博碩士論文 111826013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.137.187.81
姓名 蕭廷儒(Ting-Ru Siao)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 體外仿生心臟衰竭三維模型研究
(Investigation of In Vitro Bionic 3D Heart Failure Model)
相關論文
★ 整合深度學習方法預測年齡以及衰老基因之研究★ 運用深度學習方法預測阿茲海默症惡化與腦中風手術存活
★ 運用深度學習方法預測癌症種類及存活死亡與治癒復發★ 基於檢驗數值的糖尿病腎病變預測模型
★ 機械循環拉伸對肺癌細胞功能的影響之研究★ 整合多種基因組型態資料預測肺腺癌患者存活之研究
★ 以系統生物學策略探討臍帶血來源之造血幹細胞分子調控網路★ TP53突變對具有EGFR突變的非小細胞肺癌患者帶來的影響
★ 以系統生物學方法探討肺腺癌抗藥性成因★ 機械循環拉伸力對3D培養肺癌細胞之影響
★ PM2.5對人類心肺細胞的影響★ 尼曼匹克症轉錄體學研究
★ 體外仿生肺肝纖維化3D模型研究★ 肝纖維化細胞與動物模型以轉錄體資料分析比較
★ 基於深度學習之皮膚病兆切割之研究★ 在大腸桿菌與酵母菌蛋白質體晶片中量化其蛋白質的濃度
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 心血管疾病當前名列全球三大死因之一,其中心力衰竭造成的死亡率偏高。因此,開發準確模擬心臟衰竭的研究模型是相當重要的。在人體內的細胞行為會與其微環境動態地相互作用,因此在實驗環境中重現這種相互作用至關重要。在這項研究中,採用甲基丙烯酸酐化豬明膠構建的三維支架可透過機械循環拉伸和壓縮來複製體內微環境。機械條件為10%應變和1.5 Hz頻率。本研究調查了三維支架內機械循環負荷對AC16人類心肌細胞的影響。研究結果表明,在動態三維支架中培養的AC16細胞在第3天和第7天表現出F-肌動蛋白、TGF-β 和YAP的表達量升高,證實了3D仿生動態培養促進細胞生長,而在動態三維支架中培養的AC16細胞在第3天和第7天心臟衰竭相關疾病BNP、CRP、desmin、myosin、TNNI3的表現量也是升高,並從細胞衍生的外泌體中發現miRNA對細胞的影響。
摘要(英) Cardiovascular diseases presently rank among the top three leading global causes of mortality, with heart failure representing a significant contributor to this high mortality rate. Consequently, it is imperative to develop research models that accurately simulate heart failure. Cellular behavior within the human body dynamically interacts with its microenvironment, making it essential to recreate this interaction in experimental settings. In this study, a three-dimensional scaffold constructed from porcine gelatin methacryloyl was employed to replicate the in vivo microenvironment through mechanical cyclic stretching and compression. These mechanical conditions involved a 10% strain and a 1.5 Hz frequency. The research investigated the impact of mechanical cyclic loading within the three-dimensional scaffold on AC16 human cardiomyocyte cells. The findings reveal that AC16 cells cultured within dynamic three-dimensional scaffolds exhibited heightened expression of F-actin, TGF-β, and YAP at three and seven days, providing confirmation that 3D biomimetic dynamic culture fosters cellular growth. In the dynamic three-dimensional scaffold, the AC16 cells cultured showed an increase in the expression levels of BNP, CRP, desmin, myosin, and TNNI3, which are associated with heart failure, on the 3rd and 7th days. Additionally, the impact of miRNA on the cells was observed in the exosomes derived from the cells.
關鍵字(中) ★ 心臟衰竭
★ 三維模型研究
關鍵字(英) ★ heart failure
★ 3D Heart Failure Model
論文目次 中文摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 vii
第一章 緒論 1
1-1 心臟衰竭 1
1-2 仿生模型 1
1-3 微環境 2
1-4 3D支架材料 2
1-4-1 膠原蛋白 2
1-4-2 海藻酸鹽 2
1-4-3 甲基丙烯酸酐化明膠 3
1-5 生物製造 3
1-6 動態培養 3
1-7 外泌體 4
1-8 次世代定序 4
1-9 研究動機與目的 5
第二章 材料與方法 6
2-1 實驗方法 6
2-1-1 細胞培養 6
2-1-2 製備甲基丙烯酸酐化豬明膠(GelMA) 6
2-1-3 甲基丙烯酸酐化豬明膠物化性質分析 7
2-1-3-1 流變儀分析 7
2-1-3-2 掃描式電子顯微鏡(SEM) 7
2-1-3-3 傅立葉紅外光譜(FTIR) 8
2-1-3-4 核磁共振光譜(NMR) 8
2-1-4 細胞機械循環擠壓 8
2-1-5 細胞毒性分析 9
2-1-6 細胞型態及免疫螢光染色 9
2-1-7 鈣離子濃度測定 12
2-1-8 外泌體純化 12
2-1-9 奈米顆粒追蹤分析實驗(NTA) 13
2-1-10 穿透式電子顯微鏡(TEM) 13
2-1-11 流式細胞技術(flow cytometry) 14
2-1-12 西方墨點法 14
2-1-13 NGS數據分析 14
2-2 實驗材料 15
2-2-1 細胞培養 15
2-2-2 甲基丙烯酸酐化豬明膠材料 16
2-2-3 3D模具 16
2-2-4 機械循環擠壓 16
2-2-5 螢光染色實驗 16
2-2-6 鈣離子濃度測定 17
2-2-7 外泌體純化 17
2-2-8 奈米顆粒追蹤分析實驗 17
2-2-9 流式細胞技術 17
2-2-10 西方墨點法 18
2-2-11 NGS實驗 19
第三章 實驗流程 20
第四章 實驗結果 21
4-1 甲基丙烯酸酐化豬明膠物化性質分析 21
4-1-1 流變儀分析 21
4-1-2 掃描式電子顯微鏡(SEM) 22
4-1-3 傅立葉紅外光譜(FTIR) 23
4-1-4 核磁共振光譜(NMR) 25
4-2 支架模具、支架外觀與擠壓儀器 26
4-3 細胞毒性分析 27
4-4 AC16細胞機械循環擠壓下的免疫螢光染色 29
4-5 鈣離子濃度測定 37
4-6 外泌體特徵 38
4-7 外泌體基因篩選 40
4-8 經由機械循環擠壓細胞衍生的外泌體和靜態培養有交集的差異表達基因 41
4-9 KEGG途徑富集分析 42
4-10 差異表現基因的訊號通路分析 42
第五章 討論與結論 44
5-1 討論 44
5-1-1 特定條件下機械循環擠壓能使心肌細胞疾病表現量上升 44
5-1-2 探討機械循環擠壓細胞衍生的外泌體與控制組差異表達基因 44
5-2 結論 45
參考文獻 47
參考文獻 [1] Y. K. Tham, J. Y. Y. Bernardo Bc Fau - Ooi, K. L. Ooi Jy Fau - Weeks, J. R. Weeks Kl Fau - McMullen, and J. R. McMullen, "Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets," (in eng), no. 1432-0738 (Electronic), 2015.
[2] C. Riehle and J. Bauersachs, "Small animal models of heart failure," Cardiovascular Research, vol. 115, no. 13, pp. 1838-1849, 2019, doi: 10.1093/cvr/cvz161.
[3] M. Ravi, V. Paramesh, S. R. Kaviya, E. Anuradha, and F. D. P. Solomon, "3D Cell Culture Systems: Advantages and Applications," Journal of Cellular Physiology, vol. 230, no. 1, pp. 16-26, 2015/01/01 2015, doi: https://doi.org/10.1002/jcp.24683.
[4] J. Lerman Mj Auid- Orcid: --- Fau - Lembong, G. Lembong J Fau - Gillen, G. Gillen, and J. P. Fisher, "3D printing in cell culture systems and medical applications," (in eng), no. 1931-9401 (Print).
[5] L. J. Bray et al., "Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis," Biomaterials, vol. 53, pp. 609-620, 2015/06/01/ 2015, doi: https://doi.org/10.1016/j.biomaterials.2015.02.124.
[6] S. Ricard-Blum, "The collagen family," (in eng), no. 1943-0264 (Electronic), 2011.
[7] C. Dong and Y. Lv, "Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. LID - 10.3390/polym8020042 [doi] LID - 42," (in eng), no. 2073-4360 (Electronic), 2016.
[8] K. Y. Lee and D. J. Mooney, "Alginate: properties and biomedical applications," (in eng), no. 0079-6700 (Print), 2012.
[9] P. H. Maurer, "II. Antigenicity of gelatin in rabbits and other species," (in eng), no. 0022-1007 (Print), doi: D - CLML: 5527:23691:38:193 OTO - NLM.
[10] K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, and A. Khademhosseini, "Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels," (in eng), Biomaterials, no. 1878-5905 (Electronic), 2015.
[11] B. D. Fairbanks, C. N. Schwartz Mp Fau - Bowman, K. S. Bowman Cn Fau - Anseth, and K. S. Anseth, "Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility," (in eng), no. 1878-5905 (Electronic).
[12] C. C. Compton, C. E. Butler, I. V. Yannas, G. Warland, and D. P. Orgill, "Organized Skin Structure Is Regenerated In Vivo from Collagen-GAG Matrices Seeded with Autologous Keratinocytes," Journal of Investigative Dermatology, vol. 110, no. 6, pp. 908-916, 1998/06/01/ 1998, doi: https://doi.org/10.1046/j.1523-1747.1998.00200.x.
[13] G. Vunjak-Novakovic, B. Obradovic, I. Martin, P. M. Bursac, R. Langer, and L. E. Freed, "Dynamic Cell Seeding of Polymer Scaffolds for Cartilage Tissue Engineering," Biotechnology Progress, vol. 14, no. 2, pp. 193-202, 1998/01/01 1998, doi: https://doi.org/10.1021/bp970120j.
[14] M. Lovett, K. Lee, A. Edwards, and D. L. Kaplan, "Vascularization Strategies for Tissue Engineering," Tissue Engineering Part B: Reviews, vol. 15, no. 3, pp. 353-370, 2009/09/01 2009, doi: 10.1089/ten.teb.2009.0085.
[15] N. F. Jufri, A. Mohamedali, A. Avolio, and M. S. Baker, "Mechanical stretch: physiological and pathological implications for human vascular endothelial cells," (in eng), no. 2045-824X (Print).
[16] R. K. Birla, "A methodological nine-step process to bioengineer heart muscle tissue," Tissue and Cell, vol. 67, p. 101425, 2020/12/01/ 2020, doi: https://doi.org/10.1016/j.tice.2020.101425.
[17] W. H. Zimmermann et al., "Tissue Engineering of a Differentiated Cardiac Muscle Construct," Circulation Research, vol. 90, no. 2, pp. 223-230, 2002/02/08 2002, doi: 10.1161/hh0202.103644.
[18] P. J. Kennel and P. C. Schulze, "A Review on the Evolving Roles of MiRNA-Based Technologies in Diagnosing and Treating Heart Failure," Cells, vol. 10, no. 11, doi: 10.3390/cells10113191.
[19] S. A.-O. Chang et al., "Association between Exosomal miRNAs and Coronary Artery Disease by Next-Generation Sequencing. LID - 10.3390/cells11010098 [doi] LID - 98," (in eng), Cells, no. 2073-4409 (Electronic), 2022.
[20] F. Sanger, S. Nicklen, and A. R. Coulson, "DNA sequencing with chain-terminating inhibitors," Proceedings of the National Academy of Sciences, vol. 74, no. 12, pp. 5463-5467, 1977/12/01 1977, doi: 10.1073/pnas.74.12.5463.
[21] M. L. Metzker, "Sequencing technologies - the next generation," (in eng), no. 1471-0064 (Electronic), 2010.
[22] E. E. Schadt, S. Turner, and A. Kasarskis, "A window into third-generation sequencing," Human Molecular Genetics, vol. 19, no. R2, pp. R227-R240, 2010, doi: 10.1093/hmg/ddq416.
[23] F. Faita, I. Vecoli C Fau - Foffa, M. G. Foffa I Fau - Andreassi, and M. G. Andreassi, "Next generation sequencing in cardiovascular diseases," (in eng), no. 1949-8462 (Electronic), 2012.
[24] D. Qin, "Next-generation sequencing and its clinical application," (in eng), no. 2095-3941 (Print), 2019.
[25] D. L. Bader and M. M. Knight, "Biomechanical analysis of structural deformation in living cells," Medical & Biological Engineering & Computing, vol. 46, no. 10, pp. 951-963, 2008/10/01 2008, doi: 10.1007/s11517-008-0381-4.
[26] S. Hamilton et al., "Ero1α-Dependent ERp44 Dissociation From RyR2 Contributes to Cardiac Arrhythmia," Circulation Research, vol. 130, no. 5, pp. 711-724, 2022/03/04 2022, doi: 10.1161/CIRCRESAHA.121.320531.
[27] A. G. Shergalis, S. Hu, A. Bankhead, and N. Neamati, "Role of the ERO1-PDI interaction in oxidative protein folding and disease," Pharmacology & Therapeutics, vol. 210, p. 107525, 2020/06/01/ 2020, doi: https://doi.org/10.1016/j.pharmthera.2020.107525.
[28] Z.-Y. Xia et al., "Runx2/miR-3960/miR-2861 Positive Feedback Loop Is Responsible for Osteogenic Transdifferentiation of Vascular Smooth Muscle Cells," BioMed Research International, vol. 2015, p. 624037, 2015/06/28 2015, doi: 10.1155/2015/624037.
[29] K. J. Bubb et al., "FXYD1 Is Protective Against Vascular Dysfunction," Hypertension, vol. 77, no. 6, pp. 2104-2116, 2021/06/01 2021, doi: 10.1161/HYPERTENSIONAHA.120.16884.
[30] J. Y. Cheung et al., "Coordinated regulation of cardiac Na(+)/Ca (2+) exchanger and Na (+)-K (+)-ATPase by phospholemman (FXYD1)," (in eng), Springerlink, no. 0065-2598 (Print), 2013.
[31] L. Wang et al., "MicroRNAs of extracellular vesicles derived from mesenchymal stromal cells alleviate inflammation in dry eye disease by targeting the IRAK1/TAB2/NF-κB pathway," The Ocular Surface, vol. 28, pp. 131-140, 2023/04/01/ 2023, doi: https://doi.org/10.1016/j.jtos.2023.03.002.
[32] L. Yuan et al., "RNF207 exacerbates pathological cardiac hypertrophy via post-translational modification of TAB1," Cardiovascular Research, vol. 119, no. 1, pp. 183-194, 2023, doi: 10.1093/cvr/cvac039.
[33] Y. Zhu, T. Yang, J. Duan, N. Mu, and T. Zhang, "MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway," (in eng), no. 1945-4589 (Electronic), 2019.
指導教授 許藝瓊 審核日期 2024-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明