博碩士論文 111329002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.220.116.34
姓名 李志賢(Zhi-Xian Lee)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 具有高活性和高穩定性鈀鐵合金氫化物應用於酸性介質析氫反應之研究
(Highly Active and Stable Pd-Fe Hydride Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著科技的快速發展,石化燃料等能源消耗及其造成的環境汙染問題逐漸受到重視。由於氫氣的高能量密度和零碳燃燒等特性,有取代傳統化石燃料的潛力,因此電催化水分解產氫被視為是一種有前途的解決方案,然而緩慢的動力學限制了析氫反應的進行,為了加速整體產氫速率,設計出高活性的電催化觸媒在析氫反應中扮演著決定性角色。
本研究分成兩個部分做討論,第一部分會介紹以鈀作為高成本鉑基觸媒的替代材料,並利用導入過渡金屬Fe進行合金化和將氫作為間隙原子插入鈀晶格兩種策略修飾鈀的催化活性,解決鈀觸媒因和氫的強親和力所造成的低活性。本研究利用感應耦合電漿技術、X光繞射技術、X光光子能譜技術和X光吸收光譜技術來對觸媒進行分析,獲得觸媒的元素組成、晶體結構、價態組成等材料性質。並進行電化學分析已獲的觸媒的HER性能。
本研究成功以油胺法合成出碳負載的鈀鐵合金氫化物奈米顆粒,為了瞭解鈀/鐵比例和析氫反應活性的關係,本研究設計了三中不同比例(1:1、3:1、9:1)的鈀鐵合金氫化物觸媒,相較於做為對照組的純鈀觸媒,鈀鐵合金氫化物在酸性介質中表現出了優異的活性以及穩定性,其中Pd3FeH表現了最出色的HER性能,在10 mAcm-2時的過電位為41 mV,Tafel斜率為17 mVdec-1,經過5000圈的加速降解測試,在10 mAcm-2時的過電位保持41 mV,Tafel斜率為14 mVdec-1,進行比較後可以發現,適當的鈀/鐵比例可以使觸媒的活性及穩定性有最大幅度的提升。第二部分會將失去活性的鈀鐵合金氫化物觸媒經過適當熱處理後使其再生,並比較不同的熱處理對鈀鐵合金氫化物觸媒的影響,探討如何設計處最佳的熱處理條件。經過H2氣氛下200℃維持300分鐘的熱處理後,ADT的過電位衰退率從160%降至35%,Tafel斜率從276%降至28%。
本研究成功結合了氫化物與過度金屬合金化之優點,設計了用於酸性介質HER的Pd3FeH觸媒,其具有高活性及優異的電化學穩定性,且使已失活之觸媒成功再生,恢復活性,可繼續使用。
摘要(英) With the rapid advancement of technology, the consumption of energy sources such as fossil fuels and the resulting environmental pollution have garnered increasing attention. Due to its high energy density and zero-carbon combustion characteristics, hydrogen is considered a promising alternative to traditional fossil fuels. Consequently, hydrogen production via electrocatalytic water splitting is seen as a promising solution. However, the slow kinetics of the hydrogen evolution reaction (HER) poses a significant limitation. To accelerate the overall hydrogen production rate, the design of highly active electrocatalysts plays a decisive role in the HER process.
This study is divided into two parts. The first part introduces palladium (Pd) as an alternative material to high-cost platinum-based catalysts. Two strategies are employed to modify the catalytic activity of Pd: alloying with the iron, and incorporating hydrogen as interstitial atoms into the Pd lattice. These strategies aim to address the low activity of Pd catalysts caused by their strong affinity for hydrogen. Inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS) were used to analyze the catalysts, obtaining material properties such as elemental composition, crystal structure, and valence state composition. Electrochemical analysis was conducted to evaluate the HER performance of the catalysts.
In this study, carbon-supported Pd-Fe alloy hydride nanoparticles were successfully synthesized using the oleylamine method. To understand the relationship between the Pd/Fe ratio and HER activity, three Pd-Fe alloy hydride catalysts with different ratios (1:1, 3:1, 9:1) were designed. Compared to the pure Pd catalyst used as a control, the Pd-Fe alloy hydride exhibited superior activity and stability in acidic media. Among them, Pd3FeH demonstrated the best HER performance, with an overpotential of 41 mV at 10 mA cm-2 and a Tafel slope of 17 mV dec-1. After 5000 cycles of accelerated degradation tests, the overpotential at 10 mA cm-2 remained at 41 mV, and the Tafel slope was 14 mV dec-1. The comparison revealed that an optimal Pd/Fe ratio could maximize the enhancement of both the activity and stability of the catalysts.
The second part of the study focuses on the regeneration of deactivated Pd-Fe alloy hydride catalysts through appropriate heat treatment. It compares the effects of different heat treatments on the Pd-Fe alloy hydride catalysts and explores the optimal heat treatment conditions for catalyst regeneration. After heat treatment at 200°C in a H2 atmosphere for 300 minutes, the overpotential degradation rate of the accelerated degradation tests (ADT) decreased from 160% to 35%, and the Tafel slope degradation rate decreased from 276% to 28%.
This study successfully combines the advantages of hydrides and transition metal alloying, designing a Pd3FeH catalyst for the HER in acidic media. The catalyst exhibits high activity and excellent electrochemical stability, and the deactivated catalyst can be regenerated, restoring its activity for continued use.
關鍵字(中) ★ 電催化
★ 析氫反應觸媒
★ 氫化鈀
★ 鈀鐵合金
★ 鈀鐵合金氫化物
★ 觸媒再生
關鍵字(英) ★ electrocatalysis
★ hydrogen evolution reaction catalyst
★ palladium hydride
★ Pd-Fe alloy
★ Pd-Fe Alloy hydride
★ catalyst refreshment
論文目次 摘要 I
Abstract III
目錄 VI
圖目錄 VIII
表目錄 X
第一章 前言 1
第二章 基本原理與文獻回顧 2
2.1 析氫反應之機制 2
2.2 析氫反應觸媒 4
2.2.1 貴金屬觸媒 4
2.2.2 合金觸媒 4
2.2.3 過渡金屬氫氧化物 6
2.2.4 過渡金屬碳化物 6
2.2.5 過渡金屬磷化物 6
2.2.6 鈀基HER觸媒 6
2.3 通過摻雜輕原子來修飾Pd觸媒 10
2.4 通過和其他金屬合金化來修飾Pd觸媒 13
2.5 研究動機與目的 15
第三章 實驗方法 17
3.1 實驗流程 17
3.2 實驗製程 18
3.1.1 實驗藥品 18
3.1.2 合成PdH觸媒 18
3.1.3 合成PdxFeH觸媒 18
3.2.1 感應耦合電漿光學發射光譜(inductively coupled plasma optical emission spectroscopy, ICP-OES) 20
3.2.2 高解析度穿透式電子顯微鏡(high resolution transmission electron microscope, HRTEM) 20
3.2.3 X光繞射技術(X-Ray diffraction, XRD) 20
3.2.4 X光光電子能譜(X-ray photoelectron spectrscopy, XPS) 20
3.2.5 X光吸收光譜(X-ray absorption spectrscopy, XAS) 21
3.3 電化學分析 22
第四章 結果與討論 24
4.1 PdxFeH (x = 1, 3, 9)觸媒的材料分析和電化學分析 24
4.1.1 ICP-OES 24
4.1.2 XRD 24
4.1.3 XAS 27
4.1.4 電化學分析 30
4.1.5 小結 32
4.2 通過適當熱處理使失去活性的Pd3FeH恢復活性 37
4.2.1 XRD 37
4.2.2 XPS 37
4.2.3 電化學分析 41
4.2.4 小結 47
第五章 結論 48
第六章 參考文獻 50
參考文獻 [1] L. Zhang, C. Jia, F. Bai, W. Wang, S. An, K. Zhao, Z. Li, J. Li, H. Sun, A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies. Fuel 355, 129455 (2024).
[2] G. Squadrito, G. Maggio, A. Nicita, The green hydrogen revolution, Renew. Energy 216, 119041 (2023).
[3] D. S. Renné, Progress, opportunities and challenges of achieving net-zero emissions and 100% renewables, Solar Compass 1, 100007 (2022).
[4] 林國興, 林有銘, 林俊男, 氫能發展的明日之星-水電解產氫, 工業材料雜誌 376, 85-95 (2018).
[5] F. Liu, C. Shi, X. Guo, Z. He, L. Pan, Z.F. Huang, X. Zhang, J.J. Zou, Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review, Adv. Sci. 9, 2200307 (2022).
[6] A. Lasia, Mechanism and kinetics of the hydrogen evolution reaction, Int J Hydrogen Energ 44, 19484-19518 (2019).
[7] F. Sun, Q. Tang, D. Jiang, Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction, ACS Catal 12, 8147-8739 (2022).
[8] D. Strmcnik, P. P. Lopes, B. Genorio, V. R. Stamenkovic, N. M. Markovic, Design principles for hydrogen evolution reaction catalyst materials, Nano Energy 29, 29-36 (2016).
[9] M Ďurovič, J. Hnát, K. Bouzek, Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review, J. Power Sources 493, 229708 (2022).
[10] S. Sarkar, S. C. Peter, An overview on Pd-based electrocatalysts for the hydrogen evolution reaction, Inorg. Chem. Front. 5, 2060-208 (2018).
[11] Y. Shi, Z. R. Ma, Y. Y. Xiao, Y. C. Yin, W. M. Huang, Z. C. Huang, Y. Z. Zheng, F. Y. Mu, R. Huang, G. Y. Shi, Y. Y. Sun, X. H. Xia, W. Chen, Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat Commun 12, 3021 (2021).
[12] X. Li, Y. Huang, Z. Chen, S. Hu, J. Zhu, P. Tsiakaras, P. K. Shen, Novel PtNi nanoflowers regulated by a third element (Rh, Ru, Pd) as efficient multifunctional electrocatalysts for ORR, MOR and HER, Chem. Eng. J. 454, 140131 (2023).
[13] F. Guo, Z. Zou, Z. Zhang, T. Zeng, Y. Yan, R. Chen, W. Wu, N. Cheng, X. Sun, Confined sub-nanometer PtCo clusters as a highly efficient and robust electrocatalyst for the hydrogen evolution reaction, J. Mater. Chem. A 9, 5468-5474 (2021).
[14] Y. Tang, Q. Liu, L. Dong, H. B. Wu, X. Y. Yu, Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction, Appl Catal B-Environ 266, 118627 (2020).
[15] M. Fang, W. Gao, G. Dong, Z. Xia, S. P. Yip, Y. Qin, Y. Qu, J. C. Ho, Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions, Nano Energy 27, 247-254 (2016).
[16] M. Du, X. Li, H. Pang, Q. Xu, Alloy electrocatalysts, Energy Chem. 5, 100083 (2023).
[17] Y. Rao, Y. Wang, H. Ning, P. Li, M. Wu, Hydrotalcite-like Ni(OH)2 Nanosheets in Situ Grown on Nickel Foam for Overall Water Splitting, ACS Appl. Mater. Interfaces 8, 33601–33607 (2016).
[18] M. C. Weidman, D. V. Esposito, Y. C. Hsu, J. G. Chen, Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range, J. Power Sources 202, 11-17 (2012).
[19] Q. Wang, F. Mi, J. Li, Y. Wu, X. Zhou, G. Ma, S. Ren, Tungsten doping generated Mo2C-MoC heterostructure to improve HER performance in alkaline solution, Electrochimica Acta 370, 137796 (2021).
[20] J. Kibsgaard, C. Tsai, K. Chan, J. D. Benck, J. K. Nørskov, F. A. Pedersen, T. F. Jaramillo, Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends, Energy Environ. Sci. 8, 3022-3029 (2015).
[21] H. Jiang, L. Yan, S. Zhang, Y. Zhao, X. Yang, Y. Wang, J. Shen, X. Zhao, L. Wang, Electrochemical surface restructuring of phosphorus-doped carbon@MoP electrocatalysts for hydrogen evolution. Nano-Micro Lett. 13, 215 (2021).
[22] Y. Liu, Q. Wang, J. Zhang, J. Ding, Y. Cheng, T. Wang, J. Li, F. Hu, H. Bin Yang, B. Liu, Recent advances in carbon-supported noble-metal electrocatalysts for hydrogen evolution reaction: syntheses, structures, and properties, Adv. Energy Mater. 12, 2200928 (2022).
[23] C. Zhang, W. Liu, C. Chen, P. Ni, B. Wang, Y. Jiang, Y. Lu, Emerging interstitial/substitutional modification of Pd-based nanomaterials with nonmetallic elements for electrocatalytic applications, Nanoscale 14, 2915-2942 (2022).
[24] L. Li, H. Xu, Q. Zhu, X. Meng, J. Xua, M. Han, Recent advances of H-intercalated Pd-based nanocatalysts for electrocatalytic reactions, Dalton Trans. 52, 13452-13466 (2023).
[25] H. Chen, B. Zhang, X. Liang, X. Zou, Light alloying element-regulated noble metal catalysts for energy-related applications, Chinese J. Catal. 43, 611-635 (2022).
[26] J. Fan, X. Cui, S. Yu, L. Gu, Q. Zhang, F. Meng, Z. Peng, L. Ma, J. Y. Ma, K. Qi, Q. Bao, W. Zheng, Interstitial Hydrogen Atom Modulation to Boost Hydrogen Evolution in Pd-Based Alloy Nanoparticles, ACS Nano. 13, 12987-12995 (2019).
[27] G. Wang, J. Liu, Y. Sui, M. Wang, L. Qiao, F. Du, B. Zou, Palladium structure engineering induced by electrochemical H intercalation boosts hydrogen evolution catalysis, J. Mater. Chem. A 7, 14876-14881 (2019).
[28] D. Gao, H. Zhou, F Cai, J Wang, G Wang, X. Bao, Pd-Containing Nanostructures for Electrochemical CO2 Reduction Reaction, ACS Catal. 8, 1510-1519 (2018).
[29] L. Bu, X. Zhu, Y. Zhu, C. Cheng, Y. Li, Q.Shao, L. Zhang, X. Huang, H-Implanted Pd Icosahedra for Oxygen Reduction Catalysis: From Calculation to Practice, CCS Chemistry 3, 1972-1982 (2021).
[30] D. Wang, X. Jiang, Z. Lin, X. Zeng, Y. Zhu, Y. Wang, M. Gong, Y. Tang, G. Fu, Ethanol-Induced Hydrogen Insertion in Ultrafine IrPdH Boosts pH-Universal Hydrogen Evolution, Small 18, 2204063 (2022).
[31] Y. Jia, T. H. Huang, S. Lin, L. Guo, Y. M. Yu, J. H. Wang, K. W. Wang, S. Dai, Stable Pd-Cu Hydride Catalyst for Efficient Hydrogen Evolution, J. Am. Chem. Soc. 22, 1391-1397 (2022).
[32] H. Chen, M. Yuan, C.i Zhai, L. Tan, N. Cong, J. Han, H. Fang, X. Zhou, Z. Ren, Y. Zhu, Nano PdFe Alloy Assembled Film as a Highly Efficient Electrocatalyst toward Hydrogen Evolution in Both Acid and Alkaline Solutions, ACS Appl. Energy Mater. 3, 8969-8977 (2020).
[33] Zhong, M., Li, L., Zhao, K. PdCo alloys@N-doped porous carbon supported on reduced graphene oxide as a highly efficient electrocatalyst for hydrogen evolution reaction, J. Mater Sci 56, 14222-14233 (2021).
[34] J. Wang, J. Bao, Y. Zhou, Dopamine-assisted synthesis of rGO@NiPd@NC sandwich structure for highly efficient hydrogen evolution reaction, J Solid State Electrochem 24, 137-144 (2020).
[35] M. Gholinejad, F. Khosravi, M. Afrasi, J. M. Sansano, C. Nájera, Applications of bimetallic PdCu catalysts, Catal. Sci. Technol. 11, 2652-2702 (2021).
[36] J. Fan, H. Du, Y. Zhao, Q. Wang, Y. Liu, D. Li, J. Feng, Recent Progress on Rational Design of Bimetallic Pd Based Catalysts and Their Advanced Catalysis, ACS Catal. 10, 13560-13583 (2020).
[37] S. Jiao, X. Fu, H. Huang, Descriptors for the Evaluation of Electrocatalytic Reactions: d-Band Theory and Beyond, ADV funct. mater. 32, 2107651 (2022).
[38] R. Hong, Y. He, J. Feng, D. Li, Fabrication of Supported Pd-Ir/Al2O3 Bimetallic Catalysts for 2-Ethylanthraquinone Hydrogenation, AIChE J. 63, 3955-3965 (2017).
[39] M. Valenti, N. P. Prasad, R. Kas, D. Bohra, M. Ma, V. Balasubramanian, L. Chu, S. Gimenez, J. Bisquert, B. Dam, W. A. Smith, Suppressing H2 Evolution and Promoting Selective CO2 Electroreduction to CO at Low Overpotentials by Alloying Au with Pd, ACS Catal. 9, 3527-3536 (2019).
[40] J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, J. K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Mater 5, 909-913 (2006).
[41] S, Guo, Y, Liu, E, Murphy, A, Ly, M, Xu, I, Matanovic, X, Pan, P, Atanassov, Robust palladium hydride catalyst for electrocatalytic formate formation with high CO tolerance, Appl Catal B-Environ 316, 121659 (2022).
[42] T. Bhowmik, M. K. Kundu, S. Barman, Palladium Nanoparticle–Graphitic Carbon Nitride Porous Synergistic Catalyst for Hydrogen Evolution/Oxidation Reactions over a Broad Range of pH and Correlation of Its Catalytic Activity with Measured Hydrogen Binding Energy, ACS Catal. 6, 1929-1941 (2016).
[43] J. Ju, X. Liu, J. J. Yu, K. Sun, F. Fathi, X. Zeng, Electrochemistry at Bimetallic Pd/Au Thin Film Surfaces for Selective Detection of Reactive Oxygen Species and Reactive Nitrogen Species, Anal. Chem. 92, 6538-6547 (2020).
[44] Y. Sun, J. Lee, N. H. Kwon, J. Lim, X. Jin, Y. Gogotsi, S. J. Hwang, Enhancing Hydrogen Evolution Reaction Activity of Palladium Catalyst by Immobilization on MXene Nanosheets, ACS Nano. 18, 6243-6255 (2024).
[45] S. Kumaravel, K. K. Saravanan, B. E. Evangeline, V. Niharika, R. Jayakumara, S. Kundu, DNA-based low resistance palladium nano-spheres for effective hydrogen evolution reaction, Catal. Sci. Technol. 11, 5868-5880 (2021).
[46] J. Martinez, J. Mazarío, J. L. Olloqui-Sariego, J. J. Calvente, M. D. Darawsheh, G. Mínguez-Espallargas, M. E. Domine, P. Oña-Burgos, Bimetallic Intersection in PdFe@FeOx-C Nanomaterial for Enhanced Water Splitting Electrocatalysis, Adv. Sustainable Syst. 6, 2200096 (2022).
[47] P. Zou, L. Song, W. Xu, M. Gao, V. Zadorozhnyy, J. Huo, J. Q. Wang, High-throughput screening of superior hydrogen evolution reaction catalysts in Pd-Ni-Fe alloys, J. Alloys Compd. 960, 170656 (2023).
[48] R. P. B. Silalahi, Y. Jo, J. H. Liao, T. H. Chiu, E. Park, W. Choi, H. Liang, S. Kahlal, J. Y. Saillard, D. Lee, C. W. Liu, Hydride-containing 2-Electron Pd/Cu Superatoms as Catalysts for Efficient Electrochemical Hydrogen Evolution, Angew. Chem. Int. Ed. 62, e202301272 (2023).
[49] M. A. Ehsan, F. Aftab, M. Ali, B. A. Ahmed, W. Farooq, A. S. Hakeem, M. F. Nazar, Synergistic engineering of palladium-cobalt nanoalloys on graphite sheet for efficient and sustainable hydrogen evolution reaction, Mater. Today Sustain. 27, 100836 (2024).
指導教授 李勝偉 王冠文(Sheng-Wei Lee Kuan-Wen Wang) 審核日期 2024-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明