conditions were directly combined with the thinned silicon substrate.
This study also successfully fabricated uniformly thinned silicon substrates using a one-step metal-assisted chemical etching method. Using the aforementioned optimized process conditions, flexible silver nanoparticle-coated porous silicon nanowire structures were prepared, demonstrating excellent flexibility. These structures can be applied to wa-ter evaporation power generation under various bending conditions.
To address the issue of continuous water supply, this study successfully fabricated silicon micro-pore structures on the back of uniformly thinned silicon substrates using a multi-step metal-assisted chemical etching method. On the front side, the optimized pro-cess technology for fabricating silver nanoparticle-coated porous silicon nanowires was applied, resulting in flexible silver nanoparticle-coated porous silicon nanowire/silicon micro-pore heterogeneous structures. These structures can transport liquid from bottom to top, eliminating the need for intermittent water replenishment. By placing the structure on a liquid surface containing water, capillary action can draw water into the experimental structure, enabling long-term power generation and optimizing the performance of water evaporation power generation devices.
關鍵字(中) ★ 矽晶奈米線
★ 水蒸發發電
★ 可撓曲矽晶基材
關鍵字(英)
論文目次 目錄
第一章 前言文獻及回顧 1
1-1前言 1
1-2摩擦奈米發電機 4
1-2-1摩擦起電效應 5
1-2-2固-固摩擦奈米發電機 5
1-2-3液-固摩擦奈米發電機 6
1-2-4增進產電裝置性能之方法 8
1-3現今各式材料應用於水蒸發誘導產電 11
1-3-1碳基材料 11
1-3-2高分子材料 12
1-3-3固體氧化物 13
1-3-4金屬衍生物 13
1-3-5非金屬半導體材料 14
1-4水蒸發發電元件之應用 15
1-4-1直接供給能源 15
1-4-2自供電傳感器 16
1-5薄化可撓曲矽晶元件 16
1-5-1薄化可撓曲矽晶元件之應用領域 17
1-5-2薄化可撓曲矽晶元件之製程技術 17
1-6研究動機及目標 19
第二章 實驗步驟及儀器設備 22
2-1實驗步驟 22
2-1-1矽單晶基材使用前處理 22
2-1-2兩步驟金屬輔助化學蝕刻法製備準直型矽晶奈米線結構 23
2-1-3酸性橫向蝕刻法製備多孔隙準直型矽晶奈米線結構 23
2-1-4無電鍍銀奈米粒子技術披覆多孔隙準直型矽晶奈米線結構 23
2-1-5塗佈光阻結合金屬輔助化學蝕刻法、鹼性蝕刻法及酸性蝕刻法製備矽晶微米孔洞結構 24
2-1-6一步驟金屬輔助化學蝕刻法製備均勻薄化矽單晶基材 24
2-1-7可撓曲貴金屬銀奈米粒子/多孔隙準直型矽晶奈米線/矽晶通道異質結構之製備 25
2-2水蒸發發電元件之製備 25
2-2-1矽晶奈米線結構上製備氧化層 25
2-2-1-1原生氧化層(native oxide) 25
2-2-1-2氧氣電漿氧化層(plasma oxide) 26
2-2-2微型發電元件之設計及電極選擇 26
2-3試片分析 27
2-3-1掃描式電子顯微鏡 27
2-3-2穿透式電子顯微鏡 27
2-3-3影像式水滴接觸角量測儀 28
2-3-4光熱效應量測系統 28
2-3-5水蒸發發電元件量測系統 28
第三章 結果與討論 30
3-1製備準直型矽晶奈米線陣列結構 30
3-1-1準直型矽晶奈米線陣列結構之製備 30
3-1-2多孔隙準直型矽晶奈米線陣列結構之製備 31
3-1-3無電鍍貴金屬銀奈米粒子披覆多孔隙準直型矽晶奈米線陣列結構之製備 33
3-2準直型矽晶奈米線微型發電元件之發電特性分析 33
3-2-1準直型矽晶奈米線陣列微型發電元件之設計 34
3-2-2各式氧化製程準直型矽晶奈米線微型發電元件 34
3-2-3不同長度之準直型矽晶奈米線之水蒸發發電性能分析及發電機制 35
3-2-4矽晶奈米線結構水蒸發發電元件串並聯測試 37
3-2-5多孔隙矽晶奈米線之水蒸發發電性能分析 37
3-2-6銀奈米粒子/多孔隙矽晶奈米線之水蒸發發電性能分析 38
3-2-7面積改變對於矽晶奈米線之水蒸發發電性能分析 38
3-2-8強制對流對於矽晶奈米線之水蒸發發電性能分析 39
3-2-9模擬光照對於矽晶奈米線之水蒸發發電性能分析 39
3-3可撓曲矽單晶基材上製備準直型矽晶奈米線結構 40
3-3-1薄化矽單晶基材之製備 40
3-3-2可撓曲銀奈米粒子/多孔隙準直型矽晶奈米線結構之製備 41
3-4可撓曲銀奈米粒子/多孔隙準直型矽晶奈米線/矽晶微米孔洞異質結構之製備及其水蒸發發電之性能分析 42
3-4-1光阻塗佈結合金屬輔助化學蝕刻法、鹼性蝕刻法及酸性蝕刻法製備矽晶微米孔洞結構 42
3-4-2製備可撓曲銀奈米粒子/多孔隙準直型矽晶奈米線/矽晶微米孔洞異質結構及其水蒸發發電性能分析 43
3-5可撓曲水蒸發發電元件之實際應用測試 44
第四章 結論與未來展望 45
4-1結論 45
4-2未來展望 46
參考文獻 47
表目錄 55
圖目錄 57
參考文獻 參考文獻
[1] T. Nakajima, T. Ohara, T. Masui, T. Takemura, K. Yoshimura, D. Goto, T. Hanaoka, S. Itahashi, G. Kurata, J.-i. Kurokawa, "A development of reduction scenarios of the short-lived climate pollutants (SLCPs) for mitigating global warming and environmental problems", Progress in Earth and Planetary Science, 7 (2020) 1-21.
[2] IEA (2024), Renewables 2023, IEA, Paris https://www.iea.org/reports/renewables-2023, Licence: CC BY 4.0.
[3] IEA (2024), Electricity 2024, IEA, Paris https://www.iea.org/reports/electricity-2024, Licence: CC BY 4.0.
[4] 國家發展委員會,臺灣2050淨零排放路徑及策略總說明。https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76#.
[5] Z. Li, H. Li, L. Chen, J. Huang, W. Wang, H. Wang, J. Li, B. Fan, Q. Xu, W. Song, "Semitransparent perovskite solar cells with ultrathin silver electrodes for tandem solar cells", Solar Energy, 206 (2020) 294-300.
[6] L.C. Ding, A. Akbarzadeh, A. Date, "Performance and reliability of commercially available thermoelectric cells for power generation", Applied Thermal Engineering, 102 (2016) 548-556.
[7] W. Li, N. Wu, J. Zhong, Q. Zhong, S. Zhao, B. Wang, X. Cheng, S. Li, K. Liu, B. Hu, "Theoretical study of cellular piezoelectret generators", Advanced Functional Materials, 26 (2016) 1964-1974.
[8] M. Chen, X. Li, L. Lin, W. Du, X. Han, J. Zhu, C. Pan, Z.L. Wang, "Triboelectric nanogenerators as a self‐powered motion tracking system", Advanced Functional Materials, 24 (2014) 5059-5066.
[9] J. Zhong, Q. Zhong, G. Chen, B. Hu, S. Zhao, X. Li, N. Wu, W. Li, H. Yu, J. Zhou, "Surface charge self-recovering electret film for wearable energy conversion in a harsh environment", Energy & Environmental Science, 9 (2016) 3085-3091.
[10] D. Shen, M. Xiao, G. Zou, L. Liu, W.W. Duley, Y.N. Zhou, "Self‐powered wearable electronics based on moisture enabled electricity generation", Advanced Materials, 30 (2018) 1705925.
[11] G.L. Stephens, J. Li, M. Wild, C.A. Clayson, N. Loeb, S. Kato, T. L′ecuyer, P.W. Stackhouse Jr, M. Lebsock, T. Andrews, "An update on Earth′s energy balance in light of the latest global observations", Nature Geoscience, 5 (2012) 691-696.
[12] X. Wang, F. Lin, X. Wang, S. Fang, J. Tan, W. Chu, R. Rong, J. Yin, Z. Zhang, Y. Liu, "Hydrovoltaic technology: from mechanism to applications", Chemical Society Reviews, 51 (2022) 4902-4927.
[13] B. Shao, Y. Song, Z. Song, Y. Wang, Y. Wang, R. Liu, B. Sun, "Electricity generation from phase transitions between liquid and gaseous water", Advanced Energy Materials, 13 (2023) 2204091.
[14] G. Xue, Y. Xu, T. Ding, J. Li, J. Yin, W. Fei, Y. Cao, J. Yu, L. Yuan, L. Gong, "Water-evaporation-induced electricity with nanostructured carbon materials", Nature nanotechnology, 12 (2017) 317-321.
[15] T. Ding, K. Liu, J. Li, G. Xue, Q. Chen, L. Huang, B. Hu, J. Zhou, "All‐printed porous carbon film for electricity generation from evaporation‐driven water flow", Advanced Functional Materials, 27 (2017) 1700551.
[16] S.S. Das, V.M. Pedireddi, A. Bandopadhyay, P. Saha, S. Chakraborty, "Electrical power generation from wet textile mediated by spontaneous nanoscale evaporation", Nano Letters, 19 (2019) 7191-7200.
[17] J. Chi, C. Liu, L. Che, D. Li, K. Fan, Q. Li, W. Yang, L. Dong, G. Wang, Z.L. Wang, "Harvesting Water‐Evaporation‐Induced Electricity Based on Liquid–Solid Triboelectric Nanogenerator", Advanced Science, 9 (2022) 2201586.
[18] J. Sun, P. Li, J. Qu, X. Lu, Y. Xie, F. Gao, Y. Li, M. Gang, Q. Feng, H. Liang, "Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation", Nano Energy, 57 (2019) 269-278.
[19] Y. Han, D. Pang, Z. Xiong, X. Zhao, C. Li, X. Pang, J. Sun, "Flexible silicon carbide based nano-generator driven by water evaporation", Chemical Physics, 538 (2020) 110858.
[20] D. Yan, S.P. Phang, Y. Wan, C. Samundsett, D. Macdonald, A. Cuevas, "High efficiency n-type silicon solar cells with passivating contacts based on PECVD silicon films doped by phosphorus diffusion", Solar Energy Materials and Solar Cells, 193 (2019) 80-84.
[21] Y. Huang, H. Liang, Y. Zhang, S. Yin, C. Cai, W. Liu, T. Jia, "Vertical tip-to-tip interconnection p–n silicon nanowires for plasmonic hot electron-enhanced broadband photodetectors", ACS Applied Nano Materials, 4 (2021) 1567-1575.
[22] E. Köhnen, P. Wagner, F. Lang, A. Cruz, B. Li, M. Roß, M. Jošt, A.B. Morales-Vilches, M. Topič, M. Stolterfoht, "27.9% efficient monolithic perovskite/silicon tandem solar cells on industry compatible bottom cells", Solar RRL, 5 (2021) 2100244.
[23] Y. Qin, Y. Wang, X. Sun, Y. Li, H. Xu, Y. Tan, Y. Li, T. Song, B. Sun, "Constant electricity generation in nanostructured silicon by evaporation‐driven water flow", Angewandte Chemie, 132 (2020) 10706-10712.
[24] J.-H. Seo, E. Swinnich, Y.-Y. Zhang, M. Kim, "Low dimensional freestanding semiconductors for flexible optoelectronics: materials, synthesis, process, and applications", Materials Research Letters, 8 (2020) 123-144.
[25] R. Fuller, P.J. Landrigan, K. Balakrishnan, G. Bathan, S. Bose-O′Reilly, M. Brauer, J. Caravanos, T. Chiles, A. Cohen, L. Corra, "Pollution and health: a progress update", The Lancet Planetary Health, 6 (2022) e535-e547.
[26] F.-R. Fan, Z.-Q. Tian, Z.L. Wang, "Flexible triboelectric generator", Nano energy, 1 (2012) 328-334.
[27] S. Matsusaka, H. Maruyama, T. Matsuyama, M. Ghadiri, "Triboelectric charging of powders: A review", Chemical Engineering Science, 65 (2010) 5781-5807.
[28] H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A.C. Wang, C. Xu, "Quantifying the triboelectric series", Nature communications, 10 (2019) 1427.
[29] S. Wang, L. Lin, Z.L. Wang, "Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics", Nano letters, 12 (2012) 6339-6346.
[30] S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, Z.L. Wang, "Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism", Nano letters, 13 (2013) 2226-2233.
[31] Y. Yang, Y.S. Zhou, H. Zhang, Y. Liu, S. Lee, Z.L. Wang, "A single-electrode based triboelectric nanogenerator as self-powered tracking system", Advanced Materials (Deerfield Beach, Fla.), 25 (2013) 6594-6601.
[32] S. Wang, Y. Xie, S. Niu, L. Lin, Z.L. Wang, "Freestanding triboelectric‐layer‐based nanogenerators for harvesting energy from a moving object or human motion in contact and non‐contact modes", Advanced materials, 26 (2014) 2818-2824.
[33] Z.-H. Lin, G. Cheng, S. Lee, K.C. Pradel, Z.L. Wang, "Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process", Adv. Mater, 26 (2014) 4690-4696.
[34] H.v. Helmholtz, "Studien über electrische Grenzschichten", Annalen der Physik, 243 (1879) 337-382.
[35] P. Král, M. Shapiro, "Nanotube electron drag in flowing liquids", Physical review letters, 86 (2001) 131.
[36] B. Persson, U. Tartaglino, E. Tosatti, H. Ueba, "Electronic friction and liquid-flow-induced voltage in nanotubes", Physical Review B, 69 (2004) 235410.
[37] H. Daiguji, "Ion transport in nanofluidic channels", Chemical Society Reviews, 39 (2010) 901-911.
[38] X. Zhao, D. Shen, W.W. Duley, C. Tan, Y.N. Zhou, "Water‐Enabled Electricity Generation: A Perspective", Advanced Energy and Sustainability Research, 3 (2022) 2100196.
[39] J. Li, K. Liu, T. Ding, P. Yang, J. Duan, J. Zhou, "Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator", Nano Energy, 58 (2019) 797-802.
[40] C. Liu, C. Ye, Y. Wu, Y. Liu, Z. Liu, Z. Chen, R. Ma, N. Sakai, L. Xue, J. Sun, "Atomic-scale engineering of cation vacancies in two-dimensional unilamellar metal oxide nanosheets for electricity generation from water evaporation", Nano Energy, 110 (2023) 108348.
[41] T.G. Yun, J. Bae, A. Rothschild, I.-D. Kim, "Transpiration driven electrokinetic power generator", ACS nano, 13 (2019) 12703-12709.
[42] M. Kaur, S. Ishii, R. Nozaki, T. Nagao, "Hydropower generation by transpiration from microporous alumina", Scientific Reports, 11 (2021) 10954.
[43] J. Zhang, Y. Hou, Y. Li, S. Hu, "Chinese ink enabled natural wood for moist-induced electricity generation", Journal of Materials Research and Technology, 17 (2022) 1822-1830.
[44] G. Zhang, Y. Xu, Z. Duan, W. Yu, C. Liu, W. Yao, "Conversion of low-grade heat via thermal-evaporation-induced electricity generation on nanostructured carbon films", Applied Thermal Engineering, 166 (2020) 114623.
[45] L. Wang, L. Liu, N. Solin, "Ionovoltaic electricity generation over graphene-nanoplatelets: protein-nanofibril hybrid materials", Nanoscale Advances, 5 (2023) 820-829.
[46] F. Yu, G. Liu, Z. Chen, L. Zhang, X. Liu, Q. Zhang, L. Wu, X. Wang, "All-weather freshwater and electricity simultaneous generation by coupled solar energy and convection", ACS Applied Materials & Interfaces, 14 (2022) 40082-40092.
[47] S. Zhong, B. Liu, Y. Xia, J. Liu, J. Liu, Z. Shen, Z. Xu, C. Li, "Influence of the texturing structure on the properties of black silicon solar cell", Solar energy materials and solar cells, 108 (2013) 200-204.
[48] M. Moreno, D. Daineka, P.R. i Cabarrocas, "Plasma texturing for silicon solar cells: From pyramids to inverted pyramids-like structures", Solar Energy Materials and Solar Cells, 94 (2010) 733-737.
[49] H. Wang, A. Du, X. Ji, C. Zhang, B. Zhou, Z. Zhang, J. Shen, "Enhanced photothermal conversion by hot-electron effect in ultrablack carbon aerogel for solar steam generation", ACS applied materials & interfaces, 11 (2019) 42057-42065.
[50] J. Li, W. Zhang, W. Ji, J. Wang, N. Wang, W. Wu, Q. Wu, X. Hou, W. Hu, L. Li, "Near infrared photothermal conversion materials: Mechanism, preparation, and photothermal cancer therapy applications", Journal of Materials Chemistry B, 9 (2021) 7909-7926.
[51] M. Chang, M. Wang, M. Shu, Y. Zhao, B. Ding, S. Huang, Z. Hou, G. Han, J. Lin, "Enhanced photoconversion performance of NdVO4/Au nanocrystals for photothermal/photoacoustic imaging guided and near infrared light-triggered anticancer phototherapy", Acta biomaterialia, 99 (2019) 295-306.
[52] K.-T. Lin, C.-J. Chan, Y.-S. Lai, L.-T. Shiu, C.-C. Lin, H.-L. Chen, "Silicon-based embedded trenches of active antennas for high-responsivity omnidirectional photodetection at telecommunication wavelengths", ACS applied materials & interfaces, 11 (2019) 3150-3159.
[53] L. Mehrvar, M. Sadeghipari, S. Tavassoli, S. Mohajerzadeh, M. Fathipour, "Optical and Surface Enhanced Raman Scattering properties of Ag modified silicon double nanocone array", Scientific Reports, 7 (2017) 12106.
[54] 太陽輻射及矽晶材料吸收光譜圖。https://qdsolarinc.com/wp-content/uploads/2020/02/Si-Absorption-e1581357321237.png.
[55] P. Zhang, S. Li, C. Liu, X. Wei, Z. Wu, Y. Jiang, Z. Chen, "Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon", Nanoscale research letters, 9 (2014) 1-5.
[56] Y. Tseng, R. Gu, S. Cheng, "Design and fabrication of vertically aligned single-crystalline Si nanotube arrays and their enhanced broadband absorption properties", Applied Surface Science, 508 (2020) 145223.
[57] Z. Qi, Y. Zhai, L. Wen, Q. Wang, Q. Chen, S. Iqbal, G. Chen, J. Xu, Y. Tu, "Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection", Nanotechnology, 28 (2017) 275202.
[58] F. Hu, X.-Y. Dai, Z.-Q. Zhou, X.-Y. Kong, S.-L. Sun, R.-J. Zhang, S.-Y. Wang, M. Lu, J. Sun, "Black silicon Schottky photodetector in sub-bandgap near-infrared regime", Optics express, 27 (2019) 3161-3168.
[59] H.K. Bisoyi, A.M. Urbas, Q. Li, "Soft materials driven by photothermal effect and their applications", Photoactive Functional Soft Materials: Preparation, Properties, and Applications, (2019) 1-44.
[60] T. Mouterde, A. Keerthi, A. Poggioli, S.A. Dar, A. Siria, A.K. Geim, L. Bocquet, B. Radha, "Molecular streaming and its voltage control in ångström-scale channels", Nature, 567 (2019) 87-90.
[61] K.H. Lee, D.J. Kang, W. Eom, H. Lee, T.H. Han, "Holey graphene oxide membranes containing both nanopores and nanochannels for highly efficient harvesting of water evaporation energy", Chemical Engineering Journal, 430 (2022) 132759.
[62] G. Zhang, Z. Duan, X. Qi, Y. Xu, L. Li, W. Ma, H. Zhang, C. Liu, W. Yao, "Harvesting environment energy from water-evaporation over free-standing graphene oxide sponges", Carbon, 148 (2019) 1-8.
[63] B. Hou, D. Kong, J. Qian, Y. Yu, Z. Cui, X. Liu, J. Wang, T. Mei, J. Li, X. Wang, "Flexible and portable graphene on carbon cloth as a power generator for electricity generation", Carbon, 140 (2018) 488-493.
[64] T. Tabrizizadeh, J. Wang, R. Kumar, S. Chaurasia, K. Stamplecoskie, G. Liu, "Water-evaporation-induced electric generator built from carbonized electrospun polyacrylonitrile nanofiber mats", ACS Applied Materials & Interfaces, 13 (2021) 50900-50910.
[65] S.S. Das, V.M. Pedireddi, A. Bandopadhyay, P. Saha, S. Chakraborty, "Electrokinetic Power Harvesting from Wet Textile", arXiv preprint arXiv:1907.09999, (2019).
[66] V.-D. Dao, N.H. Vu, H.-S. Choi, "All day Limnobium laevigatum inspired nanogenerator self-driven via water evaporation", Journal of Power Sources, 448 (2020) 227388.
[67] L. Li, S. Gao, M. Hao, X. Yang, S. Feng, L. Li, S. Wang, Z. Xiong, F. Sun, Y. Li, "A novel, flexible dual-mode power generator adapted for wide dynamic range of the aqueous salinity", Nano Energy, 85 (2021) 105970.
[68] J. Liu, L. Huang, W. He, X. Cai, Y. Wang, L. Zhou, Y. Yuan, "Moisture-enabled hydrovoltaic power generation with milk protein nanofibrils", Nano Energy, 102 (2022) 107709.
[69] W. Yang, L. Lv, X. Li, X. Han, M. Li, C. Li, "Quaternized silk nanofibrils for electricity generation from moisture and ion rectification", ACS nano, 14 (2020) 10600-10607.
[70] Z. Wang, J. Li, C. Shao, X. Lin, Y.n. Yang, N. Chen, Y. Wang, L. Qu, "Moisture power in natural polymeric silk fibroin flexible membrane triggers efficient antibacterial activity of silver nanoparticles", Nano Energy, 90 (2021) 106529.
[71] S. Mandal, S. Roy, A. Mandal, T. Ghoshal, G. Das, A. Singh, D.K. Goswami, "Protein-based flexible moisture-induced energy-harvesting devices as self-biased electronic sensors", ACS Applied Electronic Materials, 2 (2020) 780-789.
[72] B. Ji, N. Chen, C. Shao, Q. Liu, J. Gao, T. Xu, H. Cheng, L. Qu, "Intelligent multiple-liquid evaporation power generation platform using distinctive Jaboticaba-like carbon nanosphere@ TiO 2 nanowires", Journal of materials chemistry A, 7 (2019) 6766-6772.
[73] Y. Hou, X.-Y. Zhang, C. Liu, C. Yin, Z. Yin, "Starfish-like particles and nanowires interwoven architecture of CuO for water infiltration–induced electrical device", Nano Energy, 110 (2023) 108338.
[74] S.G. Yoon, Y. Yang, J. Yoo, H. Jin, W.H. Lee, J. Park, Y.S. Kim, "Natural evaporation-driven ionovoltaic electricity generation", ACS Applied Electronic Materials, 1 (2019) 1746-1751.
[75] 王海燕, 石高全, "层状双金属氢氧化物/石墨烯复合材料及其在电化学能量存储与转换中的应用", 物理化学学报, 34 (2017) 22-35.
[76] J. Tian, Y. Zang, J. Sun, J. Qu, F. Gao, G. Liang, "Surface charge density-dependent performance of Ni–Al layered double hydroxide-based flexible self-powered generators driven by natural water evaporation", Nano Energy, 70 (2020) 104502.
[77] Q. Ma, Q. He, P. Yin, H. Cheng, X. Cui, Q. Yun, H. Zhang, "Rational design of MOF‐based hybrid nanomaterials for directly harvesting electric energy from water evaporation", Advanced Materials, 32 (2020) 2003720.
[78] Z. Li, X. Ma, D. Chen, X. Wan, X. Wang, Z. Fang, X. Peng, "Polyaniline‐coated MOFs nanorod arrays for efficient evaporation‐driven electricity generation and solar steam desalination", Advanced Science, 8 (2021) 2004552.
[79] Y. Bai, L. Sun, Q. Yu, Y. Lei, B. Liu, "Biomolecule capturing and sensing on 2D transition metal dichalcogenide canvas", Nano Res. Energy, 2 (2023) e9120043.
[80] D. He, Y. Yang, Y. Zhou, J. Wan, H. Wang, X. Fan, Q. Li, H. Huang, "Electricity generation from phase-engineered flexible MoS2 nanosheets under moisture", Nano Energy, 81 (2021) 105630.
[81] T. Zhong, H. Guan, Y. Dai, H. He, L. Xing, Y. Zhang, X. Xue, "A self-powered flexibly-arranged gas monitoring system with evaporating rainwater as fuel for building atmosphere big data", Nano Energy, 60 (2019) 52-60.
[82] X. Huangfu, Y. Guo, S.M. Mugo, Q. Zhang, "Hydrovoltaic Nanogenerators for Self‐Powered Sweat Electrolyte Analysis", Small, 19 (2023) 2207134.
[83] H. Guan, T. Zhong, H. He, T. Zhao, L. Xing, Y. Zhang, X. Xue, "A self-powered wearable sweat-evaporation-biosensing analyzer for building sports big data", Nano Energy, 59 (2019) 754-761.
[84] K. Xu, Y. Lu, K. Takei, "Multifunctional skin‐inspired flexible sensor systems for wearable electronics", Advanced Materials Technologies, 4 (2019) 1800628.
[85] S.G. Kirtania, A.W. Elger, M.R. Hasan, A. Wisniewska, K. Sekhar, T. Karacolak, P.K. Sekhar, "Flexible antennas: A review", Micromachines, 11 (2020) 847.
[86] M.G. Stanford, K. Yang, Y. Chyan, C. Kittrell, J.M. Tour, "Laser-induced graphene for flexible and embeddable gas sensors", ACS nano, 13 (2019) 3474-3482.
[87] M.A. Yildirim, K. Teker, "Self-powered fine-pattern flexible SiC single nanowire ultraviolet photodetector", Journal of Alloys and Compounds, 868 (2021) 159255.
[88] L.R. Shobin, S. Manivannan, "Carbon nanotubes on paper: Flexible and disposable chemiresistors", Sensors and Actuators B: Chemical, 220 (2015) 1178-1185.
[89] P. Serre, M. Mongillo, P. Periwal, T. Baron, C. Ternon, "Percolating silicon nanowire networks with highly reproducible electrical properties", Nanotechnology, 26 (2014) 015201.
[90] N.K. Mahan, E.M. Ali, A.N. Abd, "Synthesis of CdS: Cu5% thin films by chemical method based on silicon for gas sensor applications", Materials Today: Proceedings, 45 (2021) 5800-5803.
[91] D.H. Kim, W. Lee, J.-M. Myoung, "Flexible multi-wavelength photodetector based on porous silicon nanowires", Nanoscale, 10 (2018) 17705-17711.
[92] M. Triplett, H. Nishimura, M. Ombaba, V. Logeeswarren, M. Yee, K.G. Polat, J.Y. Oh, T. Fuyuki, F. Léonard, M.S. Islam, "High-precision transfer-printing and integration of vertically oriented semiconductor arrays for flexible device fabrication", Nano Research, 7 (2014) 998-1006.
[93] S.-C. Shiu, H.-J. Syu, S.-C. Hung, C.-F. Lin, 10th IEEE International Conference on Nanotechnology, IEEE2010, pp. 474-477.
[94] J. Son, H. Lee, "Contact-area-changeable CMP conditioning for enhancing pad lifetime", Applied Sciences, 11 (2021) 3521.
[95] S. Wang, B.D. Weil, Y. Li, K.X. Wang, E. Garnett, S. Fan, Y. Cui, "Large-area free-standing ultrathin single-crystal silicon as processable materials", Nano letters, 13 (2013) 4393-4398.
[96] C.-C. Lin, Y.-J. Chuang, W.-H. Sun, C. Cheng, Y.-T. Chen, Z.-L. Chen, C.-H. Chien, F.-H. Ko, "Ultrathin single-crystalline silicon solar cells for mechanically flexible and optimal surface morphology designs", Microelectronic Engineering, 145 (2015) 128-132.
[97] F. Bai, M. Li, D. Song, H. Yu, B. Jiang, Y. Li, "Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer", Applied surface science, 273 (2013) 107-110.
[98] G. Farid, Y. Yang, A. Mateen, C. Huo, H. Wang, K.-Q. Peng, "Rapid formation of uniform cracks in metal-assisted etched silicon nanowire array membranes: Implications for transfer of nanowires and flexible devices", ACS Applied Nano Materials, 5 (2022) 2779-2786.
[99] C. Shao, B. Ji, T. Xu, J. Gao, X. Gao, Y. Xiao, Y. Zhao, N. Chen, L. Jiang, L. Qu, "Large-scale production of flexible, high-voltage hydroelectric films based on solid oxides", ACS applied materials & interfaces, 11 (2019) 30927-30935.
[100] J. Bae, T.G. Yun, B.L. Suh, J. Kim, I.-D. Kim, "Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle", Energy & Environmental Science, 13 (2020) 527-534.
[101] X. Gao, T. Xu, C. Shao, Y. Han, B. Lu, Z. Zhang, L. Qu, "Electric power generation using paper materials", Journal of Materials Chemistry A, 7 (2019) 20574-20578.
[102] H. Ko, W. Son, M.S. Kang, H.U. Lee, C.-Y. Chung, S. Han, C. Choi, S.B. Cho, "Why does water in porous carbon generate electricity? Electrokinetic role of protons in a water droplet-induced hydrovoltaic system of hydrophilic porous carbon", Journal of Materials Chemistry A, 11 (2023) 1148-1158.
指導教授 鄭紹良 審核日期 2024-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明