以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:53 、訪客IP:3.141.45.177
姓名 劉宇凡(Yu-Fan Liu) 查詢紙本館藏 畢業系所 地球科學學系 論文名稱 高屏峽谷源頭區域近一萬年以來淺層高解析地質構造之研究
(Study on Shallow High-Resolution Geological Structures of the Gaoping Canyon Head Area Over the Past Ten Thousand Years)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2027-7-1以後開放) 摘要(中) 高屏峽谷位於台灣西南海域,由高屏溪供給大量的沉積物,並作為沉積物的重要通道將其運輸至馬尼拉海溝。陸源沉積物在峽谷中透過濁流的形式向下游移動,而本研究區域高屏峽谷源頭區為陸源沉積物入海形成濁流的源頭區,在頻繁的濁流事件與深部的泥貫入體活動的雙重影響下,形成豐富且易變的海床與地層形貌。本研究利用16條高解析底拖側掃聲納影像與底質剖面,以及3條高解析電火花反射震測剖面,經過資料處理後配合鄰近區域中的鑽井資料進行近一萬年以來近海床層面解釋,結果顯示峽谷西岸區域可辨識出地層Sw1至Sw9層,以及峽谷東岸區域可辨識出地層Se1至Se8層。經過高解析底質剖面、側掃聲納與電火花反射震測資料並與前人資料綜合分析後,本研究發現儘管今日高屏溪擁有最高的沉積物供應量,過去數千年以來古東港溪流域才是主要的沉積物供應源,並且透過豐富的峽谷支流往高屏峽谷主流輸送沉積物。此外,近岸的近海床砂質地層均可觀察到大規模振幅弱化特徵,此可能為透水層中的地層流體影像,即可能與屏東平原海水入侵或地下水往外海輸送有關。此外,在距今八千年前高屏峽谷西岸曾受到海退期的粗顆粒沉積物溢流侵蝕形成兩條古水道,現今已被沉積物填滿。峽谷西側上拱的泥貫入體造成線型的地形落差也間接導致該古水道的形成。最後,區域的地層中與海床上可辨識出大量的流體相關構造,推測可能為自生碳酸鹽沉積物、泥火山、噴氣、地層間的流體填充、泥貫入體等等,應與區域深部的泥貫入體所提供的流體物質有關。 摘要(英) As an important conduit of sediment transportation in the southwest offshore Taiwan, Gaoping submarine canyon (GPSC) receives a huge amount of terrestrial sediment from the Gaoping river, which transports down to the Manila Trench. The sediment in the GPSC moves in the form of turbidity currents. The study area locates at the head of GPSC, source location of turbidity current showing the most vigorous turbidity current activity compared to the other parts of the canyon. Due to turbidity current erosion and mud diapirism intrusion, the geological structures and seafloor morphology are characterized by strong diversity and variability. Three high resolution sparker seismic profiles and sixteen deep-towed sub-buttom profiles, accompanied by side-scan sonar images were used in this study. After data processing, the sub-bottom profiler (SBP) sections were tied to wells close to coast, identifying the nine geological strata (sequences Sw1 to Sw9) west bank of GPSC and another eight strata (sequences Se1 to Se8) on the east bank.
Integration analysis between high resolution deep towed SBP, side-scan sonar and sparker seismic data with previous hydrogeological wells, we concluded that the paleo-Donggang river could be the dominant sediment supplier for the past thousands of years, despite the Gaoping river being the main one currently. In addition, the sediment could be transported through the canyon by both main canyon and tributaries on the east bank of the GPSC. Moreover, seismic acoustic blanking zones observed in the profiles near the coast could suggest sediment fluid accumulation in the aquifer strata, which may act as a conduit or channel for the seawater and ground water exchange near the coast of Pingtung Plain. On the west bank of the GPSC, two paleo-channels were formed by the erosion caused by coarse-grained sediment during the sea level regression approximately eight thousand years ago. The uplifting of mud diapirism in the area could generate linear seafloor relief and indirectly facilitate the erosion of the paleo-channels. Subsequently, the paleo-channels were filled up later. Additionally, many structures associated with sediment fluid were observed in the seismic profiles and side-scan sonar images. These structures are probably the authigenic carbonate, mud volcanos, mud diapirs, gas plumes, sediment fluid accumulation, etc., all of which could be related to the fluid supplied by mud diapirs in the depths.關鍵字(中) ★ 高解析底拖聲納
★ 高屏峽谷源頭區域
★ 沉積物動力學
★ 屏東平原海淡水交換關鍵字(英) ★ high-resolution deep-towed sonar
★ Gaoping canyon head area
★ sediment dynamics
★ Pingtung Plain seawater/ ground water exchange論文目次 中文摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xii
一、 緒論 1
1-1 高屏海底峽谷 1
1-2 前人研究 2
1-3 研究動機與目的 3
二、 資料蒐集與處理方法 10
2-1 高解析底拖聲納探測儀探測原理 10
2-1-1 高解析底拖底質剖面儀與側掃聲納基本原理 10
2-1-2 高解析底質剖面儀資料處理 11
2-1-3 高解析側掃聲納資料處理方法 15
2-2 電火花反射震測 17
2-2-1 電火花反射震測原理 18
2-2-2 電火花反射震測資料施測參數與幾何配置 18
2-2-3 電火花反射震測資料處理方法 19
三、 研究結果 46
3-1 研究區域地層比對 46
3-2 電火花反射震測資料 48
3-3 資料展示與描述 48
3-3-1 Line 1 49
3-3-2 Line 2 50
3-3-3 SPK-1(可對應至Line 2與Line 16 底拖聲納測線) 52
3-3-4 Line 3 52
3-3-5 Line 4 53
3-3-6 Line 5 54
3-3-7 Line 6 55
3-3-8 Line 7 56
3-3-9 Line 8 57
3-3-10 SPK-2(可對應至Line 8 底拖聲納測線) 58
3-3-11 Line 9 59
3-3-12 Line 10 60
3-3-13 Line 11 61
3-3-14 Line 12 62
3-3-15 Line 13 63
3-3-16 SPK-3(可對應至Line 13 底拖聲納測線) 64
3-3-17 Line 14 65
3-3-18 Line 15 66
3-3-19 Line 16 67
四、 討論 117
4-1 峽谷頭區域古沉積物源方向 117
4-1-1 區域地形與濁流沉積物 117
4-1-2 古沉積環境變遷 118
4-1-3 地質特徵與古流向 119
4-2 峽谷西岸古水道與泥貫入體交互作用 121
4-3 海床地貌及地層流體空間分布分析 122
4-3-1 側掃聲納影像資料海床特徵 122
4-3-2 地層流體相關構造空間分布 123
4-4 沉積物厚度圖與意義 124
五、 結論 141
六、 參考文獻 143
七、 附錄:已解釋的完整高解析底質剖面資料 147參考文獻 [1] Harris, P. T. and Whiteway, T.,"Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins",Marine Geology,285,pp. 69-86,2011
[2] Mauffrey, M.-A., Urgeles, R., Berné, S. and Canning, J.,"Development of submarine canyons after the Mid-Pleistocene Transition on the Ebro margin, NW Mediterranean: The role of fluvial connections",Quaternary Science Reviews,158,pp. 77-93,2017
[3] Shepard, F. P.,"Submarine canyons: multiple causes and long-time persistence",AAPG bulletin,65,pp. 1062-1077,1981
[4] Mulder, T., Syvitski, J. P., Migeon, S., Faugères, J.-C. and Savoye, B.,"Marine hyperpycnal flows: initiation, behavior and related deposits. A review",Marine and Petroleum Geology,20,pp. 861-882,2003
[5] Hsu, S.-K., Kuo, J., Chung-Liang, L., Ching-Hui, T., Doo, W.-B., Ku, C.-Y. and Sibuet, J.-C.,"Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan",TAO: Terrestrial, Atmospheric and Oceanic Sciences,19,pp. 7,2008
[6] Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., Hu, J.-C., Horng, M.-J., Chen, M.-C. and Stark, C. P.,"Links between erosion, runoff variability and seismicity in the Taiwan orogen",Nature,426,pp. 648-651,2003
[7] Chiang, C.-S. and Yu, H.-S.,"Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge",Geomorphology,80,pp. 199-213,2006
[8] Chiang, C.-S. and Yu, H.-S.,"Evidence of hyperpycnal flows at the head of the meandering Kaoping Canyon off SW Taiwan",Geo-Marine Letters,28,pp. 161-169,2008
[9] Chiang, C. and Yu, H.,"Sedimentary erosive processes and sediment dispersal in Kaoping submarine canyon",Science China Earth Sciences,54,pp. 259-271,2011
[10] Yu, S.-W., Tsai, L. L., Talling, P. J., Lin, A. T., Mii, H.-S., Chung, S.-H. and Horng, C.-S.,"Sea level and climatic controls on turbidite occurrence for the past 26 kyr on the flank of the Gaoping Canyon off SW Taiwan",Marine Geology,392,pp. 140-150,2017
[11] Su, C.-C., Hsu, S.-T., Hsu, H.-H., Jing-Yi, L. and Dong, J.-J.,"Sedimentological characteristics and seafloor failure offshore SW Taiwan",TAO: Terrestrial, Atmospheric and Oceanic Sciences,29,pp. 6,2018
[12] Yeh, Y.-C., Tsai, C.-L., Hsu, S.-K., Lin, H.-S., Chen, K.-T., Cho, Y.-Y. and Liang, C.-W.,"Continental shelf morphology controlled by bottom currents, mud diapirism, and submarine slumping to the east of the Gaoping Canyon, off SW Taiwan",Geo-Marine Letters,41,pp. 1-11,2021
[13] Chen, S.-C., Hsu, S.-K., Wang, Y., Chung, S.-H., Chen, P.-C., Tsai, C.-H., Liu, C.-S., Lin, H.-S. and Lee, Y.-W.,"Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan",Journal of Asian Earth Sciences,92,pp. 201-214,2014
[14] 楊懿丞、許鶴瀚、吳俊鼐、溫修敏、陳姿婷、連政佳、洪瑋廷、劉家瑄,"地形與震測地層剖面分析於離岸風電場址調查之應用",臺灣能源期刊,3,pp. 2020
[15] Yilmaz, Ö.,Seismic data analysis: Processing, inversion, and interpretation of seismic data,2001
[16] Kopp, G. J. C. H.,"Reflection and Refraction Seismic Methods",2017
[17] Sheriff, R. E. and Geldart, L. P.,Exploration seismology,1995
[18] Duchesne, M. J., Bellefleur, G., Galbraith, M., Kolesar, R. and Kuzmiski, R.,"Strategies for waveform processing in sparker data",Marine Geophysical Researches,28,pp. 153-164,2007
[19] Kluesner, J., Brothers, D., Hart, P., Miller, N. and Hatcher, G.,"Practical approaches to maximizing the resolution of sparker seismic reflection data",Marine Geophysical Research,40,pp. 279-301,2019
[20] 施宗佑,"台灣西南海域天然氣水合物賦存區高解析側掃聲納與底質剖面調查與分析",國立中央大學地球物理研究所, (Master dissertation,碩士論文),2009
[21] 江崇榮, "台灣地區地下水觀測網第一期計畫屏東平原水文地質調查研究總報告",經濟部中央地質調查所,2002
[22] 駱亞俊,"台灣西南部屏東平原地區晚第四紀沉積岩心研究",國立臺灣師範大學地球科學系, (Master dissertation,碩士論文),2010
[23] Siddall, M., Rohling, E. J., Almogi-Labin, A., Hemleben, C., Meischner, D., Schmelzer, I. and Smeed, D.,"Sea-level fluctuations during the last glacial cycle",Nature,423,pp. 853-858,2003
[24] 蔡仲霖,"高屏峽谷極上游區域峽谷侵蝕與泥貫入體活動之交互關係研究",國立中央大學地球科學學系, (Master dissertation,碩士論文),2019
[25] Van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., Vail, P. R., Sarg, J. F., Loutit, T. and Hardenbol, J.,"An overview of the fundamentals of sequence stratigraphy and key definitions",1988
[26] Van Wagoner, J. C., Mitchum, R. M., Campion, K. M. and Rahmanian, V. D.,"Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: concepts for high-resolution correlation of time and facies",1990
[27] 國立中央大學,"東港溪流域水文與水質監測計畫",2018
[28] 林曉武,"台灣西南海域新興能源-天然氣水合物資源調查與評估-地球化學調查研究(2/4), 台灣西南海域自生性碳酸鹽及硫物種之變化與天然氣水合物賦存之關係",經濟部中央地質調查所報告,2009指導教授 葉一慶(Yi-Ching Yeh) 審核日期 2024-7-18 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare