博碩士論文 111256010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.128.199.62
姓名 吳晢弘(Che-Hong Wu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 短波紅外窄帶濾光膜的低溫製程研究
(Low-Temperature Process Research on Shortwave Infrared Narrowband Filters)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 短波紅外波段在通訊、感測器、醫療及車用等產業上具有重要的地位,其中以能夠穿透水、霧氣、矽基、生物組織,以及在1350/1550 nm擁有低散射、低吸收等特性作為研究方向。而鍺基材料在紅外波段擁有高穿透以及低吸收的光學性質,因此非常適合作為窄帶濾光膜中的高低折射率材料,並且以此設計出在短波紅外具有高品質的窄帶濾光膜,以延伸現今產業在近紅外波段850/940 nm的應用。
本實驗延續對鍺與鍺化合物的前期研究,前期研究中已經完成在製程溫度500°C的參數優化,並且成功製鍍出高穿透率的短波紅外窄帶濾光膜。而為了實際應用在晶圓級光學薄膜的製程中,考慮到後續黃光製程中光阻材料的熱穩定性,必須將製程溫度降低至相對低溫(200°C以下),並繼續針對功率、反應氣體流量等製程參數進行優化,並以UV-IR光譜儀及軟體Essential Macleod分析薄膜光學性質;FTIR、XPS分析薄膜化學成分的組成;SEM、XRD、AFM分析薄膜的材料與表面性質,得到最佳化參數製鍍出高穿透的短波紅外窄帶濾光膜。
本實驗切分為三個部分,第一部份針對高折射率材料進行製程優化,依序以製程溫度、製程功率、氫氣通量作為製程調控,並且解決製程中電漿打火造成膜面有轟擊孔洞的問題,優化後薄膜呈非晶態且表面平坦,折射率達4.095,消光係數為7E-3。第二部分為延續前段製程溫度,在防止靶材毒化的前提下,做氧氣通量的調控進行優化,同時探討高氧通量下氧化鍺薄膜發生水解反應,優化後薄膜亦呈非晶態表面平坦,折射率達1.597,消光係數為4.5E-4。第三部分利用上述兩最佳化參數設計後製鍍在1350/1550 nm的窄帶濾光膜,實驗結果為中心波長穿透率分別達到87.9及88%,總膜厚為2及2.4μm達成高穿透率以及低膜厚的目標。
摘要(英) Short-wave infrared (SWIR) wavelengths are crucial in communication, sensing, medical, and automotive industries due to their ability to penetrate water, fog, silicon, and biological tissues, and their low scattering and absorption at 1350/1550 nm. Germanium-based materials, with high transparency and low absorption, are ideal for narrowband filters. This study extends applications at near-infrared wavelengths of 850/940 nm by designing high-quality SWIR narrowband filters.
Building on previous research with optimized parameters at 500°C, this experiment reduces the deposition temperature to below 200°C for practical wafer-level applications. Further optimization of power and gas flow rates was conducted. The optical properties were analyzed using UV-IR spectroscopy and Essential Macleod software, and the chemical composition and material properties were examined using FTIR, XPS, SEM, XRD, and AFM. Optimized parameters resulted in high-transmittance SWIR narrowband filters.
The experiment is divided into three parts. First, the process for high-refractive-index materials was optimized by adjusting temperature, power, and hydrogen flow rate, addressing plasma arcing issues. The films achieved a refractive index of 4.095 and an extinction coefficient of 7E-3. Second, the oxygen flow rate was optimized to prevent target poisoning, achieving a refractive index of 1.597 and an extinction coefficient of 4.5E-4. Third, the optimized parameters were used to design narrowband filters at 1350/1550 nm, achieving center wavelength transmittance of 87.9% and 88% with film thicknesses of 2 μm and 2.4 μm.
關鍵字(中) ★ 磁控濺鍍
★ 鍺
★ 短波紅外
★ 光學薄膜
關鍵字(英) ★ Sputtering
★ Germanium
★ SWIR
★ Optical Thin Film
論文目次 摘要 i
Abstract ii
致謝 ii
目錄 iv
圖目錄 vii
表目錄 xiv
1 第一章、緒論 1
1-1 前言 1
1-2 研究動機與目的 2
2 第二章、基礎理論 3
2-1 材料特性 3
2-1-1 鍺材料特性 3
2-1-3 鍺氫鍵中的Bulk Mode & Surface Mode 4
2-1-4 氧化鍺特性與結構 5
2-1-5 氧化鍺的水解現象 7
2-2 薄膜製程 9
2-2-1 薄膜生長機制 9
2-2-2 電漿 9
2-2-3 物理氣相沉積 10
2-2-4 反應式磁控濺鍍 11
2-2-5 靶材毒化及遲滯效應 13
2-3 光學多層膜堆設計 14
3 第三章、實驗架構與儀器設備 15
3-1 實驗流程 15
3-2 製程儀器 18
3-3 量測儀器 19
3-3-1 紫外/可見/近紅外光光譜儀(UV/VIS/NIR Spectrophotometer) 19
3-3-2 Essential Macleod 21
3-3-3 傅立葉轉換紅外光光譜儀(Fourier Transform Infrared Spectroscopy, FTIR) 21
3-3-4 X光電子能譜(X-ray Photoelectron Spectroscopy, XPS) 23
3-3-5 X光繞射儀(X-ray diffractometer, XRD) 24
3-3-6 掃描式電子顯微鏡 (Scanning Electron Microscope) 24
3-3-7 原子力顯微鏡(Atomic Force Microscope) 25
4 第四章、實驗結果 26
4-1 鍺摻雜氫的單層膜製程優化 26
4-1-1 溫度 27
4-1-2 功率 31
4-1-3 摻雜之氫氣流量調控 34
4-1-3-1 80W氫氣通量調控 34
4-1-3-2 高氫通量造成電漿不穩定問題 40
4-1-3-3 40W氫氣通量調控 44
4-1-4 結論 51
4-2 氧化鍺的單層膜製程優化 52
4-2-1 靶材毒化及遲滯曲線 52
4-2-2 氧氣流量調控 56
4-2-3 高氧通量的水解問題 64
4-2-4 結論 67
4-3 光學多層膜 68
4-3-1 參數確認及測試 68
4-3-2 中心波長1350 nm窄帶濾光片 70
4-3-3 HL鍍率確認 72
4-3-4 中心波長1550 nm窄帶濾光片 74
5 第五章、結論 76
5-1 實驗結論 76
5-2 實驗限制 77
5-3 未來規劃 77
6 參考文獻 78
參考文獻 [1] E. Optics. "什麼是 SWIR?." https://www.edmundoptics.com.tw/knowledge-center/application-notes/imaging/what-is-swir/ (accessed 2024).
[2] CLEARVIEW. "Non-Visible Imaging: Short-Wave Infrared (SWIR)." https://www.clearview-imaging.com/en/blog/non-visible-imaging-short-wave-infrared-swir (accessed 2024).
[3] 吳亮廷, "鍺薄膜與氧化鍺薄膜在短波紅外特性與應用," 碩士, 光電科學與工程學系, 國立中央大學, 臺灣博碩士論文知識加值系統, 2023. [Online]. Available: https://hdl.handle.net/11296/j5e3rq
[4] "晶圓級光學薄膜製程." 采鈺科技股份有限公司(VisEra). https://www.viseratech.com/tw/technology/technology-detail/MultipleFilm/ (accessed 2024).
[5] J. Song, "The history and trends of semiconductor materials’ development," Journal of Physics: Conference Series, vol. 2608, no. 1, p. 012019, 2023/10/01 2023, doi: 10.1088/1742-6596/2608/1/012019.
[6] M. Stutzmann, "The defect density in amorphous silicon," Philosophical Magazine B, vol. 60, no. 4, pp. 531-546, 1989/10/01 1989, doi: 10.1080/13642818908205926.
[7] H. Liu et al., "Study on characterization method of optical constants of germanium thin films from absorption to transparent region," Materials Science in Semiconductor Processing, vol. 83, pp. 58-62, 2018/08/15/ 2018, doi: https://doi.org/10.1016/j.mssp.2018.04.019.
[8] "Dangling bond." https://en.wikipedia.org/wiki/Dangling_bond (accessed 2024).
[9] Y. Bouizem, J. D. Sib, L. Chahed, and M. L. Thèye, "Comparative studies of the influence of hydrogen incorporation on the electronic properties of a-Ge:H films prepared by two different techniques," Canadian Journal of Physics, vol. 77, no. 9, pp. 659-666, 2000, doi: 10.1139/p99-031.
[10] M. Budde, B. Bech Nielsen, R. Jones, J. Goss, and S. Öberg, "Local modes of the H dimer in germanium," Physical Review B, vol. 54, no. 8, pp. 5485-5494, 08/15/ 1996, doi: 10.1103/PhysRevB.54.5485.
[11] Y.-P. Chou and S.-C. Lee, "Evidence for the void size related IR absorption frequency shifts in hydrogenated amorphous germanium films," Solid State Communications, vol. 113, no. 2, pp. 73-75, 1999/11/30/ 1999, doi: https://doi.org/10.1016/S0038-1098(99)00443-3.
[12] D. Comedi, F. Dondeo, I. Chambouleyron, Z. Peng, and P. Mascher, "Compact hydrogenated amorphous germanium films by ion-beam sputtering deposition," Journal of non-crystalline solids, vol. 266, pp. 713-716, 2000.
[13] T. de Vrijer, J. E. C. van Dingen, P. J. Roelandschap, K. Roodenburg, and A. H. M. Smets, "Improved PECVD processed hydrogenated germanium films through temperature induced densification," Materials Science in Semiconductor Processing, vol. 138, p. 106285, 2022/02/01/ 2022, doi: https://doi.org/10.1016/j.mssp.2021.106285.
[14] M. Mulato, I. Chambouleyron, and I. L. Torriani, "Hydrogen bonding and void microstructure of a‐Ge:H films," Journal of Applied Physics, vol. 79, no. 8, pp. 4453-4455, 1996, doi: 10.1063/1.361756.
[15] F. D. Origo, P. Hammer, D. Comedi, and I. E. Chambouleyron, "The Effect of Ion-Bombardment on the Formation of Voids During Deposition of a-Ge:H," MRS Proceedings, vol. 507, p. 477, 1998.
[16] L. H. Ouyang, D. L. Rode, T. Zulkifli, B. Abraham-Shrauner, N. Lewis, and M. R. Freeman, "Hydrogenated amorphous and microcrystalline GaAs films prepared by radio-frequency magnetron sputtering," Journal of Applied Physics, vol. 91, no. 5, pp. 3459-3467, 2002, doi: 10.1063/1.1446241.
[17] C.-Y. Tsao, P. Campbell, D. Song, and M. A. Green, "Influence of hydrogen on structural and optical properties of low temperature polycrystalline Ge films deposited by RF magnetron sputtering," Journal of Crystal Growth, vol. 312, no. 19, pp. 2647-2655, 2010/09/15/ 2010, doi: https://doi.org/10.1016/j.jcrysgro.2010.06.008.
[18] J. Weber, M. Hiller, and E. V. Lavrov, "Hydrogen in germanium," Materials Science in Semiconductor Processing, vol. 9, no. 4, pp. 564-570, 2006/08/01/ 2006, doi: https://doi.org/10.1016/j.mssp.2006.08.007.
[19] J. R. Weber, A. Janotti, and C. G. Van de Walle, "Dangling bonds and vacancies in germanium," Physical Review B, vol. 87, no. 3, p. 035203, 01/14/ 2013, doi: 10.1103/PhysRevB.87.035203.
[20] D. Shin, H. Park, S. Y. Kim, and D.-H. Ko, "Study on temperature-dependent growth characteristics of germanium oxide film by plasma-enhanced atomic layer deposition," Thin Solid Films, vol. 775, p. 139851, 2023/06/30/ 2023, doi: https://doi.org/10.1016/j.tsf.2023.139851.
[21] Z. Xiao et al., "Phase Transformation of GeO2 Glass to Nanocrystals under Ambient Conditions," Nano Letters, vol. 18, no. 5, pp. 3290-3296, 2018/05/09 2018, doi: 10.1021/acs.nanolett.8b01142.
[22] N. R. Murphy et al., "Correlation between optical properties and chemical composition of sputter-deposited germanium oxide (GeOx) films," Optical Materials, vol. 36, no. 7, pp. 1177-1182, 2014/05/01/ 2014, doi: https://doi.org/10.1016/j.optmat.2014.02.023.
[23] T. Lange, W. Njoroge, H. Weis, M. Beckers, and M. Wuttig, "Physical properties of thin GeO2 films produced by reactive DC magnetron sputtering," Thin Solid Films, vol. 365, pp. 82-89, 04/01 2000, doi: 10.1016/S0040-6090(99)01106-2.
[24] R. Kaindl, D. M. Többens, S. Penner, T. Bielz, S. Soisuwan, and B. Klötzer, "Quantum mechanical calculations of the vibrational spectra of quartz- and rutile-type GeO2," Physics and Chemistry of Minerals, vol. 39, no. 1, pp. 47-55, 2012/01/01 2012, doi: 10.1007/s00269-011-0458-8.
[25] K. Astankova, V. Volodin, and I. Azarov, "Structure of Germanium Monoxide Thin Films," Semiconductors, vol. 54, pp. 1555-1560, 12/01 2020, doi: 10.1134/S1063782620120027.
[26] A. Anders, "Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)," Journal of Applied Physics, vol. 121, no. 17, p. 171101, 2017, doi: 10.1063/1.4978350.
[27] 李志偉, "反應式高功率脈衝磁控濺鍍技術的發展," (in 繁體中文), 真空科技, vol. 33, no. 2, pp. 9-25, 2020.
[28] 李正中, 薄膜光學與鍍膜技術, 9 ed. 新北市: 藝軒圖書文具有限公司, 2020.
[29] C. Clark, "Angus Macleod (1933–2021): in memoriam," Appl. Opt., vol. 62, no. 7, pp. ED1-ED11, 2023/03/01 2023, doi: 10.1364/AO.476956.
[30] 黃紅英, "傅立葉變換衰減全反射紅外光譜法(ATR-FTIR)的原理與應用進展," 中山大學研究生學刊, vol. 32, p. 12, 2011.
[31] SCHOTT. "Spectral transmittance 250 - 3200 nm." https://www.schott.com/en-au/products/b-270-p1000313/technical-details (accessed 2024.
[32] JASCO. "Theory of Attenuated Total Reflectance." https://jascoinc.com/learning-center/theory/spectroscopy-1/attenuated-total-reflectance/ (accessed 2024).
[33] K. Prabhakaran and T. Ogino, "Oxidation of Ge(100) and Ge(111) surfaces: an UPS and XPS study," Surface Science, vol. 325, pp. 263-271, 1995.
[34] Thermofisher. "What is X-Ray Photoelectron Spectroscopy (XPS)?" https://xpssimplified.com/_whatisxps.php (accessed 2024).
[35] K. Hatano, Y. Asano, Y. Kameda, A. Koshio, and F. Kokai, "Formation of Germanium-Carbon Core-Shell Nanowires by Laser Vaporization in High-Pressure Ar Gas without the Addition of Other Metal Catalysts," Materials Sciences and Applications, vol. 08, pp. 838-847, 01/01 2017, doi: 10.4236/msa.2017.812061.
[36] A. Nanakoudis. "What is SEM? Scanning Electron Microscopy Explained." ThermoFisher. https://www.thermofisher.com/blog/materials/what-is-sem-scanning-electron-microscopy-explained/ (accessed 2024).
[37] iST宜特. "傳統AFM量測範圍約為100微米(um),要量的更長、更廣,只能分段分區量測嗎?" iST宜特 https://www.istgroup.com/tw/tech_20200915-afm-profiler/ (accessed 2024).
[38] D. Comedi, F. Dondeo, I. Chambouleyron, Z. L. Peng, and P. Mascher, "Compact hydrogenated amorphous germanium films by ion-beam sputtering deposition," Journal of Non-Crystalline Solids, vol. 266-269, pp. 713-716, 2000/05/01/ 2000, doi: https://doi.org/10.1016/S0022-3093(00)00018-1.
[39] C. V. Ramana, G. Carbajal-Franco, R. S. Vemuri, I. B. Troitskaia, S. A. Gromilov, and V. V. Atuchin, "Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure," Materials Science and Engineering: B, vol. 174, no. 1, pp. 279-284, 2010/10/25/ 2010, doi: https://doi.org/10.1016/j.mseb.2010.03.060.
指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2024-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明