博碩士論文 111827027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:128 、訪客IP:18.218.81.160
姓名 郭逸浦(Yi-Pu Kuo)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 透過深度學習神經網路進行無透鏡數位全像顯微系統之影像重建與相位恢復
(Image Reconstruction and Phase Recovery of Lensless Digital Holographic Microscopy System Through Deep Learning in Neural Network)
相關論文
★ 具生物沾粘性免疫奈米磁珠之電化學平台於急性冠心病標誌物檢測★ 離子液體應用於脂溶性蛋白之快速萃取及檢測
★ 深度學習計算成像系統於生物醫學顯微影像之重建與分析★ 磁電化學免疫分析系統 於新型冠狀病毒感染檢測之研製
★ 計算照明高通量生物醫學成像顯微鏡系統★ 表面增強拉曼散射探針及微流道系統 用於癌症細胞及外泌體表面生物標記物的多重檢測
★ 通過多醣表面修飾增強隱形眼鏡的親水性和抗菌性能★ 菲涅耳數位全像顯微系統於全血細胞分析之研製
★ 遮罩區域卷積類神經網路於醫學影像物件偵測分析應用★ 基於深度學習之高通量顯微影像系統於血液分析
★ 可功能化編碼之表面增強拉曼光譜標籤探針於高靈敏與多重生醫分子檢測★ 高通量計算顯微影像系統之研製於生物醫學成像與分析
★ 功能性抗生物沾黏單層膜於冠狀動脈心血管疾病標誌物之檢測應用★ 鼻咽癌外泌小體藉由EB病毒潛伏膜蛋白1促進巨噬細胞免疫抑制型分化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 光學複合顯微鏡一直是顯微成像的主要工具,其中視野範圍擴大、解析度提升和相位資訊之取得是光學成像中長期追求的重要目標,但傳統顯微系統其性能依賴於相對複雜、笨重且昂貴的鏡頭和對準機制等,本研究旨在透過深度學習神經網路進行無透鏡數位全像顯微系統之研發。
本研究所建立之顯微成像系統,係基於全像術理論的光學原理之設計,不需透鏡元件,僅利用近同調之光源與影像感測器,並採用同軸架構以簡化設備需求,實現系統之微型化,可達到單次擷取近30 mm²之視場範圍並同時獲得影像強度與相位資訊,這相當於傳統顯微鏡20倍物鏡下的8倍範圍。在影像還原方面,本研究創新提出了一種通過建立影像遮罩以過濾出重要資訊之演算方式,成功解決了同軸全像術在影像重建過程中容易出現的偽影雜訊。此外,也進一步結合深度學習模型取代全像術的數學演算還原過程,提升影像與相位還原之速度與品質,並整合了雜訊消除與解析度提升之模型,進一步提高了還原影像的質量。在通過不同樣品的影像還原測試,最佳化此模型架構並進行可行性和有效性等驗證。最後採用單板電腦進行使用者介面之開發與整合,提升了本研究之實用性,並為未來的擴展應用提供了良好的基礎。
本研究的成果展示了無透鏡全像顯微系統與人工智慧技術結合的巨大潛力,特別是在簡化光學設備、提高影像質量以及實現系統微型化方面的應用價值。未來,我們期待能夠進一步優化系統,加入更多先進的功能和應用,使其在各個領域中發揮更大的作用。
摘要(英) This study aims to explore the design of an optical system based on holography theory, utilizing a coaxial configuration to simplify equipment requirements and achieve miniaturization. Traditional holography requires extensive and complex optical equipment. In contrast, our designed system only needs a near-coaxial light source and sensor to capture an image area of nearly 30mm² in a single shot, equivalent to eight times the area under a 20x objective lens of a conventional microscope. In terms of image reconstruction, we innovatively proposed an algorithm that filters critical information through image masking based on the traditional holography reconstruction method (ASP), successfully solving the concentric circle issue in coaxial holography image reconstruction. Additionally, this study integrates the latest artificial intelligence technology by employing deep learning models to replace the mathematical theory of holography for image reconstruction. Through tests with different samples, the feasibility and effectiveness of this model have been demonstrated. We also combined noise reduction and resolution enhancement models, further improving the quality of reconstructed images. The comprehensive application of these technologies allows us to significantly enhance the clarity and accuracy of the images.
The results of this study demonstrate the great potential of combining lensless holographic microscopy systems with artificial intelligence technology, especially its application value in simplifying optical equipment, improving image quality, and achieving system miniaturization. In the future, we look forward to further optimizing the system and adding more advanced functions and applications to make it play a more significant role in various fields. Keywords: holography, deep learning, image reconstruction, image quality enhancement, miniaturized system.
關鍵字(中) ★ 全像術
★ 深度學習
★ 影像還原
★ 微型化系統
關鍵字(英) ★ holography
★ deep learning
★ image reconstruction
★ image quality enhancement
★ miniaturized system
論文目次 摘要 ii
ABSTRACT iii
致謝 iv
圖目錄 vii
第一章 緒論 - 1 -
1-1 研究動機與目的 - 1 -
1-2 論文架構 - 1 -
第二章 文獻探討 - 2 -
2-1 純量繞射理論 - 2 -
2-1-1 繞射性質 - 2 -
2-1-2 菲涅耳繞射公式(Fresnel diffraction formula) - 3 -
2-2 全像術 - 4 -
2-2-1 全像術理論 - 4 -
2-2-2 數位全像術 - 6 -
2-3 角譜傳播法 - 6 -
2-4 人工智慧 - 8 -
2-4-1 人工神經網路 - 8 -
2-4-2 卷積神經網路 - 9 -
2-4-3 自監督式神經網路 - 12 -
第三章 研究方法 - 13 -
3-1 研究方法與架構 - 13 -
3-2 系統架設 - 13 -
3-3 物理重建演算法 - 14 -
3-4影像重建之深度學習模型 - 17 -
3-4-1 資料預處理 - 17 -
3-4-2 資料擴增 - 19 -
3-4-3 模型架構 - 20 -
3-4-4 模型損失函數與激活函數 - 23 -
3-5 雜訊消除之深度學習模型 - 25 -
3-5-1 模型訓練資料集 - 25 -
3-5-2 模型架構 - 26 -
3-6 影像解析度提升之深度學習模型 - 27 -
3-6-1 模型架構 - 27 -
3-6-2模型損失函數與激活函數 - 28 -
3-7 系統微型化架構及方法 - 30 -
第四章 實驗結果與討論 - 31 -
4-1 物理重建演算法之結果分析 - 31 -
4-2成像系統資料高通量特性與相位還原驗證 - 33 -
4-3 影像重建與消除雜訊模型之結果分析 - 38 -
4-3-1模型結果評估指標 - 38 -
4-3-2 影像重建與消除雜訊之結果 - 39 -
4-4 解析度提升模型之結果 - 42 -
4-5系統微型化成果 - 43 -
第五章 結論 - 46 -
5-1 結論 - 46 -
5-2 未來展望 - 46 -
參考文獻 Reference - 47 -
參考文獻 [1] Zhu, Hongying, et al. Optical imaging techniques for point-of-care diagnostics. Lab on a Chip, Vol.13, 2013, p. 51-67.
[2] McCarthy, J, et al. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. AI magazine, Vol.27,2006
[3] Flowers, Johnathon Charles. Strong and Weak AI: Deweyan Conssideration.AAAI Spring Symposium: Towards Conscious AI Systems.2019
[4] Ning, Cai, et al. A Review of Artificial Intelligence (AI) in Education from 2010 to 2020.ACM digital library Vol.01,2021
[5] Goodman, J.W., Introduction to Fourier optics. 2005: Roberts and Company Publishers.
[6] Seo, S, et al. Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab on a Chip, Vol. 9, 2009, p. 777-87.
[7] Garcia-Sucerquia, J, et al, Digital in-line holographic microscopy. Applied optics, Vol. 45, 2006, p. 14.
[8] Yepes, I.S.V. and M.R.R. Gesualdi, Dynamic Digital Holography for recording and reconstruction of 3D images using optoelectronic devices. Journal of Microwaves. Optoelectronics and Electromagnetic Applications. Vol. 16, 2017, p. 801-815.
[9] J. R. Fienup. Phase retrieval algorithms: a comparison.
[10] L. J. Allen, et al. Phase retrieval from series of images obtained by defocus variation. Optics Communications,Vol.13,2001
[11] IEEE. A view of Artificial Neural Network. IEEE Xplore,2015
[12] Keiron O′Shea, Ryan Nash. An Introduction to Convolutional Neural Networks. arXiv:1511.08458,2015
[13] Xie, Yaochen, et al. Self-Supervised Learning of Graph Neural Networks: A Unified Review. IEEE Xplore 2023 p.2412-2429.
[14] M. J. Huang,Zi-Neng, He. Phase unwrapping through region-referenced algorithmand window-patching method. Optics Communications 2002
[15] Loic Denis, et al. Twin-image noise reduction by phase retrieval in in-linedigital holography. HAL ujm-00116996,2005
[16] Seo, S, et al,′Multi-color LUCAS: Lensfree On-chip Cytometry Using Tunable Monochromatic Illumination and Digital Noise Reduction. Cellular and Molecular Bioengineering,Vol. 1, 2008, p. 146-156.
[17] N. M. Kwok, et al. Gray world based color correction and intensity preservation for image enhancement. IEEE, Vol.2,2011
[18] Zhuoshi, Li. High Bandwidth-Utilization Digital Holographic Reconstruction Using an Untrained Neural Network. Applied sciences 10656,2022
[19] Zhiming Tian, et al. Lensless computational imaging with a hybridframework of holographic propagation and deeplearning. Optics Letter, Vol 47,No17,2022
[20] Luzhe Huang, etal. Self-supervised learning of hologramreconstruction using physics consistency. Nature machine intelligence.10.1038,2023
[21] Hanlong Chen, et al. Fourier Imager Network (FIN): A deep neuralnetwork for hologram reconstruction with superiorexternal generalization. Science and Application (2022)11:254
[22] D. A. Rymov, et al. Neural-network-enabled holographic imagereconstruction via amplitude and phaseextraction. Journal of Optical Technology. Vol.89, NO.9,2022
[23] Mikolaj Rogalski, et al. Physics-driven universal twin-image removal network for digital in line holographic microscopy. Optica 2024
[24] Christian Ledig, et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. arXir:1609.04802,2017
[25] Chao Dong, etal. Image Super-Resolution Using Deep Convolutional Networks. arXir:1501.00092,2015
[26] Wei-Sheng Lai, et al. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution. IEEE Xplore,2017
[27] Wang, Zhou, et al. Image quality assessment: from error visibility to structural similarity. IEEE Xplore :13.4,2004,p.600-612
指導教授 黃貞翰(Chen-Han Huang) 審核日期 2024-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明