博碩士論文 108622012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.222.166.12
姓名 陳則元(Tze Yuan Chen)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 閃電化石的生成與蝕變—以金門花崗片麻岩上的閃電熔岩為例
(The Formation and Alteration of Lightning Fossil—A Case Study of Fulgurite on Granitic Gneiss in Kinmen)
相關論文
★ 井測資料於臺灣中央山脈北部地熱區之解釋及應用★ 台灣淺灘沉積物組成與物源分析
★ Particle Size Distribution of the Active Fault Zone of Chelungpu Fault and Its Implication for Slipping and Energetics of Large Earthquakes★ 臺灣花蓮和平花崗片麻岩之摩擦特性及其隱示
★ Internal Structure and Permeability of the Creeping Chihshang Fault, Taiwan★ 因應高速飽和水斷層泥變形之壓力閥研製
★ 臺灣金門太武山近期閃電熔岩之礦物、微觀構造及化學特徵★ 南中國海東北部過去三萬八千年以來的古海洋變化
★ 以摩擦試驗探討斷層滑移對於微生物生存的影響★ 臺灣西南部車瓜林斷層之斷層岩石及變形機制
★ The Effect of Fluid Drainage on The Frictional Strength of Water-Saturated Kaolinite During Seismic Slip★ 以熱水力化耦合數值模擬探討快速剪切的斷層泥孔隙水壓與變形機制
★ 蛇紋岩斷層帶內的橄欖石與頑火輝石可為地震破裂指標★ 俄國西伯利亞古陸奧隆多(Olondo)綠岩帶起源及其地球動力學意義
★ 臺灣米崙斷層之斷層帶特徵及其隱示:以 MiDAS岩芯為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-1以後開放)
摘要(中) 閃電熔岩為閃電雷擊地面後形成的產物。由於閃電可產生具高溫高壓特徵的變質作用,研究閃電熔岩有特殊的科學價值。雲對地閃電發生的頻率約為每秒十次,但相關研究相對稀少,尤其是雷擊於岩石上形成的岩石閃電熔岩。本研究藉由2018年在金門太武山花崗片麻岩上生成的閃電熔岩以及附近大片暴露岩石上的風化閃電熔岩殘跡,利用微觀構造、礦物相、化學成分分析、以及水熱實驗等方法,探討岩石閃電熔岩的生成與蝕變。我們的結果顯示,僅0.03%的閃電傳至地面能量能形成岩石閃電熔岩,暗示能量不大的閃電,難以形成可被觀察的閃電熔岩。另外,閃電熔岩在冷卻過程時若接觸到雨水會快速蝕變,說明閃電熔岩的保存困難。水熱蝕變實驗與模擬顯示,在金門的天氣會在一千年內讓兩百微米的閃電熔岩消失殆盡。本研究深入探討了岩石閃電熔岩的生成和蝕變過程,為閃電熔岩研究的重要性及其潛在應用提供了重要的基礎,還顯示了其在地質高溫高壓變質作用的獨特研究價值。
摘要(英) Fulgurites are formed by lightning strikes on the ground. Due to the lightning-induced high-temperature and high-pressure metamorphism, the study of fulgurites holds significant scientific value. Despite cloud-to-ground lightning occurring at a rate of approximately ten times per second, research on fulgurites, particularly those formed on rocks, is relatively rare. This study investigates the formation and alteration of rock fulgurites using samples from the Tawushan granitic gneiss in Kinmen, including fulgurites formed in 2018 and altered fulgurite remnants on nearby exposed rock surfaces. We employed microstructural characterization, mineralogical investigations, chemical composition analyses, and hydrothermal experiments. Our results indicate that less than 0.03% of the lightning energy that conducted to the ground is utilized in generating rock fulgurites, making it challenging for low-energy lightning to form noticeable fulgurites. Moreover, fulgurites undergo rapid alteration when exposed to rainwater during cooling, posing significant preservation challenges. The hydrothermal alteration experiments and modeling suggest that under Kinmen′s weather conditions, a glassy layer with a thickness of 200 µm would completely dissolve within a thousand years. This study offers a detailed exploration of the formation and alteration processes of rock fulgurites, laying a crucial foundation for understanding the importance and potential applications of fulgurite research and highlighting their unique research value in high-temperature and high-pressure geological metamorphism.
關鍵字(中) ★ 閃電熔岩
★ 閃電
★ 蝕變
關鍵字(英) ★ Fulgurite
★ Lightning
★ Alteration
論文目次 Chinese Abstract i
English Abstract iii
Acknowledgments v
Table of Contents vii
List of Figures ix
List of Tables xiii
Explanation of Symbols xv
Chapter I Introduction 1
1-1 Research Motivation 1
1-2 Different Types of Glasses 4
1-3 Lightning-induced Glass: Fulgurite 6
1-3-1 Lightning 7
1-3-2 Discovery, Definition, and Taxonomy 8
1-3-3 Classification 10
1-3-3-1 Natural/artificial/anthropogenic Fulgurite 10
1-3-3-2 Clasto/petro/phytofulgurite 14
1-3-3-3 Sand/soil/caliche/rock/droplet Fulgurite 14
1-3-3-4 Unclassified Fulgurite 24
1-3-3-5 Not Fulgurite: Analogues 28
1-3-4 Characteristics 36
1-3-4-1 High-temperature 36
1-3-4-2 Reduction 39
1-3-4-3 Vesicular and Flow Structure 41
1-3-4-4 High-pressure 43
1-3-4-5 Magnetization 45
1-3-5 Applications and Implications 47
1-3-5-1 Lightning Properties 47
1-3-5-2 Uncommon Materials 48
1-3-5-3 Origin of Life 49
1-3-5-4 Proxies of Shock Metamorphism 50
1-3-5-5 Paleoecology Reconstruction 52
1-3-5-6 Weathering 53
1-3-5-7 Ball Lightning 53
1-3-5-8 Forensics 54
1-3-5-9 Religious Ritual 54
1-3-5-10 Arts 54
1-3-5-11 Exhibitions and Collections 55
1-3-6 Literature Statistics 56
1-4 Research Goals 58
Chapter II Study Area, Material, and Method 61
2-1 Study area 61
2-1-1 Geological Background 62
2-1-2 Climate 64
2-2 Lightning Events and Materials 67
2-2-1 Lightning Detection Systems 67
2-2-2 Lightning Characteristics and Distribution in Taiwan 68
2-2-3 The Thunderstorm in Kinmen 72
2-2-4 Field Observation 73
2-2-5 Sample Source 79
2-3 Analytical Methods 79
2-3-1 Sample Preparation 80
2-3-2 Optical Microscopy (OM) 81
2-3-3 X-ray Fluorescence Spectrometry (XRF) 82
2-3-4 Projection X-ray Microscopy (PXM) 82
2-3-5 Scanning Electron Microscopy (SEM) 83
2-3-6 Transmission Electron Microscopy (TEM) 84
2-3-7 Synchrotron In-situ X-ray Diffraction (XRD) 84
2-3-8 Raman Spectroscopy 85
2-3-9 Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) 87
2-3-10 Nuclear Magnetic Resonance (NMR) 88
Chapter III The Formation of Rock Fulgurite 91
3-1 Introduction 91
3-2 Results 92
3-2-1 Field Observation 92
3-2-2 Optical Microscopy 95
3-2-3 X-ray Fluorescence Spectrometry 98
3-2-4 Projection X-ray Microscopy 99
3-2-5 Scanning Electron Microscopy 100
3-2-6 Transmission Electron Microscopy 108
3-2-7 Synchrotron In-situ X-ray Diffraction 109
3-2-8 Raman Spectroscopy 110
3-2-9 Nuclear Magnetic Resonance 111
3-3 Discussion 113
3-3-1 The Occurrence of Fulgurite 113
3-3-2 Hydrothermal Alteration of the Fulgurite 114
3-3-3 The Production Efficiency of the Fulgurite 116
3-4 Conclusion 118
Chapter IV The Alteration of Rock Fulgurite 119
4-1 Introduction 119
4-2 Alteration Experimental Setup 120
4-3 Results 122
4-3-1 Field Observation of Weathering Pits and Fulgurite Remnants 122
4-3-2 Experimental Altered Sample Description 123
4-3-3 Optical Microscopy 124
4-3-4 Scanning Electron Microscopy 125
4-3-5 Synchrotron In-situ X-ray Diffraction 130
4-3-6 Raman Spectroscopy 131
4-3-7 Transmission Electron Microscopy 132
4-3-8 Inductively Coupled Plasma Optical Emission Spectrometer 133
4-4 Discussion 134
4-4-1 Alteration Process 134
4-4-2 Alteration Rate 135
4-4-3 Alteration Evolution 136
4-5 Conclusion 137
Chapter V Conclusion 139
5-1 Implication 139
5-2 Limitations and Future Work 139
Bibliography 141
Appendix A Chemical Composition of Tws Granitic Gneiss 161
Appendix B Field Record Points 163
Appendix C Rainwater Composition 169
Appendix D CG Lightning Data 173
Appendix E Cores of Tws Granitic Gneiss 177
Appendix F Weathering Pits With Scorch Mark 183
參考文獻 Abbasi, T., Poornima, P., Kannadasan, T., & Abbasi, S. A. (2013). Acid rain: past, present, and future. International Journal of Environmental Engineering, 5(3), 229-272. https://doi.org/10.1504/ijee.2013.054703
Abich, M. (1869). LI. On fulgurites in the andesite of the Lesser, Ararat and on the influence of local agents on the production of thunderstorms. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 38(257), 436-440. https://doi.org/10.1080/14786446908640251
Ablesimov, N. Y., Tsyurupa, A. I., & Lipatov, V. G. (1986). Phase and element ratios upon fulguritization of basalt. Transactions (Doklady) of the USSR Academy of Sciences. Earth science sections, 290, 161–164.
Abrahamson, J., & Dinniss, J. (2000). Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil. Nature, 403(6769), 519-521. https://doi.org/10.1038/35000525
Albrecht, R. I., Goodman, S. J., Buechler, D. E., Blakeslee, R. J., & Christian, H. J. (2016). Where Are the Lightning Hotspots on Earth? Bulletin of the American Meteorological Society, 97(11), 2051-2068. https://doi.org/10.1175/BAMS-D-14-00193.1
Alte da Veiga, N. M. S., Martin-Gil, F. J., Martin-Gil, J., Carvalho Gomes, E. M., & Martin-Ramos, P. (2021). Physico-chemical study of an exogenic fulgurite from a thunderstorm on 10th August 2013 in Dallas, TX. Physics and Chemistry of Minerals, 48(3), Article 12. https://doi.org/10.1007/s00269-021-01134-w
Anderson, A. E. (1925). Sand Fulgurites from Nebraska Their structure and formative factors. Bulletin of the University of Nebraska State Museum, 1(7), 49-86.
Anderson, R. S., Riihimaki, C. A., Safran, E. B., MacGregor, K. R., Willett, S. D., Hovius, N., Brandon, M. T., & Fisher, D. M. (2006). Facing reality: Late Cenozoic evolution of smooth peaks, glacially ornamented valleys, and deep river gorges of Colorado′s Front Range. In Tectonics, Climate, and Landscape Evolution (Vol. 398, pp. 0). Geological Society of America. https://doi.org/10.1130/2006.2398(25)
Andrianov, A. M., & Sinitsyn, V. I. (1977). Erosion-discharge model for ball lightning. Soviet physics. Technical physics 22, 1342-1347.
Appel, P. W. U., Abrahamsen, N., & Rasmussen, T. M. (2006). Unusual features caused by lightning impact in West Greenland. Geological Magazine, 143(5), 737-741. https://doi.org/10.1017/s0016756806002391
Arago, F. o. (1821). Sur les tubes vitreux qui paraissent produits par les coups de foudre Annales de chimie et de physique, 21, 290-303.
Aston, E., & Bonney, T. G. (1896). On an Alpine Nickel-bearing Serpentine, with Fulgurites. Quarterly Journal of the Geological Society of London, 52(1-4), 452-460. https://doi.org/10.1144/GSL.JGS.1896.052.01-04.24
Baccolo, G., Delmonte, B., Niles, P. B., Cibin, G., Di Stefano, E., Hampai, D., Keller, L., Maggi, V., Marcelli, A., Michalski, J., Snead, C., & Frezzotti, M. (2021). Jarosite formation in deep Antarctic ice provides a window into acidic, water-limited weathering on Mars. Nature Communications, 12(1), 436. https://doi.org/10.1038/s41467-020-20705-z
Ballhaus, C., Blanchard, H., Fonseca, R. O. C., & Bragagni, A. (2018b). Reply 2 to Comment on “Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes”. Geochemical Perspectives Letters, 8, 8-10. https://doi.org/10.7185/geochemlet.1821
Ballhaus, C., Fonseca, R. O. C., & Bragagni, A. (2018a). Reply to Comment on “Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes” by Griffin et al., 2018: No evidence for transition zone metamorphism in the Luobusa ophiolite. Geochemical Perspectives Letters, 7, 3-4. https://doi.org/10.7185/geochemlet.1810
Ballhaus, C., Wirth, R., Fonseca, R. O. C., Blanchard, H., Pröll, W., Bragagni, A., Nagel, T., Schreiber, A., Dittrich, S., Thome, V., Hezel, D. C., Below, R., & Cieszynski, H. (2017). Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes. Geochemical Perspectives Letters, 5, 42-46. https://doi.org/10.7185/geochemlet.1744
Barbour, E. H. (1925). Notes on Nebraska Fulgurites. Bulletin of the University of Nebraska State Museum, 1(6), 45-48.
Barnett, V. H. (1908). An Example of Disruption of Rock by Lightning on one of the Lucite Hills in Wyoming. The Journal of Geology, 16(6), 568-571. https://doi.org/10.1086/621554
Barrows, W. L. (1910). A Fulgurite from the Raritan Sands of New Jersey with an Historical Sketch and Bibliography of Fulgurites in General. The School of Mines Quarterly, 31, 294-319.
Basciano, L. C., & Peterson, R. C. (2008). Crystal chemistry of the natrojarosite-jarosite and natrojarosite-hydronium jarosite solid-solution series: A synthetic study with full Fe site occupancy. American Mineralogist, 93(5-6), 853-862. https://doi.org/10.2138/am.2008.2731
Bayley, W. S. (1892). A fulgurite from Waterville, Maine. American Journal of Science, s3-43(256), 327-328. https://doi.org/10.2475/ajs.s3-43.256.327
Beard, L. P., Norton, J., & Sheehan, J. R. (2009). Lightning-Induced Remanent Magnetic Anomalies in Low-Altitude Aeromagnetic Data. Journal of Environmental and Engineering Geophysics, 14(4), 155-161. https://doi.org/10.2113/jeeg14.4.155
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5(1), 180214. https://doi.org/10.1038/sdata.2018.214
Begnini, G. S., Tohver, E., & Schmieder, M. (2013, 2013/05/1). Fulgurites: a rock magnetic study of mineralogical changes caused by lightning American Geophysical Union, Spring Meeting, Cancun, Mexico. https://ui.adsabs.harvard.edu/abs/2013AGUSMGP33A..07B
Bentor, Y. K. (1986). A new approach to the problem of tektite genesis. Earth and Planetary Science Letters, 77(1), 1-13. https://doi.org/10.1016/0012-821X(86)90127-5
Berg, H. (1908). Fulgurites. A short account of "lightning tubes.". Scientific American Supplement, 66. https://doi.org/10.1038/scientificamerican08151908-109supp
Bhattacharyya, C., Das, S., Banerjee, J., & Pal, S. P. (2002). Rock melt extrusion at Puruliya, West Bengal. Journal of the Geological Society of India, 60(3), 323-327.
Bidin, N., Sanagi, M. M., Farah, M., Razali, M. N., & Khamis, J. (2018). Laser-induced artificial fulgurites. Laser Physics Letters, 15(7), 076001. https://doi.org/10.1088/1612-202X/aaada4
Bindi, L., Feng, T., & Pasek, M. A. A. (2023b). Routes to reduction of phosphate by high-energy events. Communications Earth & Environment, 4(1), Article 70. https://doi.org/10.1038/s43247-023-00736-2
Bindi, L., Pasek, M. A., Ma, C., Hu, J., Cheng, G., Yao, N., Asimow, P. D., & Steinhardt, P. J. (2023a). Electrical discharge triggers quasicrystal formation in an eolian dune. Proceedings of the National Academy of Sciences, 120(1), e2215484119. https://doi.org/10.1073/pnas.2215484119
Block, K. (2011). Fulgurite Classification, Petrology, and Implications for Planetary Processes. [Master′s Thesis, University of Arizona].
Boccippio, D. J., Cummins, K. L., Christian, H. J., & Goodman, S. J. (2001). Combined Satellite- and Surface-Based Estimation of the Intracloud–Cloud-to-Ground Lightning Ratio over the Continental United States. Monthly Weather Review, 129(1), 108-122. https://doi.org/10.1175/1520-0493(2001)129<0108:CSASBE>2.0.CO;2
Boltunov, V. A. (1995). Biophysical profiling of hydraulic structures. Hydrotechnical Construction, 29(10), 618-631. https://doi.org/10.1007/BF02443054
Bonney, T. G. (1899). Fulgurites from Tupungato and the Summit of Aconcagua. Geological Magazine, 6(1), 1-4. https://doi.org/10.1017/S001675680014186X
Borucki, W. J., & Chameides, W. L. (1984). Lightning: Estimates of the rates of energy dissipation and nitrogen fixation. Reviews of Geophysics, 22(4), 363-372. https://doi.org/10.1029/RG022i004p00363
Bouška, V., & Feldman, V. I. (1994). Terrestrial and Lunar, Volcanic and Impact Glasses, Tektites, and Fulgurites. In A. S. Marfunin (Ed.), Advanced Mineralogy: Volume 1 Composition, Structure, and Properties of Mineral Matter: Concepts, Results, and Problems (pp. 258-265). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-78523-8_16
Box, C. F. (1904). Effects of a lightning stroke at Earl′s fee, bowers gifford, essex, april 13, 1904. Quarterly Journal of the Royal Meteorological Society, 30(132), 307-312. https://doi.org/10.1002/qj.49703013205
Brandstätter, F., Seemann, R., Hammer, V. M. F., Berger, A., Koller, F., & Stehlik, H. (2009). Über den Fund eines ungewöhnlichen "Fulgurit"-Objekts bei Kaltenbach, Gemeinde Vitis, Niederösterreich, Österreich. Annalen des Naturhistorischen Museums in Wien, 110A(1), 1 - 16.
Brumm, A. (2018). Lightning teeth and Ponari sweat: Folk theories and magical uses of prehistoric stone axes (and adzes) in Island Southeast Asia and the origin of thunderstone beliefs. Australian Archaeology, 84(1), 37-55. https://doi.org/10.1080/03122417.2018.1468059
Burks, J., Viberg, A., & Bevan, B. (2015). Lightning strikes in archaeological magnetometry data. A case study from the High Bank Works site, Ohio, USA. Archaeologia Polona, 53, 256-260.
Buseck, P. R., Tsipursky, S. J., & Hettich, R. (1992). Fullerenes from the Geological Environment. Science, 257(5067), 215-217. https://doi.org/10.1126/science.257.5067.215
Butcher, D. D. (1907). Experiments on Artificial Fulgurites. Proceedings of the Physical Society of London, 21(1), 254–260. https://doi.org/10.1088/1478-7814/21/1/315
Çalışkanoğlu, A. Z., Camara, A. S. B., Cimarelli, C., Dingwell, D. B., & Hess, K.-U. (2023b). Experimental generation of fulgurite under realistic lightning discharge conditions. Scientific Reports, 13(1), 11685. https://doi.org/10.1038/s41598-023-38781-8
Çalışkanoğlu, A. Z., Dingwell, D. B., Cimarelli, C., Camara, A. S. B., Breitzke, H., Buntkowsky, G., Pasek, M. A., Braun, D., Scheu, B., & Molaverdikhani, K. (2023a). Reactive phosphorus via simulated lightning discharge: A role for fulgurites in pre-biotic chemistry. Chemical Geology, 620, 121343. https://doi.org/10.1016/j.chemgeo.2023.121343
Callegari, E., & Pertsev, N. N. (2007). A systematic nomenclature for metamorphic rocks: 10 Contact metamorphic rocks. (web version of 01.02.07 ed.). Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. Recommendations.
Carron, M. K., & Lowman Jr, P. D. (1961). Analysis of a supposed clay fulgurite from Ontario. Nature, 190(4770), 40. https://doi.org/10.1038/190040a0
Carter, E. A., Hargreaves, M. D., Kee, T. P., Pasek, M. A., & Edwards, H. G. M. (2010a). A Raman spectroscopic study of a fulgurite. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 368(1922), 3087-3097. https://doi.org/10.1098/rsta.2010.0022
Carter, E. A., Pasek, M. A., Smith, T., Kee, T. P., Hines, P., & Edwards, H. G. M. (2010b). Rapid Raman mapping of a fulgurite. Analytical and Bioanalytical Chemistry, 397(7), 2647-2658. https://doi.org/10.1007/s00216-010-3593-z
Castro, J. M., Keller, F., Feisel, Y., Lanari, P., Helo, C., Mueller, S. P., Schipper, C. I., & Thomas, C. (2020). Lightning-induced weathering of Cascadian volcanic peaks. Earth and Planetary Science Letters, 552, 116595. https://doi.org/10.1016/j.epsl.2020.116595
Cecil, D. J., Buechler, D. E., & Blakeslee, R. J. (2014). Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmospheric Research, 135-136, 404-414. https://doi.org/10.1016/j.atmosres.2012.06.028
Cen, J., Yuan, P., & Xue, S. (2014). Observation of the Optical and Spectral Characteristics of Ball Lightning. Physical Review Letters, 112(3), 035001. https://doi.org/10.1103/PhysRevLett.112.035001
Chaudhuri, A., Dutta, S., Pal, T. K., & Mukhopadhyay, G. (1993). Electrical discharge and formation of basaltic fulgurite in Seminary Hills, Nagpur District, Maharashtra. Indian Minerals, 47(4), 315-320.
Chen, J., Elmi, C., Goldsby, D., & Gieré, R. (2017). Generation of shock lamellae and melting in rocks by lightning-induced shock waves and electrical heating. Geophysical Research Letters, 44(17), 8757-8768. https://doi.org/10.1002/2017GL073843
Chen, T. Y. (2023). Plotpeak. In (Version 6.1) GitHub. https://github.com/tarranchen/Plotpeak
Chen, T. Y., Kuo, L.-W., Brown, D., Si, J., Meng, T.-J., Sheu, H.-S., Song, Y.-F., & Yin, G.-C. (2022). Lightning-induced features on granitic gneiss and its implication for rare lightning scars from the geological record. Contributions to Mineralogy and Petrology, 177(12), 111. https://doi.org/10.1007/s00410-022-01973-y
Cho, S. H., Ito, M., Yokota, M., Nakamiya, Y., Kubota, S., Yuji, O., Shibayama, A., Owada, S., Mohanty, B., & Kaneko, K. (2006). Dynamic fragmentation of rock by high-voltage pulses Golden Rocks 2006, The 41st U.S. Symposium on Rock Mechanics (USRMS), Golden, Colorado.
Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M., Koshak, W. J., Mach, D. M., & Stewart, M. F. (2003). Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Geophysical Research: Atmospheres, 108(D1), ACL 4-1-ACL 4-15. https://doi.org/10.1029/2002JD002347
Cicconi, M. R., McCloy, J. S., & Neuville, D. R. (2022). Non-Magmatic Glasses. Reviews in Mineralogy and Geochemistry, 87(1), 965-1014. https://doi.org/10.2138/rmg.2022.87.21
Cicconi, M. R., & Neuville, D. R. (2019). Natural Glasses. In J. D. Musgraves, J. Hu, & L. Calvez (Eds.), Springer Handbook of Glass (pp. 771-812). Springer International Publishing. https://doi.org/10.1007/978-3-319-93728-1_22
Clark, B. C., Morris, R. V., McLennan, S. M., Gellert, R., Jolliff, B., Knoll, A. H., Squyres, S. W., Lowenstein, T. K., Ming, D. W., Tosca, N. J., Yen, A., Christensen, P. R., Gorevan, S., Brückner, J., Calvin, W., Dreibus, G., Farrand, W., Klingelhoefer, G., Waenke, H., . . . Rieder, R. (2005). Chemistry and mineralogy of outcrops at Meridiani Planum. Earth and Planetary Science Letters, 240(1), 73-94. https://doi.org/10.1016/j.epsl.2005.09.040
Clocchiatti, R. (1990). Les fulgurites et roches vitrifiées de l′Etna / Fulgurites and vitreous rocks from Etna: a preliminary petrochemical study. European Journal of Mineralogy, 2(4), 479-494. https://doi.org/10.1127/ejm/2/4/0479
Cogram, P. (2018). Jarosite. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10960-1
Collins, G., Melosh, J., & Pasek, M. (2012). Can Lightning Strikes Produce Shocked Quartz? 43rd Lunar and Planetary Science Conference, LPI Contribution, The Woodlands, Texas.
Cook, G. (2015). How To Build Sandcastles The Sandcastle Matt Way. WBUR. Retrieved Sep 14, 2023 from https://www.wbur.org/news/2015/07/27/sandcastle-matt
Cook, H. J. (1925). Manganese Fulgurites. Bulletin of the University of Nebraska State Museum, 1(5), 41-44.
Courty, M.-A. (2022). Fire microfacies and pyroresidues tracing atmospheric electrification impacts on the Moche Valley and on the Mochica (North Peru). Boletín de la Sociedad Geológica Mexicana, 74(3), 1-25. https://doi.org/10.18268/BSGM2022v74n3a060622
Cílek, V. (1997). Fullereny i na Pravčické bráně? O různých stopách po úderu blesku. Vesmír, 76, 628-629.
Daly, T. K., Buseck, P. R., Williams, P., & Lewis, C. F. (1993). Fullerenes from a fulgurite. Science, 259(5101), 1599-1601. https://doi.org/10.1126/science.259.5101.1599
Darwin, C. (1845). Journal of researches into the natural history and geology of the countries visited during the voyage of H.M.S. Beagle round the world, under the Command of Capt. Fitz Roy, R.N (Second ed.). London: John Murray.
De Campos, C. P., & Hess, K.-U. (2021). Geological Glasses. In Encyclopedia of Glass Science, Technology, History, and Culture (pp. 815-829). https://doi.org/10.1002/9781118801017.ch7.2
Di Toro, G., Pennacchioni, G., & Teza, G. (2005). Can pseudotachylytes be used to infer earthquake source parameters? An example of limitations in the study of exhumed faults. Tectonophysics, 402(1), 3-20. https://doi.org/10.1016/j.tecto.2004.10.014
Diller, J. S. (1884). Fulgurite from Mount Thielson, Oregon. American Journal of Science, s3-28(166), 252-258. https://doi.org/10.2475/ajs.s3-28.166.252
Dorn, R. I. (2009). Rock Varnish and its Use to Study Climatic Change in Geomorphic Settings. In A. J. Parsons & A. D. Abrahams (Eds.), Geomorphology of Desert Environments (pp. 657-673). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5719-9_21
Durgun, H., & Karamanderesi, İ. H. (1984). Fulgurite at the Mezargediği area İzmir-Selçuk-Çamlık village, Turkey. Bulletin of the Mineral Research and Exploration Institute of Turkey, 103-104(103-104), 36-40.
Elmi, C., Chen, J., Goldsby, D., & Gieré, R. (2017). Mineralogical and compositional features of rock fulgurites: A record of lightning effects on granite. The American Mineralogist, 102(7), 1470-1481. https://doi.org/10.2138/am-2017-5971
Elmi, C., Cipriani, A., Lugli, F., & Sighinolfi, G. (2021). Insights on the Origin of Vitrified Rocks from Serravuda, Acri (Italy): Rock Fulgurite or Anthropogenic Activity? Geosciences, 11(12), 493. https://doi.org/10.3390/geosciences11120493
Elmi, C., Coleman, N. S., Miu, K., & Schruba, E. (2018). Experimental Simulation of Lightning Current Discharge on Rocks. Applied Sciences, 8(12).
Elwood Madden, M. E., Bodnar, R. J., & Rimstidt, J. D. (2004). Jarosite as an indicator of water-limited chemical weathering on Mars. Nature, 431(7010), 821-823. https://doi.org/10.1038/nature02971
Ende, M., Schorr, S., Kloess, G., Franz, A., & Tovar, M. (2012). Shocked quartz in Sahara fulgurite. European Journal of Mineralogy, 24(3), 499-507. https://doi.org/10.1127/0935-1221/2012/0024-2188
Eppelbaum, L., Kutasov, I., & Pilchin, A. (2014). Thermal Properties of Rocks and Density of Fluids. In Applied Geothermics (pp. 99-149). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-34023-9_2
Essene, E. J., & Fisher, D. C. (1986). Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility. Science, 234(4773), 189-193. https://doi.org/10.1126/science.234.4773.189
Faraone, C. A. (2014). Inscribed Greek Thunderstones as House- and Body-Amulets in Roman Imperial Times. Kernos, 27, 257-284. https://doi.org/10.4000/kernos.2283
Farrand, W. H., Glotch, T. D., Rice, J. W., Hurowitz, J. A., & Swayze, G. A. (2009). Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region. Icarus, 204(2), 478-488. https://doi.org/10.1016/j.icarus.2009.07.014
Fauzia, M. (2021). Fact check: Images show sand sculptures by an artist, not lightning strike fulgurites. USA TODAY. Retrieved Sep 17, 2023 from https://www.usatoday.com/story/news/factcheck/2021/10/29/fact-check-images-show-artist-created-sculptures-not-fulgurites/6191411001/
Feng, T. (2021). Geological and Geochemical Analysis of Phosphorus Bearing Minerals and Natural Glasses on Earth and in Meteorites: Implications of the Origin of Life. [Doctoral Dissertation, University of South Florida].
Feng, T., Abbatiello, J., Omran, A., Mehta, C., & Pasek, M. A. (2021). Iron Silicides in Fulgurites. Minerals, 11(12), 1394. https://doi.org/10.3390/min11121394
Feng, T., Lang, C., & Pasek, M. A. (2019). The origin of blue coloration in a fulgurite from Marquette, Michigan. Lithos, 342-343, 288-294. https://doi.org/10.1016/j.lithos.2019.06.003
Fiedler, K. G. (1817). Ueber die Blitzröhren und ihre Entstehung. Annalen der Physik, 55(2), 121-164. https://doi.org/10.1002/andp.18170550202
Fischer, G., Gurnett, D. A., Kurth, W. S., Akalin, F., Zarka, P., Dyudina, U. A., Farrell, W. M., & Kaiser, M. L. (2008). Atmospheric Electricity at Saturn. Space Science Reviews, 137(1), 271-285. https://doi.org/10.1007/s11214-008-9370-z
Fisher, R. V., & Schmincke, H.-U. (1984). Alteration of Volcanic Glass. In R. V. Fisher & H.-U. Schmincke (Eds.), Pyroclastic Rocks (pp. 312-345). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-74864-6_12
Fondriest, M., Mecklenburgh, J., Passelegue, F. X., Artioli, G., Nestola, F., Spagnuolo, E., Rempe, M., & Di Toro, G. (2020). Pseudotachylyte Alteration and the Rapid Fade of Earthquake Scars From the Geological Record. Geophysical Research Letters, 47(22), e2020GL090020. https://doi.org/10.1029/2020GL090020
Fröhlich, F., Poupeau, G., Badou, A., Le Bourdonnec, F. X., Sacquin, Y., Dubernet, S., Bardintzeff, J. M., Véran, M., Smith, D. C., & Diemer, E. (2013). Libyan Desert Glass: New field and Fourier transform infrared data. Meteoritics and Planetary Science, 48(12), 2517-2530. https://doi.org/10.1111/maps.12223
French, B. M., & Koeberl, C. (2010). The convincing identification of terrestrial meteorite impact structures: What works, what doesn′t, and why. Earth-Science Reviews, 98(1), 123-170. https://doi.org/10.1016/j.earscirev.2009.10.009
Frenzel, G., Irouschek-Zumthor, A., & Stähle, V. (1989). Stosswellenmetamorphose, Aufschmelzung und Verdampfung bei Fulguritbildung an exponierten Berggipfeln. Chemie der Erde, 49(4), 265-286.
Frenzel, G., & Stähle, V. (1982). Blitzglas am Peridotit vom Frankenstein bei Darmstadt. Chemie der Erde, 41(2), 111-119.
Frenzel, G., & Stähle, V. (1984). Über Alumosilikatglas mit Lechatelierit-Einschlüssen von einer Fulguritröhre des Hahnenstockes (Glarner Freiberg, Schweiz). Chemie der Erde, 43(1), 17-26.
Frey, R. W., Howard, J. D., & Pryor, W. A. (1978). Ophiomorpha: Its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 23, 199-229. https://doi.org/10.1016/0031-0182(78)90094-9
Gailliot, M. P. (1980). “Petrified Lightning”. Rocks & Minerals, 55(1), 13-17. https://doi.org/10.1080/00357529.1980.11764615
Garcia-Guinea, J., Furio, M., Fernandez-Hernan, M., Bustillo, M., Crespo-Feo, E., Correcher, V., Sánchez Muñoz, L., & Matesanz, E. (2009a). The Quartzofeldspathic Fulgurite of Bustarviejo (Madrid): Glassy Matrix and Silicon Phases. Conference on Micro-Raman Spectroscopy and Luminescence Studies in the Earth and Planetary Sciences, LPI Contribution,
Garcia‐Guinea, J., Furio, M., Fernandez‐Hernan, M., Bustillo, M. A., Crespo‐Feo, E., Correcher, V., Sanchez‐Muñoz, L., & Matesanz, E. (2009b). The Quartzofeldspathic Fulgurite of Bustaviejo (Madrid): Cathodoluminescence and Raman Emission. AIP Conference Proceedings, 1163(1), 128-134. https://doi.org/10.1063/1.3222878
Genareau, K., Gharghabi, P., Gafford, J., & Mazzola, M. (2017). The Elusive Evidence of Volcanic Lightning. Scientific Reports, 7(1), 15508. https://doi.org/10.1038/s41598-017-15643-8
Genareau, K., Gharghabi, P., & Klüss, J. (2020). Influence of shock propagation on lightning evidence in volcanic ashfall deposits. Earth and Planetary Science Letters, 535, 116124. https://doi.org/10.1016/j.epsl.2020.116124
Genareau, K., Hong, Y.-K., Lee, W., Choi, M., Rostaghi-Chalaki, M., Gharghabi, P., Gafford, J., & Klüss, J. (2019). Effects of Lightning on the Magnetic Properties of Volcanic Ash. Scientific Reports, 9(1), 4726. https://doi.org/10.1038/s41598-019-41265-3
Genareau, K., Wardman, J. B., Wilson, T. M., McNutt, S. R., & Izbekov, P. (2015). Lightning-induced volcanic spherules. Geology, 43(4), 319-322. https://doi.org/10.1130/g36255.1
Gibb, G. D. (1859). A Chapter on Fossil Lightning. The Geologist, 2(5), 195-204. https://doi.org/10.1017/S1359465600020815
Gieré, R., Wimmenauer, W., Müller-Sigmund, H., Wirth, R., Lumpkin, G. R., & Smith, K. L. (2015). Letter. Lightning-induced shock lamellae in quartz. American Mineralogist, 100(7), 1645-1648. https://doi.org/10.2138/am-2015-5218
Gifford, A. C. (1999). Clay soil fulgurites in the Eastern Goldfields of Western Australia. Journal of the Royal Society of Western Australia, 82, 165-168.
Gill, R. (2010). Igneous Rocks and Processes: A Practical Guide. Wiley-Blackwell.
Giuli, G., Pratesi, G., Paris, E., & Cibin, G. (2016, 2016/08/1). Iron Oxidation State in Fulgurite Glass 79th Annual Meeting of the Meteoritical Society, Berlin, Germany. https://ui.adsabs.harvard.edu/abs/2016LPICo1921.6546G
Glass, B. P. (2016). Glass: The Geologic Connection. International Journal of Applied Glass Science, 7(4), 435-445. https://doi.org/10.1111/ijag.12240
Glover, J. E. (1978). New data on the origin and distribution of Western Australian sand fulgurites. Journal of the Royal Society of Western Australia, 60, 91-96. https://www.biodiversitylibrary.org/part/238106
Glover, J. E. (1979). Formation and distribution of sand fulgurites. Australian Geographer, 14(3), 172-175. https://doi.org/10.1080/00049187908702758
Gnos, E., Hofmann, B. A., Halawani, M. A., Tarabulsi, Y., Hakeem, M., Al Shanti, M., Greber, N. D., Holm, S., Alwmark, C., Greenwood, R. C., & Ramseyer, K. (2013). The Wabar impact craters, Saudi Arabia, revisited. Meteoritics & Planetary Science, 48(10), 2000-2014. https://doi.org/10.1111/maps.12218
Golombek, M. P., & McSween, H. Y. (2014). Chapter 19 - Mars: Landing Site Geology, Mineralogy, and Geochemistry. In T. Spohn, D. Breuer, & T. V. Johnson (Eds.), Encyclopedia of the Solar System (Third Edition) (pp. 397-420). Elsevier. https://doi.org/10.1016/B978-0-12-415845-0.00019-0
Graham, K. W. T. (1961). The Re-magnetization of a Surface Outcrop by Lightning Currents. Geophysical Journal International, 6(1), 85-102. https://doi.org/10.1111/j.1365-246X.1961.tb02963.x
Grapes, R. (2010). Pyrometamorphism (2nd ed.). Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15588-8
Grapes, R. H., & Müller-Sigmund, H. (2010). Lightning-strike fusion of gabbro and formation of magnetite-bearing fulgurite, Cornone di Blumone, Adamello, Western Alps, Italy. Mineralogy and Petrology, 99(1), 67-74. https://doi.org/10.1007/s00710-009-0100-3
Griffiths, T. A., Habler, G., Ageeva, O., Sutter, C., Ferrière, L., & Abart, R. (2023). The Origin of Lattice Rotation during Dendritic Crystallization of Clinopyroxene. Journal of Petrology, 64(1), egac125. https://doi.org/10.1093/petrology/egac125
Guinness. (1996). Longest excavated fulgurite. Retrieved Sep 13, 2023 from https://www.guinnessworldrecords.com/world-records/66619-longest-excavated-fulgurite
Gusenbauer, M., & Haddaway, N. R. (2020). Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res Synth Methods, 11(2), 181-217. https://doi.org/10.1002/jrsm.1378
Hallock, W. (1901). Peculiar Effects Due to a Lightning Discharge on Lake Champlain in August 1900. The Journal of Geology, 9(8), 671-672. https://doi.org/10.1086/620965
Harland, W. B. (1970). Palaeofulgurites. In S. K. Runcorn (Ed.), Palaeogeophysics (pp. 387-390). Academic Press.
Harland, W. B., & Hacker, J. L. F. (1966). ′Fossil′ Lightning. Strikes 250 Million Years Ago. Advancement of Science, 22, 663-671.
Haynes, W. M. (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. https://doi.org/10.1201/9781315380476
Heide, K., & Heide, G. (2011). Vitreous state in nature—Origin and properties. Geochemistry, 71(4), 305-335. https://doi.org/10.1016/j.chemer.2011.10.001
Heim, A. (1885). Notizen über Wirkungen des Blitzschlages auf Gesteine. Separatabdruck aus dem Jahrbuch des Schweizer Alpen-Clubs, XXI, 342-357.
Hernández-Lazcano, E., Cerecedo-Sáenz, E., Hernández-Ávila, J., Toro, N., Karthik, T. V. K., Mendoza-Anaya, D., Fernández-García, M. E., Rodríguez-Lugo, V., & Salinas-Rodríguez, E. (2021). Synthesis of Hydronium-Potassium Jarosites: The Effect of pH and Aging Time on Their Structural, Morphological, and Electrical Properties. Minerals, 11(1), 80. https://www.mdpi.com/2075-163X/11/1/80
Hess, B. L., Piazolo, S., & Harvey, J. (2021). Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-21849-2
Heymann, D. (1998). Search for C60 fullerene in char produced on a Norway spruce by lightning. Fullerene Science and Technology, 6(6), 1079-1086. https://doi.org/10.1080/10641229809350257
Hill, K. (2013). What Really Happens When Lightning Strikes Sand: The Science Behind a Viral Photo. Scientific American’. https://www.scientificamerican.com/blog/overthinking-it/what-really-happens-when-lightning-strikes-sand-the-science-behind-a-viral-photo/
Hobbs, W. H. (1899). A spiral fulgurite from Wisconsin. American Journal of Science, s4-8(43), 17. https://doi.org/10.2475/ajs.s4-8.43.17
Hsieh, P.-S., & Lin, W. (2012). The Spent Nuclear Fuel Final Disposal Program – Characterization and Evaluation of Potential Host Rock – Potential Host Rock Characteristics Investigation – (Project 2010-2012) – Rock and Mineral Characterisitcs Analysis of Drilling Core of K-area (SNFD-GEL-90-288).
Huang, H.-M. (2018). Heavy rain hit Kinmen on the 7th with more than 3,000 lightning strikes, and thunderstorms hit Penghu in the early morning. Central News Agency. Retrieved Sep 23, 2023 from https://www.cna.com.tw/news/firstnews/201805080197.aspx
Hugenschmidt, M., Adrion, K., Marx, A., Müller, E., & Gerthsen, D. (2022). Electron-Beam-Induced Carbon Contamination in STEM-in-SEM: Quantification and Mitigation. Microscopy and Microanalysis, 29(1), 219-234. https://doi.org/10.1093/micmic/ozac003
Hurd, P. (1950). Fulgurites. Rocks & Minerals, 25(3-4), 135-135. https://doi.org/10.1080/00357529.1950.11768280
Ifandi, E., Zaccarini, F., Tsikouras, B., Grammatikopoulos, T., Garuti, G., Karipi, S., & Hatzipanagiotou, K. (2018). First occurrences of Ni-V-Co phosphides in chromitite from the Agios Stefanos Mine, Othrys Ophiolite, Greece. Ofioliti, 43(2), 131-145. https://doi.org/10.4454/ofioliti.v43i2.460
Isle of Arran Heritage Museum. (2014). Virtual Field Trips–Fulgurite–Important fossil artefact near to Corrie Village. Isle of Arran Heritage Museum. Retrieved Sep 9, 2023 from https://www.arranmuseum.co.uk/what-will-you-see/geology/virtual-field-trips/
Izotov, V. G., Mamin, G. V., Orlinskii, S. B., Silkin, N. I., Sitdikov, D. T., Sitdikova, L. M., Salakhov, M. K., Lysyuk, A. Y., & Yushkin, N. P. (2011). Electron paramagnetic resonance of phytofulgurite. Doklady Earth Sciences, 437(1), 424-427. https://doi.org/10.1134/S1028334X11030238
Jayakaran, S. C. (1998). A note on the occurrence of fulgurite in Tamil Nadu. Current Science, 75(8), 763-764. http://www.jstor.org/stable/24101620
John, B., Singh, Y., Rao, D. T., Barman, M. C., Pradeepkumar, A. P., & Sajeev, K. (2021). Observation on Rock Melt Extrusion Occurrence in Southern Part of Tamil Nadu. Journal of the Geological Society of India, 97(2), 119-124. https://doi.org/10.1007/s12594-021-1641-2
Jones, B. E., Jones, K. S., Rambo, K. J., Rakov, V. A., Jerald, J., & Uman, M. A. (2005). Oxide reduction during triggered-lightning fulgurite formation. Journal of Atmospheric and Solar-Terrestrial Physics, 67(4), 423-428. https://doi.org/10.1016/j.jastp.2004.11.005
Jones, G., & Maki, D. L. (2005). Lightning-induced magnetic anomalies on archaeological sites. Archaeological Prospection, 12(3), 191-197. https://doi.org/10.1002/arp.257
Joseph, M. L. (2012). A Geochemical Analysis of Fulgurites: from the inner glass to the outer crust. [Master′s Thesis, University of South Florida].
Julien, A. A. (1901). A study of the structure of fulgurites. Journal of Geology, 9(8), 673-693. https://doi.org/10.1086/620966
Kar, S. K., & Liou, Y.-A. (2019). Influence of Land Use and Land Cover Change on the Formation of Local Lightning. Remote Sensing, 11(4), 407. https://doi.org/10.3390/rs11040407
Karadag, A., Kaygisiz, E., Nikitin, T., Ongen, S., Ildiz, G. O., Aysal, N., Yilmaz, A., & Fausto, R. (2022). Micro-Raman Spectroscopy and X-ray Diffraction Analyses of the Core and Shell Compartments of an Iron-Rich Fulgurite. Molecules, 27(10), Article 3053. https://doi.org/10.3390/molecules27103053
Karfunkel, J., Addad, J., Banko, A. G., Hadrian, W., & Hoover, D. B. (2001). Electromechanical disintegration - An important weathering process. Zeitschrift fur Geomorphologie, 45(3), 345-357. https://doi.org/10.1127/zfg/45/2001/345
Kassi, A. M., Kasi, A. K., Friis, H., & Kakar, D. M. (2013). Occurrences of rock-fulgurites associated with steel pylons of the overhead electric transmission line at Tor Zawar, Ziarat District and Jang Tor Ghar, Muslim Bagh, Pakistan. Turkish Journal of Earth Sciences, 22(6), 1010-1019. https://doi.org/10.3906/yer-1207-6
Kassi, A. M., Kasi, A. K., Khan, A. T., & Khan, A. S. (2012). Comments on the eruption of basaltic magma at Tor Zawar, Balochistan, Pakistan on 27 January 2010, with a discussion of the geochemical and petrological constraints on its petrogenesis. Mineralogical Magazine, 76(3), 717-723. https://doi.org/10.1180/minmag.2012.076.3.19
Kennedy, E. (2019). Fulgurite is lightning′s work of art. ABC57. Retrieved Sep 14, 2023 from https://www.abc57.com/news/fulgurite-is-lightnings-work-of-art
Kenny, G. G., & Pasek, M. A. (2021). The response of zircon to the extreme pressures and temperatures of a lightning strike. Scientific Reports, 11(1), Article 1560. https://doi.org/10.1038/s41598-021-81043-8
Kerr, A. C., Khan, M., & McDonald, I. (2010). Eruption of basaltic magma at Tor Zawar, Balochistan, Pakistan on 27 January 2010: geochemical and petrological constraints on petrogenesis. Mineralogical Magazine, 74(6), 1027-1036. https://doi.org/10.1180/minmag.2010.074.6.1027
King, P. L., & McSween Jr., H. Y. (2005). Effects of H2O, pH, and oxidation state on the stability of Fe minerals on Mars. Journal of Geophysical Research: Planets, 110(E12). https://doi.org/10.1029/2005JE002482
Knight, J. (2007). Impact of a lightning strike on a tor summit, County Waterford, Ireland. Geology Today, 23, 11-12.
Knight, J., & Grab, S. W. (2014). Lightning as a geomorphic agent on mountain summits: Evidence from southern Africa. Geomorphology, 204, 61-70. https://doi.org/10.1016/j.geomorph.2013.07.029
Knight, J., Grab, S. W., Webb, S. J., O’brien, K., & Mayet, N. (2017). Geomorphic and geomagnetic perspectives on lightning strikes in the Lesotho Highlands, Southern Africa. Proceedings of 2nd International Symposium on Lightning and Storm-Related Phenomena, Aurillac (Cantal, France).
Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318(6042), 162-163. https://doi.org/10.1038/318162a0
Kumar, A. (2012). Fulgurite: A unique mineral formed by impact of lightening. Earth Science India, 5(4), 1-8.
Kuo, L.-W., Smith, S. A. F., Chen, C.-C., Ku, C.-S., Chiang, C.-Y., Brown, D., Negrini, M., Huang, W.-J., & Chen, T.-Y. (2021). Lightning-induced high temperature and pressure microstructures in surface and subsurface fulgurites. Scientific Reports, 11(1), Article 22031. https://doi.org/10.1038/s41598-021-01559-x
Kuo, L.-W., Song, S.-R., Huang, L., Yeh, E.-C., & Chen, H.-F. (2011). Temperature estimates of coseismic heating in clay-rich fault gouges, the Chelungpu fault zones, Taiwan. Tectonophysics, 502(3), 315-327. https://doi.org/10.1016/j.tecto.2011.02.001
Kuo, L.-W., Song, S.-R., Yeh, E.-C., & Chen, H.-F. (2009). Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophysical Research Letters, 36(18). https://doi.org/10.1029/2009GL039269
Kuo, L.-W., Song, Y.-F., Yang, C.-M., Song, S.-R., Wang, C.-C., Dong, J.-J., Suppe, J., & Shimamoto, T. (2015). Ultrafine spherical quartz formation during seismic fault slip: Natural and experimental evidence and its implications. Tectonophysics, 664, 98-108. https://doi.org/10.1016/j.tecto.2015.09.008
Kvasnytsya, V. M., Machulina, S. O., Voznyak, D. K., Thomas, R., Mel′nykov, V. S., Vishnevskyi, O. A., Kvasnytsya, I. V., & Gurnenko, I. V. (2008). Native copper in fulgurite from the south-west Donbas. Proceedings of the Ukrainian Mineralogical Society, 5, 145-148.
Lacroix, M. A. (1915). Sur les fulgurites exclusivement siliceuses du Sahara oriental et sur quelques fulgurites silicatées des Pyrénées. Bulletin de la Société française de Minéralogie, 38(5), 188 - 198. https://doi.org/10.3406/bulmi.1915.3623
LaFrance, A. (2015). A New Kind of Sandcastle. The Atlantic. Retrieved Sep 17, 2023 from https://www.theatlantic.com/technology/archive/2015/08/radical-sandcastles/402139/
Lafuente, B., Downs, R. T., Yang, H., & Stone, N. (2016). 1. The power of databases: The RRUFF project. In T. Armbruster & R. M. Danisi (Eds.), Highlights in Mineralogical Crystallography (pp. 1-30). De Gruyter (O). https://doi.org/10.1515/9783110417104-003
Larionov, M. Y., Chukin, A. V., Yakovlev, G. A., & Khasanov, T. A. (2017, 2017/07/1). Crystal Structure and Chemical Composition of Metal Particles from Kolymskiy Fulgurite. 80th Annual Meeting of the Meteoritical Society, Santa Fe, New Mexico.
Lavallée, Y., Mitchell, T. M., Heap, M. J., Vasseur, J., Hess, K.-U., Hirose, T., & Dingwell, D. B. (2012). Experimental generation of volcanic pseudotachylytes: Constraining rheology. Journal of Structural Geology, 38, 222-233. https://doi.org/10.1016/j.jsg.2012.02.001
Lee, R. A. (1992). Fulgurites: "Paleo-Lightning" Remnants. Meteorology.
Lesher, C. E., & Spera, F. J. (2015). Chapter 5 - Thermodynamic and Transport Properties of Silicate Melts and Magma. In H. Sigurdsson (Ed.), The Encyclopedia of Volcanoes (Second Edition) (pp. 113-141). Academic Press. https://doi.org/10.1016/B978-0-12-385938-9.00005-5
Lewis, A. D. (1936). Fulgurites from Witsands on the South-Eastern Borders of the Kalahari. South African Geographical Journal, 19(1), 50-57. https://doi.org/10.1080/03736245.1936.10559176
Libby, C. A. (1986). Fulgurite in the Sierra Nevada. California Geology, 39(11), 262.
Libby, C. A. (1988). Fulgurite in the Sierra Nevada an update. California Geology, 41(6), 139.
Likens, G. E., Butler, T. J., Claybrooke, R., Vermeylen, F., & Larson, R. (2021). Long-term monitoring of precipitation chemistry in the U.S.: Insights into changes and condition. Atmospheric Environment, 245, 118031. https://doi.org/10.1016/j.atmosenv.2020.118031
Lin, W., Lee, C.-Y., Yang, H.-C., & Chen, C.-H. (2011). Explanatory text of the geologic map of Taiwan Scale 1: 50,000–Kinmen area. Central Geological Survey, MOEA.
Lippisches Landesmuseum. (2021). Blitzröhre, Sandfulgurite. Retrieved Sep 9, 2023 from https://nat.museum-digital.de/object/16070
Liu, T., & Broecker, W. S. (2013). Millennial-scale varnish microlamination dating of late Pleistocene geomorphic features in the drylands of western USA. Geomorphology, 187, 38-60. https://doi.org/10.1016/j.geomorph.2012.12.034
Longinelli, A., Serra, R., Sighinolfi, G., Selmo, E., & Sgavetti, M. (2012). Oxygen isotopic composition of fulgurites from the Egyptian Sahara and other locations. Rapid Communications in Mass Spectrometry, 26(17), 1980-1984. https://doi.org/10.1002/rcm.6315
Lowry, J. F. (1975). Artificial fulgurites. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 12(5), 157-158. https://doi.org/10.1016/0148-9062(75)91246-2
Lysyuk, A. Y., Yurgenson, G. A., & Yushkin, N. P. (2006). Phytofulgurites; a new type of geological formations. Doklady Earth Sciences, 411(9), 1431-1434. https://doi.org/10.1134/S1028334X06090212
Machulina, S., Kvasnytsya, V., Voznyak, D., Thomas, R., Oleksii, V., & Gurnenko, I. (2008). Fulgurite from the southwestern Donbas. Ukrainian Geologist Journal, 21-22, 145-148.
Mahaney, W. C., & Krinsley, D. (2012). Extreme heating events and effects in the natural environment: Implications for environmental geomorphology. Geomorphology, 139-140, 348-359. https://doi.org/10.1016/j.geomorph.2011.11.001
Mahaney, W. C., & Milner, M. W. (2011). Lightning-induced mineral/chemical changes in red pine (Pinus resinosa). Palaeogeography, Palaeoclimatology, Palaeoecology, 309(3), 367-373. https://doi.org/10.1016/j.palaeo.2011.07.006
Maki, D. (2005). Lightning strikes and prehistoric ovens: Determining the source of magnetic anomalies using techniques of environmental magnetism. Geoarchaeology, 20(5), 449-459. https://doi.org/10.1002/gea.20059
Manimaran, G., Sivasubramanian, P., & Senthiappan, M. (2001). Rock melt extrusion at Abishekapatti, Tirunelveli District, Tamil Nadu. Journal of the Geological Society of India, 57(5), 464-466.
Martin Crespo, T., Lozano Fernandez, R. P., & Gonzalez Laguna, R. (2009). The fulgurite of Torre de Moncorvo (Portugal): description and analysis of the glass. European Journal of Mineralogy, 21(4), 783-794. https://doi.org/10.1127/0935-1221/2009/0021-1948
Martinez-Ramirez, S., Diaz, L., & Camacho, J. J. (2013). CW CO2-Laser-Induced Formation of Fulgurite on Lime–Pozzolan Mortar. Journal of the American Ceramic Society, 96(9), 2824-2830. https://doi.org/10.1111/jace.12515
Martín-Ramos, P., Gil, F. P. S. C., Martín-Gil, F. J., & Martín-Gil, J. (2019). Characterization of exogenic fulgurites from an archaeological site in Tiedra, Valladolid, Spain. Geological Magazine, 156(8), 1455-1462. https://doi.org/10.1017/S0016756819000438
Mata, S. A., Corsetti, C. L., Corsetti, F. A., Awramik, S. M., & Bottjer, D. J. (2012). Lower cambrian anemone burrows from the upper member of the wood canyon formation, death valley region, united states: paleoecological and paleoenvironmental significance. PALAIOS, 27(9), 594-606. https://doi.org/10.2110/palo.2012.p12-016r
Matsuoka, N., Waragai, T., & Wakasa, S. A. (2017). Physical Rock Weathering: Linking Laboratory Experiments, Field Observations, and Natural Features. Journal of Geography (Chigaku Zasshi), 126(3), 369-405. https://doi.org/10.5026/jgeography.126.369
McCloy, J. S. (2019). Frontiers in natural and un-natural glasses: An interdisciplinary dialogue and review. Journal of Non-Crystalline Solids: X, 4, 100035. https://doi.org/10.1016/j.nocx.2019.100035
McCloy, J. S., Marcial, J., Clarke, J. S., Ahmadzadeh, M., Wolff, J. A., Vicenzi, E. P., Bollinger, D. L., Ogenhall, E., Englund, M., Pearce, C. I., Sjöblom, R., & Kruger, A. A. (2021). Reproduction of melting behavior for vitrified hillforts based on amphibolite, granite, and basalt lithologies. Scientific Reports, 11(1), 1272. https://doi.org/10.1038/s41598-020-80485-w
McCollum, A. (1997). THE EVENT: Petrified Lightning from Central Florida (with supplemental didactics). The Museum of Science and Industry and the University of South Florida Contemporary Art Museum, Tampa, Florida. http://allanmccollum.net/amcnet2/album/fulguriteintroduction.html
McCullar, C. (2020). Revising the record on record lightning at the North Pole. Vaisala. Retrieved Sep 9, 2023 from https://www.vaisala.com/en/blog/2023-03/revising-record-record-lightning-north-pole
McFarlane, M. J., Long, C. W., & Coetzee, S. H. (2018). Lightning-induced beads, ‘fulguroids’, associated with kimberlite eruptions in the Kalahari, Botswana. International Journal of Earth Sciences, 107(7), 2627-2633. https://doi.org/10.1007/s00531-018-1618-6
McLennan, S. M., Bell, J. F., Calvin, W. M., Christensen, P. R., Clark, B. C., de Souza, P. A., Farmer, J., Farrand, W. H., Fike, D. A., Gellert, R., Ghosh, A., Glotch, T. D., Grotzinger, J. P., Hahn, B., Herkenhoff, K. E., Hurowitz, J. A., Johnson, J. R., Johnson, S. S., Jolliff, B., . . . Yen, A. (2005). Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240(1), 95-121. https://doi.org/10.1016/j.epsl.2005.09.041
McMillan, P. F., Wolf, G. H., & Lambert, P. (1992). A Raman spectroscopic study of shocked single crystalline quartz. Physics and Chemistry of Minerals, 19(2), 71-79. https://doi.org/10.1007/BF00198604
Meng, T.-J. (2020). The mineralogical, microstructural, and chemical characteristics of Recently Formed Fulgurite in Kinmen, Taiwan [Master′s Thesis, National Central University].
Merrill, G. P. (1886). On fulgurites. Proceedings of the United States National Museum, 9(554), 83-91. https://doi.org/10.5479/si.00963801.9-554.83
Mishima, T., Hirono, T., Nakamura, N., Tanikawa, W., Soh, W., & Song, S.-R. (2009). Changes to magnetic minerals caused by frictional heating during the 1999 Taiwan Chi-Chi earthquake. Earth, Planets and Space, 61(6), 797-801. https://doi.org/10.1186/BF03353185
Mohling, J. W. (2004). Exogenic Fulgurites from Elko County, Nevada: A New Class of Fulgurite Associated with Large Soil-Gravel Fulgurite Tubes. Rocks & Minerals, 79(5), 334-340. https://doi.org/10.1080/00357529.2004.9925733
Moravec, J. (2003). Skály tetované bleskem. Skály tetované bleskem. http://www.etf.cuni.cz/~moravec/fotky/fulgur.html
Morris, R. V., Klingelhöfer, G., Schröder, C., Rodionov, D. S., Yen, A., Ming, D. W., de Souza Jr., P. A., Fleischer, I., Wdowiak, T., Gellert, R., Bernhardt, B., Evlanov, E. N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E., Gütlich, P., Renz, F., Squyres, S. W., & Arvidson, R. E. (2006a). Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit′s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. Journal of Geophysical Research: Planets, 111(E2). https://doi.org/10.1029/2005JE002584
Morris, R. V., Klingelhöfer, G., Schröder, C., Rodionov, D. S., Yen, A., Ming, D. W., de Souza Jr., P. A., Wdowiak, T., Fleischer, I., Gellert, R., Bernhardt, B., Bonnes, U., Cohen, B. A., Evlanov, E. N., Foh, J., Gütlich, P., Kankeleit, E., McCoy, T., Mittlefehldt, D. W., . . . Arvidson, R. E. (2006b). Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity′s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. Journal of Geophysical Research: Planets, 111(E12). https://doi.org/10.1029/2006JE002791
Mueller, S. P., Helo, C., Keller, F., Taddeucci, J., & Castro, J. M. (2018). First experimental observations on melting and chemical modification of volcanic ash during lightning interaction. Scientific Reports, 8(1), 1389. https://doi.org/10.1038/s41598-018-19608-3
Myers, W. M., & Peck, A. B. (1925). A Fulgurite From South Amboy, New Jersey. American Mineralogist, 10, 152-155.
Navarro González, R., Mahan, S. A., Singhvi, A. K., Navarro-Aceves, R., Rajot, J. L., McKay, C. P., Coll, P., & Raulin, F. (2007). Paleoecology reconstruction from trapped gases in a fulgurite from the late Pleistocene of the Libyan Desert. Geology, 35(2), 171-174. https://doi.org/10.1130/G23246A.1
Norin, J. (1986). Geomorphological effects of lightning. Zeitschrift fur Geomorphologie, 30(2), 141-150. https://doi.org/10.1127/zfg/30/1986/141
O′Keefe, J. A. (1984). Natural glass. Journal of Non-Crystalline Solids, 67(1), 1-17. https://doi.org/10.1016/0022-3093(84)90137-6
Obermeier, S. F. (2009). Chapter 7 Using Liquefaction‐Induced and Other Soft‐Sediment Features for Paleoseismic Analysis. In International Geophysics (Vol. 95, pp. 497-564). Academic Press. https://doi.org/10.1016/S0074-6142(09)95007-0
Olona, J., Pulgar, J. A., Fernández-Viejo, G., López-Fernández, C., & González-Cortina, J. M. (2010). Weathering variations in a granitic massif and related geotechnical properties through seismic and electrical resistivity methods. Near Surface Geophysics, 8(6), 585-599. https://doi.org/10.3997/1873-0604.2010043
Ovey, C. D. (1948). Weather phenomena and related natural effects. Weather, 3(10), 295-300. https://doi.org/10.1002/j.1477-8696.1948.tb06707.x
Painter, D. (2020). Fulgurites: lightning strikes providing unique clues to palaeoenvironments. Geology Today, 36(6), 226-228. https://doi.org/10.1111/gto.12330
Paiva, G. S., Pavão, A. C., Alpes de Vasconcelos, E., Mendes, O., & Felisberto da Silva, E. (2007). Production of Ball-Lightning-Like Luminous Balls by Electrical Discharges in Silicon. Physical Review Letters, 98(4), 048501. https://doi.org/10.1103/PhysRevLett.98.048501
Papike, J. J., Karner, J. M., & Shearer, C. K. (2006). Comparative planetary mineralogy: Implications of martian and terrestrial jarosite. A crystal chemical perspective. Geochimica et Cosmochimica Acta, 70(5), 1309-1321. https://doi.org/10.1016/j.gca.2005.11.004
Parnell, J., Thackrey, S., Muirhead, D., & Wright, A. (2008). Transient High-Temperature Processing of Silicates in Fulgurites as Analogues for Meteorite and Impact Melts Lunar and Planetary Science XXXIX,
Pasek, M. (2017). Fulgurites: Their Science, History, and Discovery. Independently published.
Pasek, M., & Block, K. (2009). Lightning-induced reduction of phosphorus oxidation state. Nature Geoscience, 2(8), 553-556. https://doi.org/10.1038/ngeo580
Pasek, M. A., Block, K., & Pasek, V. (2012). Fulgurite morphology: a classification scheme and clues to formation. Contributions to Mineralogy and Petrology, 164(3), 477-492. https://doi.org/10.1007/s00410-012-0753-5
Pasek, M. A., Collins, G. S., Carter, E., Melosh, J., & Atlas, Z. (2010). Shocked Quartz in a Fulgurite. 73rd Annual Meteoritical Society Meeting,
Pasek, M. A., & Hurst, M. (2016). A Fossilized Energy Distribution of Lightning. Scientific Reports, 6, Article 30586. https://doi.org/10.1038/srep30586
Pasek, M. A., & Pasek, V. D. (2018). The forensics of fulgurite formation. Mineralogy and Petrology, 112(2), 185-198. https://doi.org/10.1007/s00710-017-0527-x
Petersen, K. S. (2022). Fact check: Photo shows sand art, not lightning strike formation. USA TODAY. Retrieved Sep 17, 2023 from https://www.usatoday.com/story/news/factcheck/2022/07/22/fact-check-photo-shows-sand-art-not-fulgurite/10126563002/
Peterson, M., Mach, D., & Buechler, D. (2021). A Global LIS/OTD Climatology of Lightning Flash Extent Density. Journal of Geophysical Research: Atmospheres, 126(8), e2020JD033885. https://doi.org/10.1029/2020JD033885
Petty, J. J. (1936). The origin and occurrence of fulgurites in the Atlantic Coastal Plain. American Journal of Science, s5-31(183), 188–201. https://doi.org/10.2475/ajs.s5-31.183.188
Piper, D. J. W. (1970). Eolian sediments in the basal New Red Sandstone of Arran. Scottish Journal of Geology, 6(3), 295-308. https://doi.org/10.1144/sjg06030295
Plooster, M. N. (1971). Numerical Model of the Return Stroke of the Lightning Discharge. The Physics of Fluids, 14(10), 2124-2133. https://doi.org/10.1063/1.1693303
Plyashkevich, A. A., Minyuk, P. S., Subbotnikova, T. V., & Alshevsky, A. V. (2016). Newly formed minerals of the Fe–P–S system in Kolyma fulgurite. Doklady Earth Sciences, 467(2), 380-383. https://doi.org/10.1134/S1028334X16040139
Potter, R. M., & Rossman, G. R. (1977). Desert Varnish: The Importance of Clay Minerals. Science, 196(4297), 1446-1448. https://doi.org/10.1126/science.196.4297.1446
Povenmire, H. R., Liu, W., & Liu, X.-l. (1999). Australasian Tektites Found in Guangxi Province, China. Lunar and Planetary Science XXX, Houston, Texas.
Prinsloo, L., Colomban, P., & Tournié, A. (2012). A Raman spectroscopic study of fulgurites from Witsand in the Kalahari, South Africa 23rd International Conference on Raman Spectroscopy, Bangalore, India.
Purdom, W. B. (1966). Fulgurites from Mount Thielsen, Oregon. The Ore Bin, 28, 153-159.
Pye, K. (1982). SEM observations on some sand fulgurites from northern Australia. Journal of Sedimentary Petrology, 52(3), 991-998. https://doi.org/10.1306/212F80A8-2B24-11D7-8648000102C1865D
Rakov, V. A. (1999). Lightning Makes Glass 29th Annual Conference of the Glass Art Society, Tampa, Florida.
Rakov, V. A. (2009). Triggered Lightning. In H. D. Betz, U. Schumann, & P. Laroche (Eds.), Lightning: Principles, Instruments and Applications: Review of Modern Lightning Research (pp. 23-56). Springer Netherlands. https://doi.org/10.1007/978-1-4020-9079-0_2
Rakov, V. A. (2021). Lightning, the Science. In C. Gomes (Ed.), Lightning: Science, Engineering, and Economic Implications for Developing Countries (pp. 1-36). Springer Singapore. https://doi.org/10.1007/978-981-16-3440-6_1
Rakov, V. A., & Uman, M. A. (2003). Lightning: Physics and Effects. Cambridge University Press. https://doi.org/10.1017/CBO9781107340886
Rappenglück, M. A. (2022). Natural Iron Silicides: A Systematic Review. Minerals, 12(2).
Reed, M. N. (1958). Fulgurites in the Making. Rocks & Minerals, 33(9-10), 406-406. https://doi.org/10.1080/00357529.1957.11768547
Ren, Y., Zhang, X., Wei, H., Xu, L., Zhang, J., Sun, J., Wang, X., & Li, W. (2017). Comparisons of methods to obtain insoluble particles in snow for transmission electron microscopy. Atmospheric Environment, 153, 61-69. https://doi.org/10.1016/j.atmosenv.2017.01.021
Reyes-Salas, A. M., Macías-Romo, C., Ortega-Gutiérrez, F., Reyes-Salas, E. O., Flores-Gutiérrez, D., Alba-Aldave, L., Girón-García, P., Robles-Camacho, J., García-Martínez, J. L., & Cruz, K. C. d. l. (2017). Estudio petrográfico, geoquímico y mineralógico de la fulgurita San José de Lourdes, Zacatecas, México. Revista Mexicana de Ciencias Geológicas, 34(3), 170-181. https://doi.org/10.22201/cgeo.20072902e.2017.3.477
Rietmeijer, F. J. M., Karner, J. M., Nuth, J. A., & Wasilewski, P. J. (1999). Nanoscale phase equilibrium in a triggered lightning-strike experiment. European Journal of Mineralogy, 11(1), 181-186. https://doi.org/10.1127/ejm/11/1/0181
Riley, C. M. (1959). An Iron Fulgurite from Nebraska. Bulletin of the University of Nebraska State Museum, 4(5), 83-88.
Roberts, S. (2019). Interpreting Lunar Geochemistry Through Impact Events and Terrestrial Analogues [Doctoral Dissertation, University of Tennessee].
Roberts, S. E., Sheffer, A. A., McCanta, M. C., Dyar, M. D., Sklute, E. C., Day, J. M. D., Neal, C. R., Anand, M., Howarth, G., Liu, Y., & Ruzicka, A. (2019). Oxidation state of iron in fulgurites and trinitite; implications for redox changes during abrupt high-temperature and pressure events. Geochimica et Cosmochimica Acta, 266, 332-350. https://doi.org/10.1016/j.gca.2019.08.021
Robertson, E. C. (1988). Thermal properties of rocks [Report](88-441). (Open-File Report, Issue. U. S. G. Survey. https://pubs.usgs.gov/publication/ofr88441
Rogers, A. F. (1946). Sand fulgurites with enclosed lechatelierite from riverside county, California. Journal of Geology, 54(2), 117-122. https://doi.org/10.1086/625326
Romano, D. G., & Voyatzis, M. E. (2010). Excavating at the Birthplace of Zeus: The Mt. Lykaion Excavation and Survey Project. Expedition Magazine, 52, 9–21.
Rutley, F. (1885). On Fulgurite from Mont Blanc; with a Note on the Bouteillenstein, or Pseudo-chrysolite of Moldauthein, in Bohemia. Quarterly Journal of the Geological Society of London, 41(1-4), 152-156. https://doi.org/10.1144/GSL.JGS.1885.041.01-04.21
Rutley, F. (1889). On Fulgurites from Monte Viso. Quarterly Journal of the Geological Society of London, 45(1-4), 60-66. https://doi.org/10.1144/GSL.JGS.1889.045.01-04.05
Rutley, F. (1894). On Fulgurites from Griqualand West. Mineralogical magazine and journal of the Mineralogical Society, 10(48), 280-284. https://doi.org/10.1180/minmag.1894.010.48.04
Saikia, B. J., Parthasarathy, G., & Borah, R. R. (2015). Distribution of Microcrystalline Quartz in Glassy Fulgurites from Garuamukh and Kimin, India. Journal of Applied Mathematics and Physics, 3(10), 9, Article 60755. https://doi.org/10.4236/jamp.2015.310161
Saikia, B. J., Parthasarathy, G., Sarmah, N. C., & Baruah, G. D. (2008). Fourier-transform infrared spectroscopic characterization of naturally occurring glassy fulgurites. Bulletin of Materials Science, 31(2), 155-158. https://doi.org/10.1007/s12034-008-0027-z
Sakai, H., Nagata, S., & Masugata, K. (2012). Propagation of IG Current Underground Elucidated by Remanent Magnetization. IEEJ Transactions on Fundamentals and Materials, 132(8), 670-675. https://doi.org/10.1541/ieejfms.132.670
Sakai, H., Sunada, S., & Sakurano, H. (1997). Study of Lightning Current by Remanent Magnetization. IEEJ Transactions on Power and Energy, 117(7), 1050-1055. https://doi.org/10.1541/ieejpes1990.117.7_1050
Sakai, H., Sunada, S., & Sakurano, H. (1998). Study of lightning current by remanent magnetization. Electrical Engineering in Japan, 123(4), 41-47. https://doi.org/10.1002/(SICI)1520-6416(199806)123:4<41::AID-EEJ6>3.0.CO;2-O
Sakai, H., Tatsumi, M., & Yasui, S. (2014). Magnetization of Fulgurite as a Fossil of the Heating Effect of Lightning Strikes. IEEJ Transactions on Fundamentals and Materials, 134(10), 545-552. https://doi.org/10.1541/ieejfms.134.545
Sakai, H., & Yonezawa, K. (2002). Remanent magnetization as a fossil of lightning current. Proceedings of the Japan Academy, Series B, 78(1), 1-5. https://doi.org/10.2183/pjab.78.1
Sakai, H., Yonezawa, K., Kouno, Y., & Shindo, T. (2013). Propagation of Lightning Current Studied by Remanent Magnetization. IEEJ Transactions on Power and Energy, 133(9), 694-699. https://doi.org/10.1541/ieejpes.133.694
Satoru, N., & Chikara, A. (2000). The Fulgurite from Iwamizawa, Hokkaido. Chigakukenkyu, 49(1), 29-39. https://gbank.gsj.jp/ld/resource/geolis/200002750.html
Saussure, H. B. d. (1786). Voyages dans les Alpes: précédes d′un essai sur l′histoire naturelle des environs de Genève (Vol. 4). Barde, Manget & Comp. Imprimeur-Libraire. https://doi.org/10.3931/e-rara-11633
Segsworth, R. S., & Kuhn, K. (1977). Electrical Rock Breaking. IEEE Transactions on Industry Applications, IA-13(1), 53-57. https://doi.org/10.1109/TIA.1977.4503362
Selfa, A., Rodrigañez y Sagasta, H. l., Fernández Montaña, J., & Alfonso X, K. o. C. a. L. (1881). Lapidario del rey d. Alfonso X: codice original. http://hdl.handle.net/2027/gri.ark:/13960/t02z3z85s
Shechtman, D., Blech, I., Gratias, D., & Cahn, J. W. (1984). Metallic Phase with Long-Range Orientational Order and No Translational Symmetry. Physical Review Letters, 53(20), 1951-1953. https://doi.org/10.1103/PhysRevLett.53.1951
Sheffer, A. A. (2007). Chemical Reduction of Silicates by Meteorite Impacts and Lightning Strikes. [Doctoral Dissertation, University of Arizona].
Sheffer, A. A., Dyar, M. D., & Sklute, E. (2006). Lightning Strike Glasses as an Analog for Impact Glasses: 57Fe Mössbauer Spectroscopy of Fulgurites. Lunar and Planetary Science XXXVII, League City, Texas.
Sheffer, A. A., Melosh, H. J., Jarnot, B. M., & Lauretta, D. S. (2003). Reduction of Silicates at High Temperature: Fulgurites and Thermodynamic Modeling. 34th Annual Lunar and Planetary Science Conference, League City, Texas.
Sighinolfi, G. P., Lugli, F., Piccione, F., Michele, V. D. E., & Cipriani, A. (2020). Terrestrial target and melting site of Libyan Desert Glass: New evidence from trace elements and Sr isotopes. Meteoritics and Planetary Science, 55(8), Article Maps13550. https://doi.org/10.1111/maps.13550
Song, Y.-F., Chang, C.-H., Liu, C.-Y., Chang, S.-H., Jeng, U.-S., Lai, Y.-H., Liu, D.-G., Chung, S.-C., Tsang, K.-L., Yin, G.-C., Lee, J.-F., Sheu, H.-S., Tang, M.-T., Hwang, C.-S., Hwu, Y.-K., & Liang, K. S. (2007). X-ray beamlines for structural studies at the NSRRC superconducting wavelength shifter. Journal of Synchrotron Radiation, 14(4), 320-325. https://doi.org/10.1107/S0909049507021516
Sponholz, B. (2004). Fulgurites as palaeoclimatic indicators - the proof of fulgurite fragments in sand samples. In W. Smykatz-Kloss & P. Felix-Henningsen (Eds.), Paleoecology of Quaternary Drylands (pp. 73-78). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-44930-0_5
Sponholz, B. (2009). New discovery of rock fulgurites in the Central Sahara. In R. Baumhauer & J. Runge (Eds.), Holocene Palaeoenvironmental History of the Central Sahara (pp. 274). CRC Press. https://doi.org/10.1201/9780203874899
Sponholz, B., Baumhauer, R., & Felix-Henningsen, P. (1993). Fulgurites in the southern central Sahara, Republic of Niger and their palaeoenvironmental significance. Holocene, 3(2), 97-104. https://doi.org/10.1177/095968369300300201
Squyres, S. W., & Knoll, A. H. (2005). Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars. Earth and Planetary Science Letters, 240(1), 1-10. https://doi.org/10.1016/j.epsl.2005.09.038
Stefano, C. J., Hackney, S. A., & Kampf, A. R. (2020). The occurrence of iron silicides in a fulgurite: Implications for fulgurite genesis. Canadian Mineralogist, 58(1), 115-123. https://doi.org/10.3749/canmin.1900019
Stosch, H.-G. (2022). Excel template to plot hydrochemical data into a Piper diagram. In (Version 1.1) Zenodo. https://doi.org/10.5281/zenodo.6581209
Subbaraman, J. V. (2000). Extrusion of Rock Melt in the Vicinity of High Tension Electric Line in Tirunelveli District, Tamil Nadu. Geological Society Of India, 55(4), 448-449.
Sutter, C., Habler, G., & Ferrière, L. (2019). Phase relations and microstructures in a fulgurite formed in a coarse soil of weathered granite. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 165, 90.
Swann, C. T., & Ingram, S. L. (1998). A Note on the Discovery of Sand Fulgurites in Mississippi. Mississippi Geology, 19(1), 1-6.
Switzer, G., & Melson, W. G. (1972). Origin and Composition of Rock Fulgurite Glass. Smithsonian Contributions to the Earth Sciences, 9, 47.
Taiwan Power Company. (2014). Taiwan Power Company Lightning Monitoring Historical Data Taiwan Power Company. https://data.gov.tw/en/datasets/9712
Taylor, A. R. (1965). Diameter of lightning as indicated by tree scars. Journal of Geophysical Research (1896-1977), 70(22), 5693-5694. https://doi.org/10.1029/JZ070i022p05693
Taylor, P. D. (1998). Fossils in folklore. Geology Today, 14(4), 142-145. https://doi.org/10.1046/j.1365-2451.1998.014004142.x
Tedlock, B. (2004). Narrative ethnography as social science discourse. In Studies in Symbolic Interaction (Vol. 27, pp. 23-31). Emerald Group Publishing Limited. https://doi.org/10.1016/S0163-2396(04)27004-1
Tobase, T., Yoshiasa, A., Wang, L., Hongu, H., Isobe, H., & Miyawaki, R. (2015). XAFS study on the Zr local structures in tektites and natural glasses. Journal of Mineralogical and Petrological Sciences, 110(1), 1-7. https://doi.org/10.2465/jmps.140317
Toby, B. H., & Von Dreele, R. B. (2013). GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography, 46(2), 544-549. https://doi.org/10.1107/S0021889813003531
Tosca, N. J., McLennan, S. M., Clark, B. C., Grotzinger, J. P., Hurowitz, J. A., Knoll, A. H., Schröder, C., & Squyres, S. W. (2005). Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum. Earth and Planetary Science Letters, 240(1), 122-148. https://doi.org/10.1016/j.epsl.2005.09.042
Tosca, N. J., McLennan, S. M., Dyar, M. D., Sklute, E. C., & Michel, F. M. (2008). Fe oxidation processes at Meridiani Planum and implications for secondary Fe mineralogy on Mars. Journal of Geophysical Research: Planets, 113(E5). https://doi.org/10.1029/2007JE003019
Tshubwana, R. P. (2017). Fulgurites : their formation, chemical composition and impacts on network failures in Swaziland [Master′s Thesis, University of Johannesburg].
Tshubwana, R. P., Shongwe, T., & Hove, M. (2017, 18-20 Sept. 2017). Effects of fulgurites on the earthing system 2017 IEEE AFRICON,
Twidale, C. R., & Bourne, J. A. (2018). Rock basins (gnammas) revisited. Géomorphologie : relief, processus, environnement, 24 – N° 2, 139-149. https://doi.org/10.4000/geomorphologie.11880
Uman, M. A., & Krider, E. P. (1989). Natural and artificially initiated lightning. Science, 246(4929), 457-464. https://doi.org/10.1126/science.246.4929.457
Vařilová, Z. (2018). Stopy po úderu blesku. Retrieved Sep 15, 2023 from https://www.gecon.online/stopy-po-uderu-blesku/
Verrier, V., & Rochette, P. (2002). Estimating peak currents at ground lightning impacts using remanent magnetization. Geophysical Research Letters, 29(18), 14-11-14-14. https://doi.org/10.1029/2002GL015207
Versluis, D. (2017). Fulgurite. Pro Rege, 46(2), 24. https://digitalcollections.dordt.edu/pro_rege/vol46/iss2/16
Viemeister, P. E. (1972). The Lightning Book. MIT Press.
Víšková, E., Houzar, S., & Slavíček, K. (2021). Characterization of pseudofulgurite from Žatčany near Brno, Czech Republic. Acta Mus. Moraviae, Sci. Geol., 106(2), 161-170.
Wakasa, S. A., Nishimura, S., Shimizu, H., & Matsukura, Y. (2012). Does lightning destroy rocks?: Results from a laboratory lightning experiment using an impulse high-current generator. Geomorphology, 161-162, 110-114. https://doi.org/10.1016/j.geomorph.2012.04.005
Walsh, S. D. C., & Vogler, D. (2020). Simulating electropulse fracture of granitic rock. International Journal of Rock Mechanics and Mining Sciences, 128, 104238. https://doi.org/10.1016/j.ijrmms.2020.104238
Walter, M. (2011). An exogenic fulgurite occurrence in Oswego, Oswego County, New York. Rocks and Minerals, 86(3), 264-270. https://doi.org/10.1080/00357529.2010.517134
Wasilewski, P., & Kletetschka, G. (1999). Lodestone: Natures only permanent magnet-What it is and how it gets charged. Geophysical Research Letters, 26(15), 2275-2278. https://doi.org/10.1029/1999GL900496
Wasserman, A. A., Melosh, H. J., & Lauretta, D. S. (2002). Fulgurites: A Look at Transient High Temperature Processes in Silicates. 33rd Lunar and Planetary Science Conference League City, Texas.
Weather Risk. (2019). Taiwan Lightning Monitoring Annual Report strike.weatherrisk.com
Weeks, R. A. (1999). Adventures in an amorphous landscape. Journal of Non-Crystalline Solids, 255(1), 15-34. https://doi.org/10.1016/S0022-3093(99)00421-4
Weeks, R. A., Nasrallah, M., Arafa, S., & Bishay, A. (1980). Studies of fusion processes of natural glasses by electron magnetic resonance spectroscopy. Journal of Non-Crystalline Solids, 38-39, 129-134. https://doi.org/10.1016/0022-3093(80)90406-8
West, C. E. (1843). Notice of certain siliceous tubes (fulgurites) formed in the earth. American Journal of Science, 45(1), 220-222.
Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185-187. https://doi.org/10.2138/am.2010.3371
Williams, D. J., & Johnson, W. (1980). A note on the formation of fulgurites. Geological Magazine, 117(3), 293-296. https://doi.org/10.1017/S001675680003051X
Wilson, J. F. (2003). Lightning-induced fracture of masonry and rock. International Journal of Solids and Structures, 40(20), 5305-5318. https://doi.org/10.1016/S0020-7683(03)00289-0
Wilson, P., & Clark, R. (2001). Unusual events: Impacts of a possible lightning strike in Burtness Comb, Lake District. Geology Today, 17, 213-214.
Wimmenauer, W. (2003). Wirkungen des Blitzes (Sprengung und Fulguritbildung) an Felsen im Schwarzwald. Berichte der Naturforschenden Gesellschaft zu Freiburg i, 93, 1-32.
Wimmenauer, W. (2006). Vorkommen und Strukturen von Fulguriten im Schwarzwald. Der Aufschluss, 57, 325-328.
Wimmenauer, W., & Himstedt, F. (2012). Dokumentation zum Thema: Fulgurite auf Felsen und Mauerwerk in Südwestdeutschland und weiteren Fundgebieten : Geländebefunde und lichtmikroskopische Untersuchungen. Mineralogie und Geochemie, 1-65.
Wimmenauer, W., & Mehlhorn, W. (2010). Blitzmagnetisierung in Serpentinit bei Todtmoos (Südschwarzwald). Berichte der naturforschenden Gesellschaft zu Freiburg im Breisgau, 100, 61 - 70.
Wimmenauer, W., Mehlhorn, W., & Müller-Sigmund, H. (2006). Centimeter-scale magnetic structures caused by lightning impact in basalt. Mitteilungen der Deutschen Geophysikalischen Gesellschaft, 18-21.
Wimmenauer, W., & Wilmanns, O. (2004). Neue Funde von Blitzsprengung und Fulguritbildung im Schwarzwald. Berichte der Naturforschenden Gesellschaft zu Freiburg i, 94, 1-22.
Withering, W. (1790). An account of some extraordinary effects of lightning. Philosophical Transactions of the Royal Society of London, 80, 293-295. https://doi.org/10.1098/rstl.1790.0019
Wolff-Boenisch, D., Gislason, S. R., Oelkers, E. H., & Putnis, C. V. (2004). The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C. Geochimica et Cosmochimica Acta, 68(23), 4843-4858. https://doi.org/10.1016/j.gca.2004.05.027
Wood, R. W. (1910). Experimental Study of Fulguites. Nature, 84(2125), 70-70. https://doi.org/10.1038/084070a0
Woods, T. W., Feinberg, J. M., Genareau, K., Park, C., Won, H., & Hong, Y.-K. (2023). Magnetic Properties of Lightning-Induced Glass Produced From Five Mineral Phases. Journal of Geophysical Research: Solid Earth, 128(9), e2023JB026561. https://doi.org/10.1029/2023JB026561
Woods, T. W., Genareau, K., & Klüss, J. (2021). Alteration of volcanic ash glass chemistry due to lightning. Journal of Volcanology and Geothermal Research, 419, 107340. https://doi.org/10.1016/j.jvolgeores.2021.107340
Wright, A. C., Desa, J. A. E., Weeks, R. A., Sinclair, R. N., & Bailey, D. K. (1984). Neutron diffraction studies of natural glasses. Journal of Non-Crystalline Solids, 67(1-3), 35-44. https://doi.org/10.1016/0022-3093(84)90139-X
Wright, F. W. (1999). Florida′s Fantastic Fulgurite Find. Rocks & Minerals, 74(3), 156-159. https://doi.org/10.1080/00357529909602534
Yair, Y., Fischer, G., Simões, F., Renno, N., & Zarka, P. (2008). Updated Review of Planetary Atmospheric Electricity. Space Science Reviews, 137(1), 29-49. https://doi.org/10.1007/s11214-008-9349-9
Yin, G.-C., Song, Y.-F., Chen, B.-Y., Lee, C.-Y., Hsu, M.-Y., Liao, C.-L., Chiu, C.-C., Lee, M.-H., Liu, C.-Y., Chang, C.-F., Wang, C.-C., & Chiang, L.-C. (2022). The Projection and Transmission X-ray Microscopy at Taiwan Photon Source. Journal of Physics: Conference Series, 2380(1), 012119. https://doi.org/10.1088/1742-6596/2380/1/012119
Yokoyama, S. (2013). Lightning Strike as a Trigger in the Formation of Weathering Pits. Transactions, Japanese Geomophological Union, 34(4), 303-311.
Yui, T. F., Heaman, L., & Lan, C. Y. (1996). U–Pb and Sr isotopic studies on granitoids from Taiwan and Chinmen-Lieyü and tectonic implications. Tectonophysics, 263(1), 61-76. https://doi.org/10.1016/S0040-1951(96)00023-6
Zanon, V., Viveiros, F., Silva, C., Hipólito, A. R., & Ferreira, T. (2008). Impact of lightning on organic matter-rich soils: Influence of soil grain size and organic matter content on underground fires. Natural Hazards, 45(1), 19-31. https://doi.org/10.1007/s11069-007-9154-x
Zolotov, M. Y., & Shock, E. L. (2005). Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars. Geophysical Research Letters, 32(21). https://doi.org/10.1029/2005GL024253
指導教授 郭力維(Li-Wei Kuo) 審核日期 2024-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明