博碩士論文 111622008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:137 、訪客IP:3.141.197.255
姓名 蔡芳瑜(Fang-Yu Tsai)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱
(Deformation pattern of the Ordovician/Silurian formations on the Kaffiøyra plain: Insights from newly exposures due to glacier retreat in Western Svalbard.)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-5-22以後開放)
摘要(中) 斯瓦爾巴群島(冷岸群島)位於格陵蘭東部和巴倫支海西北部的邊緣,位於北緯74°至81°、東經10°至35°之間。該群島位於歐亞板塊和北美板塊的交界,以冰川和永凍土覆蓋為特徵的高北極地區。斯瓦爾巴的地質歷史從新元古代延續到新近紀和現今。
隨著全球暖化,冰川退縮的速率達到有史以來的最高峰,尤其在北極地區更為顯著,然而冰川退縮暴露出以前未被探索的地質構造,有助於本研究區域的構造重現和地質圖的優化。
本研究的主要研究區域位在斯瓦爾巴西部卡菲耶拉平原北部,Aavatsmark冰川以南的區域。該地區具有複雜的斷層帶,包括Hornsund斷層帶的東側和西斯匹茲卑爾根褶皺逆衝帶的西側,這些斷層帶形成於與挪威-格陵蘭海海底擴張相關的尤里坎造山運動事件中。
在2022年8月的實地調查發現,該區域存在左旋和右旋的走向滑移斷層以及雷德剪切構造,代表斯瓦爾巴和格陵蘭之間存在剪切帶內的擠壓和伸張運動。這些走向滑移斷層正是在尤里坎造山運動期間形成的。
在本研究的方法中,我們利用傾角儀進行野外觀察,並利用無人機影像製作地質圖的底圖,使用正射影像和數值高程模型進行斷層帶的分析,製作空間高解析,含有剪切代和地層分布的地質圖。從片岩和千枚岩為主的變質沉積岩在野外的分布,得到研究區域中新元古代和奧陶紀/志留紀地層之間的邊界,而奧陶紀/志留紀地層受到了尤里坎造山運動的影響,我們推論本研究的研究區域即位於西斯匹茲卑爾根褶皺逆衝帶的西側。
本研究的主要目標是建立剪切帶的構造和地質模型,並說明在加里東造山運動和尤里坎造山運動期間的變形過程演化。最後,本研究認為無人機技術在提高地質測繪解析度發揮重要的作用,並為西斯匹茲卑爾根褶皺逆衝帶的複雜變形歷史提供了重要見解。未來的地質圖繪製工作中,無人機將會扮演不可或缺的角色之一。
摘要(英) The Svalbard archipelago is located between eastern Greenland and the northwestern Barents Sea Shelf (74° to 81°N and 10° to 35°E). This archipelago is on the margin of the Eurasian Plate and the North American Plate and belongs to the High-Arctic region, which is characterized by glaciers and permafrost coverage. The geological history of Svalbard ranges from the Neoproterozoic to the Neogene and the present, with recent glacier retreats due to global warming exposing previously unexplored geological formations.
This study focuses on the area south of glacier Aavatsmark in the northern Kaffiøyra plain, western Svalbard. This region features complex fault zones, including the eastern boundary of the Hornsund Fault Complex (HFC) and the western boundary of the West Spitsbergen Fold-and-Thrust Belt (WSFTB), which formed during the Eurekan deformation event associated with the opening of the Norwegian-Greenland Sea. Field investigations conducted during the August 2022 expedition revealed dextral and sinistral strike-slip faults with Riedel shear patterns, indicating transpressional and transtensional movements between Svalbard and Greenland as shear zone within the fault zone, HFC. The strike-slip faults were developed in the Eurekan Orogeny.
Fault zone analyses were performed in situ using a clinometer, assisted by Unmanned Aerial System (UAS) missions, which provided detailed geological maps through orthophotos and digital elevation models (DEMs) for geomorphological analysis. The boundary between the Neoproterozoic and Ordovician/Silurian strata was identified through metasedimentary successions dominated by schist and phyllite, and the Ordovician/Silurian strata was influenced by the Eurekan Orogeny.
The primary objective of this research is to develop a tectonic and geological model of the deformation zone along this boundary and clarify the evolution of deformation processes during the Caledonian and Eurekan Orogeneses. The study′s conclusions highlight the critical role of UAV technology in enhancing geological mapping resolution, offering significant insights into the complex deformation history of the West Spitsbergen Fold-and-Thrust Belt in west Spitsbergen.
關鍵字(中) ★ 斯瓦爾巴島
★ 剪切帶
★ 褶皺逆衝帶
★ 地質圖繪製
★ 無人機
★ 造山運動
關鍵字(英) ★ Svalbard
★ Eurekan Orogeny
★ shear zone
★ fold-and-thrust belt
★ geological mapping
★ UAV
論文目次 摘要----------i
Abstract----------ii
致謝----------iv
Table of Contents----------vi
List of Figures----------viii
Chapter I. Introduction----------1
1-1 Caledonian Orogeny of Southwestern Basement Province (SBP), Svalbard----------6
1-2 Eurekan Orogeny of Greenland and Svalbard----------8
1-2-1 Transtension and transpression----------11
1-3 Geological setting of Svalbard----------15
1-4 Geological setting of Oscar II Land----------17
1-5 West Spitsbergen Fold-and-Thrust Belt----------20
1-6 Forlandsundet Graben----------22
1-7 Aims and Structures of the Thesis----------23
Chapter II. Data and Methods----------26
2-1 Field Observations----------26
2-2 UAV applications in geological mapping----------29
2-2-1 Photogrammetry method----------29
2-2-2 UAVs and target areas----------31
Chapter III. Results----------34
3-1 Structural interpretations----------34
3-1-1 Tectonic reconstruction----------35
3-1-2 Shear zone analysis----------35
3-1-3 DEM analysis----------37
3-2 DEM (digital elevation model) and orthophoto construction----------58
3-2-1 Z-factor adjustment----------58
3-2-2 UAV results have to be improved----------59
Chapter IV. Discussion----------62
4-1 Structural interpretation----------62
4-2 Implications for shear zone kinematics----------65
4-2-1 Brittle deformation----------65
4-2-2 Shear zones and shear sense indicators----------65
4-2-3 Riedel shear analysis----------66
4-2-4 Limitations and uncertainties for shear zone kinematics----------68
4-3 Geological mapping for the further studies----------72
Chapter V. Conclusions and future work----------74
Bibliography----------75
Appendix A. Data of field observations----------79
Appendix B. Metashape report----------165
參考文獻 Ahlgren, S. G. (2001). The nucleation and evolution of Riedel shear zones as deformation bands in porous sandstone. Journal of Structural Geology, 23(8), 1203–1214.
Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz, S., Thiele, S. T., & Bangash, H. A. (2014). Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology, 69, 163–178.
Bergh, S. G., & Andresen, A. (1990). Structural development of the Tertiary fold-and-thrust belt in east Oscar II Land, Spitsbergen. Polar Research, 8(2), 217–236.
Bergh, S. G., Braathen, A., & Andresen, A. (1997). Interaction of Basement-Involved and Thin-Skinned Tectonism in the Tertiary Fold-Thrust Belt of Central Spitsbergen, Svalbard1. AAPG Bulletin, 81(4), 637–661.
Bergh, S. (1997). Interaction of Basement-Involved and Thin-Skinned Tectonism in the Tertiary Fold-Thrust Belt of Central Spitsbergen, Svalbard. AAPG Bulletin, 81 (1997).
Blackam, M. (2015). Geomechanics and Environmental Effects of Hydraulic Fracturing.
Bond, C. E. (2015). Uncertainty in structural interpretation: Lessons to be learnt. Journal of Structural Geology, 74, 185–200.
Braathen, A., Bergh, S. G., & Maher, H. D., Jr. (1999). Application of a critical wedge taper model to the Tertiary transpressional fold-thrust belt on Spitsbergen, Svalbard. GSA Bulletin, 111(10), 1468–1485.
Braathen, A., Bergh, S. G., & Maher Jr., H. D. (1995). Structural outline of a Tertiary Basement-cored uplift/inversion structure in western Spitsbergen, Svalbard: Kinematics and controlling factors. Tectonics, 14(1), 95–119.
Chester, S. (2016). The Arctic Guide: Wildlife of the Far North. Princeton University Press.
Climate Change: Global Temperature | NOAA Climate.gov. (n.d.). Retrieved March 31, 2024, from http://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature
Dallmann, W. K., Andresen, A., Bergh, S. G., Maher jr, H. D., & Ohta, Y. (1993). Tertiary fold-and-thrust belt of Spitsbergen, Svalbard.
Dallmann, W. K. (2015). Geoscience atlas of Svalbard.
Davies, B. (2020, December 30). An introduction to Glacier Mass Balance. AntarcticGlaciers.Org. https://www.antarcticglaciers.org/glacier-processes/mass-balance/introduction-glacier-mass-balance/
Davis, G. H., Bump, A. P., Garcı́a, P. E., & Ahlgren, S. G. (2000). Conjugate Riedel deformation band shear zones. Journal of Structural Geology, 22(2), 169–190.
Davis, G. H., Reynolds, S. J., & Kluth, C. F. (2011). Structural Geology of Rocks and Regions. John Wiley & Sons.
Deep Time MapsTM—Maps of ancient Earth. (n.d.). Retrieved March 31, 2024, from https://deeptimemaps.com/
Elvevold, S., Dallmann, W., & Blomeier, D. (2007). Geology of Svalbard.
Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, Ø., Wilson, J., & Eldholm, O. (2008). Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes Journal of International Geoscience, 31(1), 82–91.
Fossen, H. (2016). Structural Geology. Cambridge University Press.
Frye, C. (2007). Setting the Z Factor parameter correctly. ArcGIS Blog. https://www.esri.com/arcgis-blog/products/product/imagery/setting-the-z-factor-parameter-correctly/
Gion, A. M., Williams, S. E., & Müller, R. D. (2017). A reconstruction of the Eurekan Orogeny incorporating deformation constraints. Tectonics, 36(2), 304–320.
Harland, W. B., Anderson, L. M., Manasrah, D., & Butterfield, N. J. (1997). The Geology of Svalbard. Geological Society.
Horota, R. K., Senger, K., Rodes, N., Betlem, P., Smyrak-Sikora, A., Jonassen, M. O., Kramer, D., & Braathen, A. (2023). West Spitsbergen fold and thrust belt: A digital educational data package for teaching structural geology. Journal of Structural Geology, 167, 104781.
Kanat, L., & Morris, A. (1988). A working stratigraphy for central western Oscar II Land, Spitsbergen. https://brage.npolar.no/npolar-xmlui/handle/11250/173518
Kleinspehn, K. L., & Teyssier, C. (2016). Oblique rifting and the Late Eocene–Oligocene demise of Laurasia with inception of Molloy Ridge: Deformation of Forlandsundet Basin, Svalbard. Tectonophysics, 693, 363–377.
Leever, K. A., Gabrielsen, R. H., Faleide, J. I., & Braathen, A. (2011). A transpressional origin for the West Spitsbergen fold-and-thrust belt: Insight from analog modeling. Tectonics, 30(2).
Lowe, D. G. (1999). Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International Conference on Computer Vision, 2, 1150–1157 vol.2.
Manby, G. M., & Lyberis, N. (1996). State of stress and tectonic evolution of the West Spitsbergen Fold Belt. Tectonophysics, 267(1), 1–29.
Machguth, H., Thomsen, H. H., Weidick, A., Ahlstrøm, A. P., Abermann, J., Andersen, M. L., Andersen, S. B., Bjørk, A. A., Box, J. E., Braithwaite, R. J., Bøggild, C. E., Citterio, M., Clement, P., Colgan, W., Fausto, R. S., Gleie, K., Gubler, S., Hasholt, B., Hynek, B., … Wal, R. S. W. V. D. (2016). Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers. Journal of Glaciology, 62(235), 861–887.
Martín-Moreno, R., Allende Álvarez, F., & Hagen, J. O. (2017). ‘Little Ice Age’ glacier extent and subsequent retreat in Svalbard archipelago. The Holocene, 27(9), 1379–1390.
Noël, B., Jakobs, C. L., van Pelt, W. J. J., Lhermitte, S., Wouters, B., Kohler, J., Hagen, J. O., Luks, B., Reijmer, C. H., van de Berg, W. J., & van den Broeke, M. R. (2020). Low elevation of Svalbard glaciers drives high mass loss variability. Nature Communications, 11(1), 4597.
Nuth, C., Kohler, J., König, M., von Deschwanden, A., Hagen, J. O., Kääb, A., Moholdt, G., & Pettersson, R. (2013). Decadal changes from a multi-temporal glacier inventory of Svalbard. The Cryosphere, 7(5), 1603–1621.
Paterson, M. S., & Weiss, L. E. (1966). Experimental deformation and folding in phyllite. Geological Society of America Bulletin, 77(4), 343-374.
Piepjohn, K., von Gosen, W., & Tessensohn, F. (2016). The Eurekan deformation in the Arctic: An outline. Journal of the Geological Society, 173(6), 1007–1024.
Petrov, O. V., Kashubin, S. N., Shokalsky, S. P., Sokolov, S. D., Petrov, E. O., & Tuchkova, M. I. (2021). Tectonic Model and Evolution of the Arctic. In O. V. Petrov & M. Smelror (Eds.), Tectonics of the Arctic (pp. 187–208). Springer International Publishing.
Pluijm, B. A. van der, & Marshak, S. (2004). Earth structure: An introduction to structural geology and tectonics (2nd ed). W.W. Norton & Company.
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., & Laaksonen, A. (2022). The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment, 3(1), 1–10.
Remondino, F., Barazzetti, L., Nex, F. C., Scaioni, M., & Sarazzi, D. (2011). UAV photogrammetry for mapping and 3D modeling: Current status and future perspectives. In Proceedings of the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g): 14-16 September 2011, Zurich, Switzerland (pp. 25–31). International Society for Photogrammetry and Remote Sensing (ISPRS).
Ren, J., Zhang, Z., Gai, H., & Kang, W. (2021). Typical Riedel shear structures of the coseismic surface rupture zone produced by the 2021 Mw 7.3 Maduo earthquake, Qinghai, China, and the implications for seismic hazards in the block interior. Natural Hazards Research, 1(4), 145–152.
Schaaf, N. W., Osmundsen, P. T., van der Lelij, R., Schönenberger, J., Lenz, O. K., Redfield, T. F., & Senger, K. (2021). Tectono-sedimentary evolution of the eastern Forlandsundet Graben, Svalbard. 39.
Schuler, T. V., Kohler, J., Elagina, N., Hagen, J. O. M., Hodson, A. J., Jania, J. A., Kääb, A. M., Luks, B., Małecki, J., Moholdt, G., Pohjola, V. A., Sobota, I., & Van Pelt, W. J. J. (2020). Reconciling Svalbard Glacier Mass Balance. Frontiers in Earth Science, 8.
Structure from Motion (SfM)—Theia Vision Library. (n.d.). Retrieved March 31, 2024, from http://theia-sfm.org/sfm.html
von Gosen, W., & Piepjohn, K. (2003). Eurekan transpressive deformation in the Wandel Hav Mobile Belt (northeast Greenland). Tectonics, 22(4).
Wala, V. T., Ziemniak, G., Majka, J., Faehnrich, K., McClelland, W. C., Meyer, E. E., Manecki, M., Bazarnik, J., & Strauss, J. V. (2021). Neoproterozoic stratigraphy of the Southwestern Basement Province, Svalbard (Norway): Constraints on the Proterozoic-Paleozoic evolution of the North Atlantic-Arctic Caledonides. Precambrian Research, 358, 106138.
Waddams, P. (1983). The Late Precambrian succession in north-west Oscar II Land, Spitsbergen. Geological Magazine, 120(3), 233–252.
Wolfgang, F., Martin, M., & Ronald, B. (2011). Plate Tectonics: Continental Drift and Mountain Building. Spinger.
Yalçınkaya, Ş., Yirmibeşoğlu, S., Balcı, N. Ç., & Ozsoy, B. (2022). A Review on Geological View of Svalbard with its Infrastructure and Strategies. International Journal of Environment and Geoinformatics, 9(4), Article 4.
Ziemniak, G., Manecki, M., Jeanneret, P., Walczak, K., & Kośmińska, K. (2022). Early Devonian sinistral shearing recorded by retrograde monazite-(Ce) in Oscar II Land, Svalbard. Mineralogia, 53(1), 82–108.
Zwoliński, Z., Giżejewski, J., Karczewski, A., Kasprzak, M., Lankauf, K. R., Migoń, P., Pękala, K., Repelewska-Pękalowa, J., Rachlewicz, G., & Sobota, I. (2013). Geomorphological settings of Polish research areas on Spitsbergen. Landform Analysis, 22, 125–143.
指導教授 張文和(Giletycz Jack Slawomir) 審核日期 2024-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明