博碩士論文 111622020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.139.87.151
姓名 高若甄(Jo-Chen Kao)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 臺灣機率式地震危害評估的地震源模型
(The seismogenic source model for probabilistic seismic hazard assessment in Taiwan)
相關論文
★ 印尼蘇門答臘地震危害分析★ 利用Mask R-CNN 辨識建物輪廓與地震風險分析:應用於台灣都會區
★ 開發深度學習技術的台灣轉換器震動警報模型 (TT-SAM)及其應用★ 應用XGBoost模型建立台灣地殼強地震動衰減式
★ Advancing Probabilistic Seismic Hazard Assessment for Albania (ALhaz2024)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-9-1以後開放)
摘要(中) 本研究旨在建立臺灣機率式地震危害評估的地震源模型,其分為淺層區域震源、孕震構造震源與隱沒帶震源,而隱沒帶震源又細分為板塊介面型與板塊內部型震源。本研究重新劃分淺層地殼區域震源,並整合七個地震目錄,考量自1900年至2022年之地震,以三種方法去除目錄之前、餘震後,計算各區域的地震活動度。本模型採用更新的陸域孕震構造與新辨識的海域孕震構造的相關參數計算孕震構造的再現週期,其中部分孕震構造考慮複合構造破裂與時變性地震機率模型—布朗過程時間,評估孕震構造隨時間變化的發生機率。隱沒帶板塊介面型震源則參考TWSSHAC Level 3地震源特徵模型中海溝線型與滑移速率,依據前人文獻建立板塊幾何,計算再現週期。隱沒帶板塊內部型震源參考三維板塊模型,並假設板塊厚度為50公里,依據地震分布重新劃分隱沒帶內部型震源的區域,並計算各區域地震活動度。在考慮孕震構造和隱沒帶介面型震源地震規模與長期滑移速率的不確定性之後,結合地動預估式與場址參數,進行地震危害評估。結果顯示,南臺灣在最大地表加速度的地震危害分布圖中有最大的地震動,而花蓮則在大部分的最大地表加速度與譜加速度週期0.3秒有最小的超越機率,相較於其他區域有更大機率發生相同程度的地震動。而在拆解分析中顯示,隱沒帶在最大地表加速度的地震危害中的貢獻程度甚小,但在長周期譜加速度中有更多的貢獻,尤其在臺北市、新北市、臺南市與高雄市更為明顯,這些地區應注意地震對於高樓層建築的影響。在依據新數據建立機率式地震源模型以更符合近期之研究,本研究之成果將有助於後續地震風險分析研究以及公部門防災策略推動,如:大規模地震情境模擬、地震災害避難防救演練腳本等。
摘要(英) This study aims to establish a seismogenic source model for probabilistic seismic hazard assessment (PSHA) for Taiwan, which is divided into shallow area sources, seismogenic structure sources, and subduction zone sources. The subduction zone sources are further categorized into interface and intraslab sources. The study redefines the region of shallow area sources, integrates seven catalogs and considers events from 1900 to 2022. After removing foreshocks and aftershocks using three different de-clustered methods, seismic activity rates for each region were calculated. The model incorporates updated inland seismogenic structures and newly identified offshore structures to compute their recurrence intervals. For some structures, multiple structures rupture and time-dependent seismic probability model, the Brownian Passage Time model, are considered to evaluate time-dependent rupture probabilities. The geometry and corresponding parameters of the subduction zone interface sources are based on the trench lines and the slip rates of TWSSHAC Level 3 Seismic Source Characterization model, and recurrence intervals are calculated using established plate geometries from previous studies. For subduction zone intraslab sources, a 3D plate model assuming a thickness of 50 km is used. The regions are redefined based on earthquake distribution, and seismic activity rates for each region are calculated. After considering uncertainties in earthquake magnitudes and long-term slip rates for seismogenic structures and subduction zone interface sources, combined with ground motion prediction equations and site parameters, seismic hazard assessments were conducted. Results indicate that southern Taiwan exhibits the highest ground motion in the peak ground acceleration (PGA) hazard map, while Hualien has the lowest exceedance probability for most PGA and spectral acceleration with a period of 0.3 second. Hualien also shows a higher likelihood of experiencing similar levels of ground motion compared to other regions. Disaggregation analysis reveals that subduction zones contribute minimally to the seismic hazard in terms of PGA but have a more significant impact on long-period spectral accelerations. This is particularly evident in Taipei, New Taipei, Tainan, and Kaohsiung, suggesting that these regions should pay special attention to the impact of earthquakes on high-rise buildings. By developing a probabilistic seismic source model based on new data to reflect recent research, the results of this study will aid in future seismic risk analyses and the implementation of disaster prevention strategies by public authorities. Applications include large-scale earthquake scenario simulations and earthquake disaster evacuation and rescue drills.
關鍵字(中) ★ 地震危害評估
★ 臺灣
關鍵字(英) ★ probabilistic seismic hazard assessment
★ PSHA
★ Taiwan
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 1
1-3 研究流程 4
第二章 機率式地震危害評估相關理論 6
2-1 機率式地震危害評估理論簡介 6
2-2 地震的機率模型 7
2-2-1 截切指數模型 7
2-2-2 特徵地震模型 9
2-2-3 複合構造破裂 11
2-2-4 布朗過程時間 14
第三章 資料與資料處理 16
3-1 地震目錄 16
3-2 孕震構造參數 25
3-2-1 孕震構造的幾何 25
3-2-2 滑移速率 34
3-2-3 複合構造破裂定義 43
3-3 隱沒帶參數 46
3-3-1 隱沒帶板塊介面型震源參數 46
3-3-2 隱沒帶板塊內部型震源參數 51
第四章 地震源劃分與地震活動 54
4-1 地震源分類 54
4-2 淺層背景區域震源 54
4-2-1 簡介 54
4-2-2 淺層背景區域震源劃分 54
4-2-3 淺層背景地震活動度分析 59
4-3 孕震構造 71
4-3-1 簡介 71
4-3-2 孕震構造再現週期推估 71
4-4 隱沒帶震源 89
4-4-1 簡介 89
4-4-2 隱沒帶介面型震源再現週期推估 89
4-4-3 隱沒帶內部型震源再現週期推估 93
第五章 臺灣地區機率式地震危害評估成果 103
5-1 概述 103
5-2 機率式地震危害分布圖 106
第六章 討論 111
6-1 分析主要震源貢獻 111
6-2 與國內機率式地震危害評估研究比較 122
第七章 結論與建議 127
7-1 結論 127
7-2 建議 129
參考文獻 130
參考文獻 日本地震調查研究推進本部(2005)確率論的地震動予測地図の説明 (1),187 pp。
交通部中央氣象署(2009)20週年專刊。檢自https://scweb.cwa.gov.tw/zh-tw/page/twenty/83 (May. 14, 2024)
張喭汝、陳憶萍、張毓文、劉勛仁、張志偉、陳冠宇、郭鶯萍、簡文郁(2018)臺灣周圍板塊界面斷層三維幾何模型建置,106年國家地震工程研究中心研究成果報告,第5-8頁。
郭俊翔、溫國樑、謝宏灝、林哲民、張道明(2011)近地表剪力波速性質之研究,國家地震工程研究中心,NCREE-11-022,共82頁。
經濟部標準檢驗局(2018),中華民國國家標準CNS 15176-1 風力機–第1部:設計要求。
鄭世楠、葉永田、黃文紀、辛在勤、張建興(1995)1898年至1995年臺灣地區地震目錄(未出版)。
鄭世楠、王子賓、林祖慰、江嘉豪(2010)臺灣地區地震目錄的建置,交通部中央氣象署地震技術報告彙編,第54卷,第575-606頁。
鄭世楠、王子賓、林祖慰、江嘉豪(2011)臺灣地區地震目錄的建置(II),中央氣象署地震技術報告彙編,第57卷,第483-501頁。
鄭世楠、江嘉豪、陳燕玲(2012)臺灣地區歷史地震資料的建置,交通部中央氣象署地震技術報告彙編,第60卷,第427-448頁。
鄭世楠、邵承芬(2013),1862年臺南地震的回顧與探討,2013土木工程與防災研討會,第1-4頁。
鄭世楠(2014),歷史地震第二講:1862年臺南地震,臺灣地震科學中心─歷史地震典藏及推廣,共51頁。
Arabasz, W. J., & Robinson, R. (1976). Microseismicity and geologic structure in the northern South Island, New Zealand. New Zealand journal of geology and geophysics, 19(5), 569-601.
Baker, J. W. (2013). An introduction to probabilistic seismic hazard analysis. White paper version, 2(1), 79.
Blaser, L., Krüger, F., Ohrnberger, M., & Scherbaum, F. (2010). Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bulletin of the Seismological Society of America, 100(6), 2914-2926.
Chan, C. H., Ma, K. F., Shyu, J. B. H., Lee, Y. T., Wang, Y. J., Gao, J. C., ... & Rau, R. J. (2020). Probabilistic seismic hazard assessment for Taiwan: TEM PSHA2020. Earthquake Spectra, 36(1_suppl), 137-159.
Chan, C. H., Wang, Y., Wang, Y. J., & Lee, Y. T. (2017). Seismic‐hazard assessment over time: Modeling earthquakes in Taiwan. Bulletin of the Seismological Society of America, 107(5), 2342-2352.
Chang, C. C., Chang, C. Y., Gao, J. C., & Chan, C. H. (2023). Quantifying the probability and uncertainty of multiple-structure rupture for Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 34(1), 7.
Chartier, T., Scotti, O., & Lyon‐Caen, H. (2019). SHERIFS: Open‐source code for computing earthquake rates in fault systems and constructing hazard models. Seismological Research Letters, 90(4), 1678-1688.
Chen, H. Y., Hsu, Y. J., Ikuta, R., Tung, H., Tang, C. H., Ku, C. S., ... & Tsujii, T. (2022). Strain partitioning in the southern Ryukyu margin revealed by seafloor geodetic and seismological observations. Geophysical Research Letters, 49(6), e2022GL098218.
Cheng, C. T., Chiou, S. J., Lee, C. T., & Tsai, Y. B. (2007). Study on probabilistic seismic hazard maps of Taiwan after Chi-Chi earthquake. Journal of GeoEngineering, 2(1), 19-28.
Cheng, C. T., Hsieh, P. S., Lin, P. S., Yen, Y. T., Chan, C. H., Beer, M., ... & Au, I. S. K. (2015). Probability seismic hazard mapping of Taiwan. Encyclopedia of Earthquake Engineering, 10, 978-3.
Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the seismological society of America, 58(5), 1583-1606.
Cosentino, P., Ficarra, V., & Luzio, D. (1977). Truncated exponential frequency-magnitude relationship in earthquake statistics. Bulletin of the Seismological Society of America, 67(6), 1615-1623.
Fujiwara, H., Kawai, S., Aoi, S., Morikawa, N., Senna, S., Kobayashi, K., ... & Hayakawa, Y. (2006). National seismic hazard maps of Japan. Bull. Earthq. Res. Inst. Univ. Tokyo, 81, 221-232.
Ellsworth, W. L., Matthews, M. V., Nadeau, R. M., Nishenko, S. P., Reasenberg, P. A., & Simpson, R. W. (1999). A physically-based earthquake recurrence model for estimation of long-term earthquake probabilities (No. 99-522). US Geological Survey.
Gao, J. C., Tseng, Y. H., & Chan, C. H. (2022). Validation of the probabilistic seismic hazard assessment by the Taiwan earthquake model through comparison with strong ground motion observations. Seismological Society of America, 93(4), 2111-2125.
Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?. Bulletin of the seismological society of America, 64(5), 1363-1367.
Gerstenberger, M. C., Van Dissen, R., Rollins, C., DiCaprio, C., Thingbaijim, K. K., Bora, S., ... & Williams, C. (2024). The seismicity rate model for the 2022 Aotearoa New Zealand national seismic hazard model. Bulletin of the Seismological Society of America, 114(1), 182-216.
Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological society of America, 34(4), 185-188.
Hsu, Y. J. and Lin, J. Y. (2016) ”Ryukyu and Manila Subduction Zone Parameters for HID and Coupling.” presentation at working Meeting 2, Taiwan SSHAC Level 3 Project, July 13, 2016. Retrieved from https://sshac.ncree.org.tw/ws3.htm (Oct. 26, 2023)
Hsu, Y. J., Yu, S. B., Loveless, J. P., Bacolcol, T., Solidum, R., Luis Jr, A., ... & Woessner, J. (2016). Interseismic deformation and moment deficit along the Manila subduction zone and the Philippine Fault system. Journal of Geophysical Research: Solid Earth, 121(10), 7639-7665.
Kanamori, H. (1977). The energy release in great earthquakes. Journal of geophysical research, 82(20), 2981-2987.
Kao, H., Shen, S. S. J., & Ma, K. F. (1998). Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc‐Taiwan region. Journal of Geophysical Research: Solid Earth, 103(B4), 7211-7229.
Kayabali, K., & Akin, M. (2003). Seismic hazard map of Turkey using the deterministic approach. Engineering Geology, 69(1-2), 127-137.
Klingelhoefer, F., Berthet, T., Lallemand, S., Schnurle, P., Lee, C. S., Liu, C. S., ... & Theunissen, T. (2012). P-wave velocity structure of the southern Ryukyu margin east of Taiwan: Results from the ACTS wide-angle seismic experiment. Tectonophysics, 578, 50-62.
Kuo, C. H., Wen, K. L., Hsieh, H. H., Chang, T. M., Lin, C. M., & Chen, C. T. (2011). Evaluating empirical regression equations for Vs and estimating Vs30 in northeastern Taiwan. Soil Dynamics and Earthquake Engineering, 31(3), 431-439.
Kuo, C. H., Wen, K. L., Hsieh, H. H., Lin, C. M., Chang, T. M., & Kuo, K. W. (2012). Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT. Engineering Geology, 129, 68-75.
Kuo, C. H., Wen, K. L., Hsieh, H. H., Kuo K. W. (2011). Introduction of the Geological Database for TSMIP, 8CUEE CONFERENCE PROCEEDINGS, 157-163, Tokyo , Japan.
Lai, Y. C., Cheng-Horng, L., Min-Hung, S., Lee, H. F., Ku, C. S., Chin-Jen, L., & Pu, H. C. (2018). Interface geometry of potential mega-thrust earthquakes beneath the westernmost Ryukyu subduction system. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 29(4), 4.
Lallemand, S., Theunissen, T., Schnürle, P., Lee, C. S., Liu, C. S., & Font, Y. (2013). Indentation of the Philippine Sea plate by the Eurasia plate in Taiwan: Details from recent marine seismological experiments. Tectonophysics, 594, 60-79.
Lin, A. T., Yao, B., Hsu, S. K., Liu, C. S., & Huang, C. Y. (2009). Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics, 479(1-2), 28-42.
Lin, P. S., & Lee, C. T. (2008). Ground-motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan. Bulletin of the Seismological Society of America, 98(1), 220-240.
Lin, P. S., Lee, C. T., Cheng, C. T., & Sung, C. H. (2011). Response spectral attenuation relations for shallow crustal earthquakes in Taiwan. Engineering Geology, 121(3-4), 150-164.
National Center for Research on Earthquake Engineering (2015-2019). Reevaluation of Probabilistic Seismic Hazard of Nuclear Facilities in Taiwan Using SSHAC Level 3 Methodology: Seismic Source Characterization model. Retrieved from https://sshac.ncree.org.tw/ws3.htm (Oct, 26, 2023)
NOAA National Centers for Environmental Information. 2022: ETOPO 2022 15 Arc-Second Global Relief Model. NOAA National Centers for Environmental Information. DOI: 10.25921/fd45-gt74. Accessed [Nov, 9, 2023].
Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., ... & Vigano, D. (2014). OpenQuake engine: An open hazard (and risk) software for the global earthquake model. Seismological Research Letters, 85(3), 692-702.
Parvez, I. A., Vaccari, F., & Panza, G. F. (2003). A deterministic seismic hazard map of India and adjacent areas. Geophysical Journal International, 155(2), 489-508.
Schwartz, D. P., & Coppersmith, K. J. (1984). Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones. Journal of Geophysical Research: Solid Earth, 89(B7), 5681-5698.
Shearer, P., & Bürgmann, R. (2010). Lessons learned from the 2004 Sumatra-Andaman megathrust rupture. Annual Review of Earth and Planetary Sciences, 38, 103-131.
Shyu, J. B. H., Chuang, Y. R., Chen, Y. L., Lee, Y. R., & Cheng, C. T. (2016). A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 27(3).
Shyu, J. B. H., Yin, Y. H., Chen, C. H., Chuang, Y. R., & Liu, S. C. (2020). Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terr Atmos Ocean Sci, 31(4), 469.
Silva, V., Crowley, H., Pagani, M., Monelli, D., & Pinho, R. (2014). Development of the OpenQuake engine, the Global Earthquake Model’s open-source software for seismic risk assessment. Natural Hazards, 72, 1409-1427.
Storchak, D. A., Di Giacomo, D., Bondár, I., Engdahl, E. R., Harris, J., Lee, W. H., ... & Bormann, P. (2013). Public release of the ISC–GEM global instrumental earthquake catalogue (1900–2009). Seismological Research Letters, 84(5), 810-815.
Strasser, F. O., Arango, M. C., & Bommer, J. J. (2010). Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismological Research Letters, 81(6), 941-950.
Theunissen, T., Font, Y., Lallemand, S., & Liang, W. T. (2010). The largest instrumentally recorded earthquake in Taiwan: revised location and magnitude, and tectonic significance of the 1920 event. Geophysical Journal International, 183(3), 1119-1133.
Uhrhammer, R. A. (1986). Characteristics of northern and central California seismicity. Earthquake Notes, 57(1), 21.
Van Avendonk, H. J., McIntosh, K. D., Kuo-Chen, H., Lavier, L. L., Okaya, D. A., Wu, F. T., ... & Liu, C. S. (2016). A lithospheric profile across northern Taiwan: from arc-continent collision to extension. Geophysical Journal International, 204(1), 331-346.
Wallace, J. M. (1973). General circulation of the tropical lower stratosphere. Reviews of Geophysics, 11(2), 191-222.
Wang, Y. J., Chan, C. H., Lee, Y. T., Ma, K. F., Shyu, J. B. H., Rau, R. J., & Cheng, C. T. (2016). Probabilistic seismic hazard assessment for Taiwan. Terr. Atmos. Ocean. Sci, 27(3), 325-340.
Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002.
Wesnousky, S. G. (1994). The Gutenberg-Richter or characteristic earthquake distribution, which is it?. Bulletin of the Seismological Society of America, 84(6), 1940-1959.
Wyss, M. (1979). Estimating maximum expectable magnitude of earthquakes from fault dimensions. Geology, 7(7), 336-340.
Youngs, R. R., & Coppersmith, K. J. (1985). Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bulletin of the Seismological society of America, 75(4), 939-964.
Zhao, D., Huang, Z., Umino, N., Hasegawa, A., & Kanamori, H. (2011). Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku‐oki earthquake (Mw 9.0). Geophysical Research Letters, 38(17).
指導教授 詹忠翰(Chung-Han Chan) 審核日期 2024-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明