參考文獻 |
[1] L. Zhang, C. Jia, F. Bai, W. Wang, S. An, K. Zhao, Z. Li, J. Li, H. Sun, A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies. Fuel 355, 129455 (2024).
[2] G. Squadrito, G. Maggio, A. Nicita, The green hydrogen revolution, Renew. Energy 216, 119041 (2023).
[3] D. S. Renné, Progress, opportunities and challenges of achieving net-zero emissions and 100% renewables, Solar Compass 1, 100007 (2022).
[4] 林國興, 林有銘, 林俊男, 氫能發展的明日之星-水電解產氫, 工業材料雜誌 376, 85-95 (2018).
[5] F. Liu, C. Shi, X. Guo, Z. He, L. Pan, Z.F. Huang, X. Zhang, J.J. Zou, Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review, Adv. Sci. 9, 2200307 (2022).
[6] A. Lasia, Mechanism and kinetics of the hydrogen evolution reaction, Int J Hydrogen Energ 44, 19484-19518 (2019).
[7] F. Sun, Q. Tang, D. Jiang, Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction, ACS Catal 12, 8147-8739 (2022).
[8] D. Strmcnik, P. P. Lopes, B. Genorio, V. R. Stamenkovic, N. M. Markovic, Design principles for hydrogen evolution reaction catalyst materials, Nano Energy 29, 29-36 (2016).
[9] M Ďurovič, J. Hnát, K. Bouzek, Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review, J. Power Sources 493, 229708 (2022).
[10] S. Sarkar, S. C. Peter, An overview on Pd-based electrocatalysts for the hydrogen evolution reaction, Inorg. Chem. Front. 5, 2060-208 (2018).
[11] Y. Shi, Z. R. Ma, Y. Y. Xiao, Y. C. Yin, W. M. Huang, Z. C. Huang, Y. Z. Zheng, F. Y. Mu, R. Huang, G. Y. Shi, Y. Y. Sun, X. H. Xia, W. Chen, Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat Commun 12, 3021 (2021).
[12] X. Li, Y. Huang, Z. Chen, S. Hu, J. Zhu, P. Tsiakaras, P. K. Shen, Novel PtNi nanoflowers regulated by a third element (Rh, Ru, Pd) as efficient multifunctional electrocatalysts for ORR, MOR and HER, Chem. Eng. J. 454, 140131 (2023).
[13] F. Guo, Z. Zou, Z. Zhang, T. Zeng, Y. Yan, R. Chen, W. Wu, N. Cheng, X. Sun, Confined sub-nanometer PtCo clusters as a highly efficient and robust electrocatalyst for the hydrogen evolution reaction, J. Mater. Chem. A 9, 5468-5474 (2021).
[14] Y. Tang, Q. Liu, L. Dong, H. B. Wu, X. Y. Yu, Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction, Appl Catal B-Environ 266, 118627 (2020).
[15] M. Fang, W. Gao, G. Dong, Z. Xia, S. P. Yip, Y. Qin, Y. Qu, J. C. Ho, Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions, Nano Energy 27, 247-254 (2016).
[16] M. Du, X. Li, H. Pang, Q. Xu, Alloy electrocatalysts, Energy Chem. 5, 100083 (2023).
[17] Y. Rao, Y. Wang, H. Ning, P. Li, M. Wu, Hydrotalcite-like Ni(OH)2 Nanosheets in Situ Grown on Nickel Foam for Overall Water Splitting, ACS Appl. Mater. Interfaces 8, 33601–33607 (2016).
[18] M. C. Weidman, D. V. Esposito, Y. C. Hsu, J. G. Chen, Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range, J. Power Sources 202, 11-17 (2012).
[19] Q. Wang, F. Mi, J. Li, Y. Wu, X. Zhou, G. Ma, S. Ren, Tungsten doping generated Mo2C-MoC heterostructure to improve HER performance in alkaline solution, Electrochimica Acta 370, 137796 (2021).
[20] J. Kibsgaard, C. Tsai, K. Chan, J. D. Benck, J. K. Nørskov, F. A. Pedersen, T. F. Jaramillo, Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends, Energy Environ. Sci. 8, 3022-3029 (2015).
[21] H. Jiang, L. Yan, S. Zhang, Y. Zhao, X. Yang, Y. Wang, J. Shen, X. Zhao, L. Wang, Electrochemical surface restructuring of phosphorus-doped carbon@MoP electrocatalysts for hydrogen evolution. Nano-Micro Lett. 13, 215 (2021).
[22] Y. Liu, Q. Wang, J. Zhang, J. Ding, Y. Cheng, T. Wang, J. Li, F. Hu, H. Bin Yang, B. Liu, Recent advances in carbon-supported noble-metal electrocatalysts for hydrogen evolution reaction: syntheses, structures, and properties, Adv. Energy Mater. 12, 2200928 (2022).
[23] C. Zhang, W. Liu, C. Chen, P. Ni, B. Wang, Y. Jiang, Y. Lu, Emerging interstitial/substitutional modification of Pd-based nanomaterials with nonmetallic elements for electrocatalytic applications, Nanoscale 14, 2915-2942 (2022).
[24] L. Li, H. Xu, Q. Zhu, X. Meng, J. Xua, M. Han, Recent advances of H-intercalated Pd-based nanocatalysts for electrocatalytic reactions, Dalton Trans. 52, 13452-13466 (2023).
[25] H. Chen, B. Zhang, X. Liang, X. Zou, Light alloying element-regulated noble metal catalysts for energy-related applications, Chinese J. Catal. 43, 611-635 (2022).
[26] J. Fan, X. Cui, S. Yu, L. Gu, Q. Zhang, F. Meng, Z. Peng, L. Ma, J. Y. Ma, K. Qi, Q. Bao, W. Zheng, Interstitial Hydrogen Atom Modulation to Boost Hydrogen Evolution in Pd-Based Alloy Nanoparticles, ACS Nano. 13, 12987-12995 (2019).
[27] G. Wang, J. Liu, Y. Sui, M. Wang, L. Qiao, F. Du, B. Zou, Palladium structure engineering induced by electrochemical H intercalation boosts hydrogen evolution catalysis, J. Mater. Chem. A 7, 14876-14881 (2019).
[28] D. Gao, H. Zhou, F Cai, J Wang, G Wang, X. Bao, Pd-Containing Nanostructures for Electrochemical CO2 Reduction Reaction, ACS Catal. 8, 1510-1519 (2018).
[29] L. Bu, X. Zhu, Y. Zhu, C. Cheng, Y. Li, Q.Shao, L. Zhang, X. Huang, H-Implanted Pd Icosahedra for Oxygen Reduction Catalysis: From Calculation to Practice, CCS Chemistry 3, 1972-1982 (2021).
[30] D. Wang, X. Jiang, Z. Lin, X. Zeng, Y. Zhu, Y. Wang, M. Gong, Y. Tang, G. Fu, Ethanol-Induced Hydrogen Insertion in Ultrafine IrPdH Boosts pH-Universal Hydrogen Evolution, Small 18, 2204063 (2022).
[31] Y. Jia, T. H. Huang, S. Lin, L. Guo, Y. M. Yu, J. H. Wang, K. W. Wang, S. Dai, Stable Pd-Cu Hydride Catalyst for Efficient Hydrogen Evolution, J. Am. Chem. Soc. 22, 1391-1397 (2022).
[32] H. Chen, M. Yuan, C.i Zhai, L. Tan, N. Cong, J. Han, H. Fang, X. Zhou, Z. Ren, Y. Zhu, Nano PdFe Alloy Assembled Film as a Highly Efficient Electrocatalyst toward Hydrogen Evolution in Both Acid and Alkaline Solutions, ACS Appl. Energy Mater. 3, 8969-8977 (2020).
[33] Zhong, M., Li, L., Zhao, K. PdCo alloys@N-doped porous carbon supported on reduced graphene oxide as a highly efficient electrocatalyst for hydrogen evolution reaction, J. Mater Sci 56, 14222-14233 (2021).
[34] J. Wang, J. Bao, Y. Zhou, Dopamine-assisted synthesis of rGO@NiPd@NC sandwich structure for highly efficient hydrogen evolution reaction, J Solid State Electrochem 24, 137-144 (2020).
[35] M. Gholinejad, F. Khosravi, M. Afrasi, J. M. Sansano, C. Nájera, Applications of bimetallic PdCu catalysts, Catal. Sci. Technol. 11, 2652-2702 (2021).
[36] J. Fan, H. Du, Y. Zhao, Q. Wang, Y. Liu, D. Li, J. Feng, Recent Progress on Rational Design of Bimetallic Pd Based Catalysts and Their Advanced Catalysis, ACS Catal. 10, 13560-13583 (2020).
[37] S. Jiao, X. Fu, H. Huang, Descriptors for the Evaluation of Electrocatalytic Reactions: d-Band Theory and Beyond, ADV funct. mater. 32, 2107651 (2022).
[38] R. Hong, Y. He, J. Feng, D. Li, Fabrication of Supported Pd-Ir/Al2O3 Bimetallic Catalysts for 2-Ethylanthraquinone Hydrogenation, AIChE J. 63, 3955-3965 (2017).
[39] M. Valenti, N. P. Prasad, R. Kas, D. Bohra, M. Ma, V. Balasubramanian, L. Chu, S. Gimenez, J. Bisquert, B. Dam, W. A. Smith, Suppressing H2 Evolution and Promoting Selective CO2 Electroreduction to CO at Low Overpotentials by Alloying Au with Pd, ACS Catal. 9, 3527-3536 (2019).
[40] J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, J. K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Mater 5, 909-913 (2006).
[41] S, Guo, Y, Liu, E, Murphy, A, Ly, M, Xu, I, Matanovic, X, Pan, P, Atanassov, Robust palladium hydride catalyst for electrocatalytic formate formation with high CO tolerance, Appl Catal B-Environ 316, 121659 (2022).
[42] T. Bhowmik, M. K. Kundu, S. Barman, Palladium Nanoparticle–Graphitic Carbon Nitride Porous Synergistic Catalyst for Hydrogen Evolution/Oxidation Reactions over a Broad Range of pH and Correlation of Its Catalytic Activity with Measured Hydrogen Binding Energy, ACS Catal. 6, 1929-1941 (2016).
[43] J. Ju, X. Liu, J. J. Yu, K. Sun, F. Fathi, X. Zeng, Electrochemistry at Bimetallic Pd/Au Thin Film Surfaces for Selective Detection of Reactive Oxygen Species and Reactive Nitrogen Species, Anal. Chem. 92, 6538-6547 (2020).
[44] Y. Sun, J. Lee, N. H. Kwon, J. Lim, X. Jin, Y. Gogotsi, S. J. Hwang, Enhancing Hydrogen Evolution Reaction Activity of Palladium Catalyst by Immobilization on MXene Nanosheets, ACS Nano. 18, 6243-6255 (2024).
[45] S. Kumaravel, K. K. Saravanan, B. E. Evangeline, V. Niharika, R. Jayakumara, S. Kundu, DNA-based low resistance palladium nano-spheres for effective hydrogen evolution reaction, Catal. Sci. Technol. 11, 5868-5880 (2021).
[46] J. Martinez, J. Mazarío, J. L. Olloqui-Sariego, J. J. Calvente, M. D. Darawsheh, G. Mínguez-Espallargas, M. E. Domine, P. Oña-Burgos, Bimetallic Intersection in PdFe@FeOx-C Nanomaterial for Enhanced Water Splitting Electrocatalysis, Adv. Sustainable Syst. 6, 2200096 (2022).
[47] P. Zou, L. Song, W. Xu, M. Gao, V. Zadorozhnyy, J. Huo, J. Q. Wang, High-throughput screening of superior hydrogen evolution reaction catalysts in Pd-Ni-Fe alloys, J. Alloys Compd. 960, 170656 (2023).
[48] R. P. B. Silalahi, Y. Jo, J. H. Liao, T. H. Chiu, E. Park, W. Choi, H. Liang, S. Kahlal, J. Y. Saillard, D. Lee, C. W. Liu, Hydride-containing 2-Electron Pd/Cu Superatoms as Catalysts for Efficient Electrochemical Hydrogen Evolution, Angew. Chem. Int. Ed. 62, e202301272 (2023).
[49] M. A. Ehsan, F. Aftab, M. Ali, B. A. Ahmed, W. Farooq, A. S. Hakeem, M. F. Nazar, Synergistic engineering of palladium-cobalt nanoalloys on graphite sheet for efficient and sustainable hydrogen evolution reaction, Mater. Today Sustain. 27, 100836 (2024). |