參考文獻 |
[1]. Taylor, E. and V. Gomel, The uterus and fertility. Fertility and sterility, 2008. 89(1): p. 1-16.
[2]. Women′s, N.C.C.f. and C.s. Health, Intrapartum care: care of healthy women and their babies during childbirth. 2014.
[3]. Finn, C.A., Menstruation: a nonadaptive consequence of uterine evolution. Q Rev Biol, 1998. 73(2): p. 163-73.
[4]. Arnold, J.T., et al., Endometrial stromal cells regulate epithelial cell growth in vitro: a new co-culture model. Hum Reprod, 2001. 16(5): p. 836-45.
[5]. Biggs, W.S. and R.H. Demuth, Premenstrual syndrome and premenstrual dysphoric disorder. Am Fam Physician, 2011. 84(8): p. 918-24.
[6]. Diaz, A., M.R. Laufer, and L.L. Breech, Menstruation in girls and adolescents: using the menstrual cycle as a vital sign. Pediatrics, 2006. 118(5): p. 2245-50.
[7]. Damjanov, I., Decidua and implantation of the embryo from a historical perspective. Int J Dev Biol, 2014. 58(2-4): p. 75-8.
[8]. Foix, A., et al., The pathology of postcurettage intrauterine adhesions. Am J Obstet Gynecol, 1966. 96(7): p. 1027-33.
[9]. Deans, R. and J. Abbott, Review of intrauterine adhesions. Journal of Minimally Invasive Gynecology, 2010. 17(5): p. 555-569.
[10]. Roma Dalfó, A., et al., Diagnostic value of hysterosalpingography in the detection of intrauterine abnormalities: a comparison with hysteroscopy. AJR Am J Roentgenol, 2004. 183(5): p. 1405-9.
[11]. Myers, E.M. and B.S. Hurst, Comprehensive management of severe Asherman syndrome and amenorrhea. Fertil Steril, 2012. 97(1): p. 160-4.
[12]. Ventolini, G., M. Zhang, and J. Gruber, Hysteroscopy in the evaluation of patients with recurrent pregnancy loss: a cohort study in a primary care population. Surg Endosc, 2004. 18(12): p. 1782-4.
[13]. Chen, Y., et al., Effects of Aspirin and Intrauterine Balloon on Endometrial Repair and Reproductive Prognosis in Patients with Severe Intrauterine Adhesion: A Prospective Cohort Study. Biomed Res Int, 2017. 2017: p. 8526104.
[14]. Conforti, A., et al., The management of Asherman syndrome: a review of literature. Reprod Biol Endocrinol, 2013. 11: p. 118.
[15]. Gargett, C.E. and L. Ye, Endometrial reconstruction from stem cells. Fertil Steril, 2012. 98(1): p. 11-20.
[16]. Wang, X., et al., Elevated NF-κB signaling in Asherman syndrome patients and animal models. Oncotarget, 2017. 8(9): p. 15399-15406.
[17]. Duval, K., et al., Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda), 2017. 32(4): p. 266-277.
[18]. Pineda, E.T., R.M. Nerem, and T. Ahsan, Differentiation patterns of embryonic stem cells in two- versus three-dimensional culture. Cells Tissues Organs, 2013. 197(5): p. 399-410.
[19]. Edmondson, R., et al., Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol, 2014. 12(4): p. 207-18.
[20]. Wang, H., et al., 3D cell culture models: Drug pharmacokinetics, safety assessment, and regulatory consideration. Clin Transl Sci, 2021. 14(5): p. 1659-1680.
[21]. Zeitvogel, A., R. Baumann, and A. Starzinski-Powitz, Identification of an invasive, N-cadherin-expressing epithelial cell type in endometriosis using a new cell culture model. Am J Pathol, 2001. 159(5): p. 1839-52.
[22]. Krikun, G., et al., A novel immortalized human endometrial stromal cell line with normal progestational response. Endocrinology, 2004. 145(5): p. 2291-6.
[23]. Song, Y., et al., Establishment of an Immortalized Endometriotic Stromal Cell Line from Human Ovarian Endometrioma. Reprod Sci, 2020. 27(11): p. 2082-2091.
[24]. Sato, T., et al., Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009. 459(7244): p. 262-265.
[25]. Yi, S.A., et al., Bioengineering Approaches for the Advanced Organoid Research. Adv Mater, 2021. 33(45): p. e2007949.
[26]. He, J., et al., Organoid technology for tissue engineering. J Mol Cell Biol, 2020. 12(8): p. 569-579.
[27]. Fitzgerald, H.C., D.J. Schust, and T.E. Spencer, In vitro models of the human endometrium: evolution and application for women′s health. Biol Reprod, 2021. 104(2): p. 282-293.
[28]. Wiwatpanit, T., et al., Scaffold-Free Endometrial Organoids Respond to Excess Androgens Associated With Polycystic Ovarian Syndrome. J Clin Endocrinol Metab, 2020. 105(3): p. 769-80.
[29]. Turco, M.Y., et al., Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol, 2017. 19(5): p. 568-577.
[30]. Gnecco, J.S., et al., Compartmentalized Culture of Perivascular Stroma and Endothelial Cells in a Microfluidic Model of the Human Endometrium. Ann Biomed Eng, 2017. 45(7): p. 1758-1769.
[31]. Ozbolat, I.T., 3D bioprinting: fundamentals, principles and applications. 2016: Academic Press.
[32]. Goranov, V., et al., 3D Patterning of cells in Magnetic Scaffolds for Tissue Engineering. Sci Rep, 2020. 10(1): p. 2289.
[33]. Lee, J.-H., et al., Development of a heat labile antibiotic eluting 3D printed scaffold for the treatment of osteomyelitis. Scientific reports, 2020. 10(1): p. 7554.
[34]. Song, Y., et al., Characterization of the complete chloroplast genome sequence of Dalbergia species and its phylogenetic implications. Sci Rep, 2019. 9(1): p. 20401.
[35]. Beg, S., et al., 3D printing for drug delivery and biomedical applications. Drug Discov Today, 2020. 25(9): p. 1668-1681.
[36]. Khalaj, R., et al., 3D printing advances in the development of stents. Int J Pharm, 2021. 609: p. 121153.
[37]. Available from: https://www.allevi3d.com/allevi-1/.
[38]. Pezzulo, A.A., et al., The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. Am J Physiol Lung Cell Mol Physiol, 2011. 300(1): p. L25-31.
[39]. Chen, S. and J. Schoen, Air-liquid interface cell culture: From airway epithelium to the female reproductive tract. Reprod Domest Anim, 2019. 54 Suppl 3: p. 38-45.
[40]. Tian, J., et al., Generation of Human Endometrial Assembloids with a Luminal Epithelium using Air-Liquid Interface Culture Methods. Adv Sci (Weinh), 2023. 10(30): p. e2301868.
[41]. Arya, M., et al., Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn, 2005. 5(2): p. 209-19.
[42]. Shahrajabian, M.H. and W. Sun, The Significance and Importance of dPCR, qPCR, and SYBR Green PCR Kit in the Detection of Numerous Diseases. Curr Pharm Des, 2024. 30(3): p. 169-179.
[43]. Lin, C.-Y., Development of Biomimetic Gel with Osteoconductivity for Fixation of Permanent Bone Implants. 2023.
[44]. Mohanto, S., et al., Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol, 2023. 253(Pt 5): p. 127143.
[45]. Ratanavaraporn, J., et al., Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats. Int J Biol Macromol, 2010. 47(4): p. 431-8.
[46]. Yuan, X., et al., Tough Gelatin Hydrogel for Tissue Engineering. Adv Sci (Weinh), 2023. 10(24): p. e2301665.
[47]. Tseng, H.J., et al., Characterization of chitosan-gelatin scaffolds for dermal tissue engineering. J Tissue Eng Regen Med, 2013. 7(1): p. 20-31.
[48]. Li, M., X. Liu, and X. Liu, [Comparison of characteristics between glutaraldehyde- and genipin-crosslinked gelatin microspheres]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2009. 23(1): p. 87-91.
[49]. Gentile, P., et al., Biomimetic materials for medical application through enzymatic modification. Adv Biochem Eng Biotechnol, 2011. 125: p. 181-205.
[50]. Deweid, L., O. Avrutina, and H. Kolmar, Microbial transglutaminase for biotechnological and biomedical engineering. Biol Chem, 2019. 400(3): p. 257-274.
[51]. Yang, G., et al., Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells. PeerJ, 2016. 4: p. e2497.
[52]. Fang, S., et al., Synthesis of superabsorbent polymers based on chitosan derivative graft acrylic acid-co-acrylamide and its property testing. Int J Biol Macromol, 2019. 132: p. 575-584.
[53]. Malik, S., et al., Superabsorbent Polymers as a Soil Amendment for Increasing Agriculture Production with Reducing Water Losses under Water Stress Condition. Polymers (Basel), 2022. 15(1).
[54]. Luo, Y.D., C.A. Dai, and W.Y. Chiu, P(AA-SA) latex particle synthesis via inverse miniemulsion polymerization-nucleation mechanism and its application in pH buffering. J Colloid Interface Sci, 2009. 330(1): p. 170-4.
[55]. Jahan, N., et al., In Vivo and In Vitro Investigation of a Novel Gelatin/Sodium Polyacrylate Composite Hemostatic Sponge for Topical Bleeding. J Funct Biomater, 2023. 14(5).
[56]. Domnina, A., et al., Human mesenchymal stem cells in spheroids improve fertility in model animals with damaged endometrium. Stem Cell Res Ther, 2018. 9(1): p. 50.
[57]. Xin, L., et al., In situ delivery of apoptotic bodies derived from mesenchymal stem cells via a hyaluronic acid hydrogel: A therapy for intrauterine adhesions. Bioact Mater, 2022. 12: p. 107-119.
[58]. Zhang, S.S., et al., Three-dimensional structure micelles of heparin-poloxamer improve the therapeutic effect of 17β-estradiol on endometrial regeneration for intrauterine adhesions in a rat model. Int J Nanomedicine, 2017. 12: p. 5643-5657.
[59]. Xiao, L., et al., Expression of SOX2, NANOG and OCT4 in a mouse model of lipopolysaccharide-induced acute uterine injury and intrauterine adhesions. Reprod Biol Endocrinol, 2017. 15(1): p. 14.
[60]. Hua, Q., et al., Human umbilical cord blood-derived MSCs trans-differentiate into endometrial cells and regulate Th17/Treg balance through NF-κB signaling in rabbit intrauterine adhesions endometrium. Stem Cell Res Ther, 2022. 13(1): p. 301.
[61]. Zhang, H., et al., Organoid Transplantation Can Improve Reproductive Prognosis by Promoting Endometrial Repair in Mice. Int J Biol Sci, 2022. 18(6): p. 2627-2638.
[62]. Han, J., et al., Me-too validation study for in vitro skin irritation test with a reconstructed human epidermis model, KeraSkin™ for OECD test guideline 439. Regul Toxicol Pharmacol, 2020. 117: p. 104725.
[63]. Li, B., et al., Human amniotic epithelial cells improve fertility in an intrauterine adhesion mouse model. Stem Cell Res Ther, 2019. 10(1): p. 257.
[64]. Sun, H., et al., TSG6-Exo@CS/GP Attenuates Endometrium Fibrosis by Inhibiting Macrophage Activation in a Murine IUA Model. Adv Mater, 2024. 36(21): p. e2308921.
[65]. Murphy, A.R., H. Campo, and J.J. Kim, Strategies for modelling endometrial diseases. Nat Rev Endocrinol, 2022. 18(12): p. 727-743.
[66]. Boretto, M., et al., Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development, 2017. 144(10): p. 1775-1786.
[67]. Murphy, A.R., et al., Generation of Multicellular Human Primary Endometrial Organoids. J Vis Exp, 2019(152).
[68]. Wang, Y., et al., Dulaglutide Ameliorates Intrauterine Adhesion by Suppressing Inflammation and Epithelial-Mesenchymal Transition via Inhibiting the TGF-β/Smad2 Signaling Pathway. Pharmaceuticals (Basel), 2023. 16(7).
[69]. Flores-Espinosa, P., et al., Immunomodulatory role of decidual prolactin on the human fetal membranes and placenta. Front Immunol, 2023. 14: p. 1212736.
[70]. Fitzgerald, H.C., et al., Self-renewing endometrial epithelial organoids of the human uterus. Proc Natl Acad Sci U S A, 2019. 116(46): p. 23132-23142. |